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1 Introduction

When we are dealing with microscopic problems at relativistic energies, we
have to cope with relativistic kinematics and with particle production in a
quantum mechanical description. These problems cannot be dealt with consis-
tently in non-relativistic quantum mechanics (i.e. by solving the Schrödinger
equation). The consistent framework for dealing with such problems is a rel-

ativistic quantum field theory (QFT). The formalism of QFT leads to a per-
turbation theory, which can be phrased in terms of Feynman diagrams. The
full formalism of QFT is outside the scope of these lectures, so we will take
a less formal approach. We will motivate the Feynman rules and Feynman
diagrams starting from relativistic wave equations. This approach lacks math-
ematical rigor, but is more intuitive. We start by reviewing the most important
principles of non-relativistic quantum mechanics.

2 Schrödinger equation

The wave equations cannot be derived from the laws of classical mechanics.
One can at most provide plausibility arguments for the form of the equations.

Consider the simplest possible physical system, namely that of an isolated free
particle. The non-relativistic hamiltonian is

H =
p2

2m
. (1)

In quantum mechanics every physical observable is represented by a linear,

hermitian operator, which act on the wavefunction Ψ. Thus. e.g. in coordinate
representation

H → ih̄
∂

∂t
(2)

~p→ h̄

i
~∇ (3)

which leads to the non-relativistic Schrödinger equation

ih̄
∂Ψ(~r, t)

∂t
=

−h̄2~∇2

2m
Ψ(~r, t) . (4)
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It is assumed that the energy and momentum operators remain also in the
presence of interactions. From the non-relativistic form of the total hamilto-
nian

H =
p2

2m
+ V (~r, t) (5)

one then arrives at the general from of the Schrödinger equation

ih̄
∂Ψ(~r, t)

∂t
=




−h̄2~∇2

2m
+ V (~r, t)



Ψ(~r, t) . (6)

In most cases the potential is independent of time, in which case the energy is
conserved. For a stationary problem, one can then separate the time and space
coordinates, and one arrives at the time independent Schrödinger equation

Ψ(~r, t) = ψ(~r) exp(−iEt
h̄

) ⇒ Hψ(~r) = Eψ(~r) (7)

The wave function is a complex probability amplitude. Only changes of the
phase and relative phases are observable, not the absolute value of the phase.
The probability density is given by

ρ(~r) = |ψ(~r)|2. (8)

while the probability to find the particle in the volume element d3r is

|ψ(~r)|2d3r . (9)

We also need the probability current density, ~j. The conservation of probability
implies

∂ρ

∂t
+ ~∇ ·~j = 0 , (10)

the equation of continuity.

The derivation of the current corresponding to the Schrödinger equation

~j(~r, t) =
h̄

2im

(

Ψ⋆~∇Ψ − (~∇Ψ)Ψ
)

(11)

is left as an exercise.
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3 Klein-Gordon equation

For a free particle the relativistic energy-momentum relation is1

E2 = ~p
2
c2 +m2c4 (12)

or

E =
√

~p
2
c2 +m2c4 (13)

In analogy to the Schrödinger equation, one may try to start from the latter
equation, which would yield

ih̄
∂φ

∂t
=
(√

−h̄2c2~∇2 +m2c4
)

φ . (14)

However, this form is problematic, since it involves gradients of the wave func-
tion of arbitrary order, as seen by expanding the square root. This implies
that the equation is non-local. Furthermore, because the time- and space-
coordinates are not treated on the same footing, the form of the equation
depends on the reference frame. Therefore, one tried the first relation, which
is quadratic in E and leads to

−h̄2∂
2φ

∂t2
= (−h̄2c2~∇2 +m2c4)φ . (15)

This is the Klein-Gordon equation. Note that by requiring relativistic invari-
ance and by refuting the square root form, we arrived at a differential equation
which is second order in ∂/∂t. Using the notation

