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Outline 

• Does efficiency matter? Yes 
• Is correcting with multiplicity independent efficiency  
      good enough? No   
• Is there any hope? Yes 

• So what to do? 
• Backup 

2 



3 

Efficiency correction is important  

STAR (thanks to X. Luo) 
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Efficiencies at 19.6 GeV and 7.7 GeV  

So how can we correct for efficiency? 
Efficiencies depend on the number of charged particles. 

X. Luo [STAR Collaboration]  
arXiv:1503.02558 [nucl-ex]].  



𝑦 

𝑝𝑡 So we decide to measure in some 𝑝𝑡  
and 𝑦 range. We produce a certain 
number of protons but measure only  
a fraction of them because of imperfect 
detector.  

𝐾𝑛 − true cumulants (measured if detector is perfect) 

𝑐𝑛 − cumulants that we measure 

Definitions 

Moreover we do not see neutrons. 
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𝑝 𝑛1, 𝑛2 = 𝑃 𝑁1, 𝑁2 𝐵 𝑛1, 𝑁1; 𝑝1 𝐵(𝑛2, 𝑁2; 𝑝2) 

Calculation 

𝐵 … − binomial dist. 

𝐾𝑛, 𝐹𝑖,𝑘 𝑐𝑛 

𝑝1 = 𝑝2 = 1: 𝑐𝑛 = 𝐾𝑛 

what we measure what we would like to measure 

factorial moments 𝐹𝑖,𝑘 =
𝑁1!𝑁2!

𝑁1−𝑖 ! 𝑁2−𝑘 !
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It turns out one cannot relate cumulants 𝐾𝑛 solely through  
cumulants 𝑐𝑚 
 
We use factorial moments 

𝑁1! 𝑁2!

𝑁1 − 𝑖 ! 𝑁2 − 𝑘 !
 =  
1

𝑝1
𝑖𝑝2
𝑘
 

𝑛1! 𝑛2!

𝑛1 − 𝑖 ! 𝑛2 − 𝑘 !
 

𝐹𝑖,𝑘  =  
1

𝑝1
𝑖𝑝2
𝑘
 𝑓𝑖,𝑘 

So we express true cumulants through factorial moments 𝐹𝑖,𝑘,  

which are known from the above equality (𝑓𝑖,𝑘 is measured). 
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Cumulants vs. factorial moments 
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Problem is not solved: 

We assume that 𝑝 does not depend on 𝑁. Not good 
 
We assume binomial distribution. Is it OK? We should test it. 
HADES and STAR promised to check it. 
 
By binomial I mean binomial form 
 

𝐵 𝑛,𝑁 =
𝑁!

𝑛! 𝑁 − 𝑛 !
[𝑝 𝑁,… ]𝑛[1 − 𝑝(𝑁,… )]𝑁−𝑛 

 

Net-proton vs net-baryon problem is mathematically equivalent  
to efficiency problem M.Kitazawa, M.Asakawa,   

PRC 86, 024904 (2012); 069902 (2012)  



Illustration 

multiplicity distr. narrower 
than Poisson 

multiplicity distr. broader 
than Poisson 

𝐾4
𝐾2
= 5, 1, 0, −1,−5 

𝐾4/𝐾2 𝐾4/𝐾2 
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Net-proton could be a good approximation  
of net-baryon if 𝐾4/𝐾2 ~ 1 



𝑦 

𝑝𝑡 

𝜖(3) = 0.5, 𝜖  (3) = 0.4 

𝜖(2) = 0.8, 𝜖  (2) = 0.8 

𝜖(1) = 0.9, 𝜖  (1) = 0.8 

Suppose our machine detects particles with probabilities that  
depend on 𝑝𝑡 (in general 𝑝𝑡, 𝑦, 𝜙).    

We measure 𝑓𝑖,𝑘 and 𝑐𝑛 but we want to know true 𝐹𝑖,𝑘  and 𝐾𝑛 

observed produced 

𝑥 = 3 

𝑥 = 2 

𝑥 = 1 

𝜖 (𝜖 ) -- probabilities to detect  
baryons (antibaryons) or  
positive (negative) charges 

an example: 
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𝑁 =  𝑁(𝑥)

𝑥=1,2,3

 𝑁(𝑥) =
1

𝜖(𝑥)
𝑛(𝑥)  

𝐹1,1 = 𝑁𝑁 =   𝑁(𝑥)𝑁 (𝑥 )

𝑥 =1,2,3𝑥=1,2,3

 

𝑁(𝑥)𝑁 (𝑥 ) =
1

𝜖(𝑥)𝜖 (𝑥 )
𝑛(𝑥)𝑛 (𝑥 )  

Calculation 

Once we know 𝐹𝑖,𝑘  we can construct cumulnats 𝐾𝑛 
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See PRC 91 (2015) 027901 for general equations  
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𝑁!

𝑁 − 𝑖 !
 =  
1

𝜖𝑖
 
𝑛! 

𝑛 − 𝑖 ! 
 𝐹𝑖  =  

1

𝜖𝑖
 𝑓𝑖  

We assume that 𝜖 does not depend on 𝑁. Not good 

Let’s go back to factorial moments and neglect anti-protons 

R. Holzmann, talk at HIC for FAIR Workshop on Fluctuation and Correlation Measures  
in Nuclear Collisions (2015) 
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If 𝜖 depends on 𝑁 the whole method brakes down.  

Let’s test it. Suppose that  

with 𝑁 = 40, 𝜖0 = 0.65 and plot 𝐾𝑛/𝐾2 as a function of 𝜖′. 
We calculate exact 𝑓𝑖  and correct using constant efficiency 

𝐹𝑖  =  𝑓𝑖/𝜖0
𝑖 . 

R. Holzmann,  
talk at HIC for FAIR 
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We obtain 

Large corrections for small 𝜖′ 
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We need something else.  
Why not just solve equations directly, for example: 

Triangular equations are trivial to solve. 
We can easily use 𝜖(𝑁), matrix is much more complicated but it is 
not a big deal. 
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Problem.  
For binomial with constant 𝜖 

𝑀 = 𝑁max = 𝑛max 

For ϵ = 0.7, 𝑀 = 100, det B = 10−720 
 
Matrix is pseudo-singular.  
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For binomial: 

it has correct cumulants! 

We take exact 𝑝(𝑛) from slide 16 and  
replace it by 𝑝 𝑛 1 + 𝑂 10−5 . Then  
we calculate above P(N).   
We get nonsense but … 

red line – input Poisson 
black – positive 𝑃(𝑁) 
blue – negative 𝑃(𝑁) 

𝐾4
𝐾2
= 1 
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OK, let’s test this method with 𝜖(𝑁). 
 
1) we sample N particles from Poisson 
2) each particle can be detected with probability 𝜖(𝑁)  
3) we run 107 events and get measured 𝑝(𝑛) 
4) our matrix is given by  
  
 
 
5) solve triangular equations and obtain 𝑃(𝑁). We get nonsense 
     but that’s fine 
6) we calculate 𝐾4/𝐾2 and get a number 
 
We repeat the whole exercise many times and plot histogram of 
obtained 𝐾4/𝐾2 …   
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… and this is what we obtain 

It works very well, statistical errors are under control 
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What if we do not know analytical form of 𝐵 𝑛,𝑁 ? 
 
Solution A 
 
1) generate particles from some reasonable generator 
2) run it through a detector simulator 
3) we get the matrix 𝐵(𝑛,𝑁) but it is not complete 
4) each column we fit with some function 
5) now we get complete matrix 
6) and we go back to the previous case. Done. 
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What if we do not know analytical form of 𝐵 𝑛,𝑁 ? 
 
Solution B 
 
1) generate particles from some reasonable generator 
2) run it through a detector simulator 
3) we get the matrix 𝐵(𝑛,𝑁) but it is not complete 
4) det 𝐵 = 0 exactly 
5) calculate the Moore-Penrose pseudoinverse 
6) calculate 𝑃(𝑁) [which is wrong] and cumulants 
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I am not sure if this method is stable. I would use only if we fail to  
find something better 

The Moore-Penrose pseudoinverse 



Efficiency is very serious problem that makes any interpretation  
of net-proton cumulants challenging 
 
Solving triangular equation could be helpful 
 
Simulating response matrix and fitting some function seems to  
be a good idea 
 
We could use the Moore-Penrose pseudoinverse but I am not sure  
this method is stable (under study) 

Conclusions 
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Backup 
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Cumulants 

𝑃𝐵(𝑛) – net baryon/proton/charge distribution 

cumulant generating function 

n-th derivative with respect to t (at 𝑡 = 0)  
gives 𝑐𝑛  



Relations between 𝐾𝑛 and 𝑐𝑛. 
Here 𝑝1 = 𝑝2 = 𝑝. 

𝑓𝑖,𝑘 − measured factorial moments 

General case 𝑝1 ≠ 𝑝2, see PRC 86 (2012) 044904  
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𝑐3/𝑐1 as a function of binomial parameter p 

𝐾3/𝐾1 𝐾3/𝐾1 

multiplicity distr. narrower 
than Poisson 

multiplicity distr. broader 
than Poisson 

𝐾3
𝐾1
= −1, 0, 1/2, 1 
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Local factorial moments 

𝐹2,0 = 𝑁(𝑁 − 1) =   𝑁 𝑥1 [𝑁 𝑥2 − 𝛿𝑥1,𝑥2] 

𝑥2=1,2,3𝑥1=1,2,3

 

𝑁 𝑥1 [𝑁 𝑥2 − 𝛿𝑥1,𝑥2] =
1

𝜖(𝑥1)𝜖(𝑥2)
𝑛 𝑥1 [𝑛 𝑥2 − 𝛿𝑥1,𝑥2]  

𝛿𝑥1,𝑥2 = 1 if 𝑥1 = 𝑥2 and zero otherwise 
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See backup or PRC 91 (2015) 027901 for general equations  



Local efficiency – general expressions 
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Peculiar centrality dependence only for 19.6 and 27 GeV 
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Unfolding vs. average efficiency 

Very similar statistical error bars. 
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(after correction) 

𝑁𝑝𝑎𝑟𝑡 

X.Luo, STAR, 1503.02558 
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New STAR data at 7.7 GeV  
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Acceptance  

Signal is at high 𝑝𝑡, 𝑝𝑡 > 1.2 GeV. Is it expected from theory? 
Signal is pretty sensitive to range of 𝑦. 
Are stopped protons as good as produced ones? 