∂µ =
∂

∂xµ
∂µ =

∂

∂xµ
, (16)

where xµ = (t, x1, x2, x3) and xµ = (t, x1, x2, x3) = (t,−x1,−x2,−x3), one can
rewrite the Klein-Gordon equation in explicitly covariant form2

(∂µ∂
µ +m2)φ = 0 (17)

The solutions of the free Klein-Gordon equation are of the form

φ =
1√
V
e(i(~p·~r−ωt)) . (18)

1We employ the notation ~p
2

=
∑3

i=1
pi for the three momentum squared and p2 =

E2 − ~p
2

for the four momentum squared.
2From now on we (most of the time) use natural units, where h̄ = c = 1.
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Inserting this solution into the Klein-Gordon equation, one finds ω2 = ~p2 +m2,
which implies that there are solutions with positive as well as with negative
energy, E = ω = ±

√
~p2 +m2.

Clearly the Klein-Gordon equation is covariant (invariant under Lorentz trans-
formations). However, by using the squared form of the energy-momentum
relation, we have also introduced the solutions with negative energy. Con-
sequently, the spectrum of the Klein-Gordon equation is not bounded from
below, which leads to problems with stability. Later, we will see that the
negative energy solutions can be reinterpreted in terms of antiparticles.

For the Klein-Gordon equation one can also define a probability density and
a probability current:

ρ =
i

2m

[

φ⋆
∂φ

∂t
−
(

∂φ⋆

∂t

)

φ

]

(19)

~j =
1

2 im

[

φ⋆~∇φ−
(

~∇φ⋆
)

φ
]

. (20)

The equation of continuity may be brought into covariant form by defining the
current four vector jµ = (ρ,~j) = (i/2m) [φ⋆∂µφ− (∂µφ⋆)φ]:

∂µj
µ =

∂ρ

∂t
+ ~∇ ·~j = 0 . (21)

Clearly the probability density is not positive definite. As an example, consider
a non-interacting particle. The corresponding probability density equals

ρ =
E

mV
, (22)

which is positive for positive energy solutions and negative for negative energy
solutions. Thus, a negative probability density is possible, which would give
problems with the interpretation of the wave function.

4 Dirac equation

The second order time derivative in the Klein-Gordon equation leads to the
negative energy solutions. In order to avoid this problem, Dirac tried to find
an equation, which is first order in the time derivative, like the Schrödinger
equation, but at the same time relativistically invariant.
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It turns out that although the probability density is positive for the Dirac
equation, it also has negative energy solutions. These were interpreted by
Dirac. Based on this he predicted the existence of antiparticles. This was
certainly one of the most important contributions to modern physics. The
Dirac equation describes spin-1

2
particles. It thus is the wave equation for

electrons, muons, neutrinos, quarks, and also for the composite nucleons.

A relativistically covariant equation, which is first order in the time derivative,
must also be first order in the spatial derivative. Dirac made the following
Ansatz

i
∂Ψ

∂t
= HΨ =

1

i

3∑

i=1

αi
∂Ψ

∂xi
+ βmΨ =

(
1

i
~α · ~∇ + βm

)

Ψ , (23)

where αi and β are constants, that are to be determined. By acting with ∂/∂t
on the equation, we obtain

i
∂2Ψ

∂t2
= −i

3∑

i=1

αi
∂

∂t

∂Ψ

∂xi
+ βm

∂Ψ

∂t
, (24)

which by using the Dirac equation yields

∂2Ψ

∂t2
=

3∑

i=1

(αi)2 ∂2Ψ

∂(xi)2
− β2m2Ψ (25)

+
∑

j 6=k

1

2
(αjαk + αkαj)

∂2Ψ

∂xj∂xk
− im

3∑

j=1

(αjβ + βαj)
∂Ψ

∂xj
. (26)

This equation reduces to the Klein-Gordon equation

∂2Ψ

∂t2
= (~∇2 −m2)Ψ , (27)

which yields the desired relativistic energy-momentum relation if

(αi)2 = 1 αiαj + αjαi = 0 (i 6= j) (28)

β2 = 1 αiβ + βαi = 0 (29)

or in other words if the coefficients satisfy the anticommutation relations
{

αi, αj
}

= αiαj + αjαi = 2δij
{

αi, β
}

= 0 (30)

and β2 = 1. These conditions cannot be fulfilled by real or complex numbers.
Thus, one has to consider matrices. The matrices must i) be hermitian, since
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the hamiltonian is hermitian, ii) have eigenvalues ±1 since (αi)2 = β2 = 1 and
iii) be traceless, since e.g. Tr(αi) = Tr(ββαi) = Tr(βαiβ) = −Tr(αi).
The properties ii) and iii) imply that the dimension N of the matrices must
be even, i.e. N = 2,4,6. . . . N = 2 is not enough, since there are only three
independent, traceless hermitian matrices of dimension 2. These can be chosen
as the Pauli spin matrices

σx =

(

0 1
1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0
0 −1

)

. (31)

Thus, the smallest possible dimension is N = 4.

One choice is

αi =

(

0 σi

σi 0

)

β =

(

1 0
0 −1

)

(32)

where 1 the 2 × 2 unit matrix. Thus, e.g.

β =








1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1








(33)

This implies that the wavefunction is a 4 component vector:

Ψ =








ψ1

ψ2

ψ3

ψ4








Ψ† =
(

ψ⋆1 ψ⋆2 ψ⋆3 ψ⋆4
)

(34)

The corresponding probability density and current are

ρ = Ψ†Ψ ~j = Ψ†~αΨ . (35)

The density is positive definite, since it is a sum of squares:

ρ = |ψ1|2 + |ψ2|2 + |ψ3|2 + |ψ4|2 . (36)

5 Non-relativistic correspondence

Before constructing the general solutions of the free Dirac equation, we explore
the non-relativistic limit, to see that the equation makes sense physically. Con-
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sider an electron at rest, i.e. ~∇Ψ = 0. The Dirac equation then reduces to

i
∂Ψ

∂t
= mβΨ ⇒ i

∂

∂t








ψ1

ψ2

ψ3

ψ4








= m








1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1















ψ1

ψ2

ψ3

ψ4







. (37)

For each component one thus finds

i
∂ψ1

∂t
= mψ1 , i

∂ψ2

∂t
= mψ2 , (38)

i
∂ψ3

∂t
= −mψ3 , i

∂ψ4

∂t
= −mψ4 . (39)

The solutions are

Ψ1 = Ce−imt








1
0
0
0







, Ψ2 = Ce−imt








0
1
0
0







, (40)

Ψ3 = Ceimt








0
0
1
0







, Ψ4 = Ceimt








0
0
0
1







, (41)

and the corresponding energy eigenvalues are E1,2 = m and E3,4 = −m. Con-
sequently, the Dirac equation also has negative energy solutions. The solutions
Ψ1 and Ψ2 can be interpreted as wave functions of particles, while Ψ3 and Ψ4

cannot. The interpretation of the negative energy solutions is postponed for a
while.

We now consider a slow electron, which can be treated non-relativistically.
Thus, we can expand the energy

E =
√

~p
2
+m2 ≃ m+

~p
2

2m
. (42)

By inserting the following Ansatz

Ψ(~r, t) =

[

φ̃
χ̃

]

, (43)
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where φ̃ and χ̃ are two-spinors, into the Dirac equation, one finds

i
∂

∂t

[

φ̃
χ̃

]

=
1

i
~σ · ~∇

[

χ̃

φ̃

]

+m

[

φ̃
−χ̃

]

. (44)

In the non-relativistic limit, the rest energy dominates and we take care of the
fast variation with time by defining new fields φ and χ

[

φ̃
χ̃

]

= e−imt
[

φ
χ

]

, (45)

where now φ and χ are relatively slowly varying functions of time. They are
solutions of the coupled equations

i
∂

∂t

[

φ
χ

]

=
1

i
~σ · ~∇

[

χ
φ

]

+ 2m

[

0
−χ

]

. (46)

The coupled equations are in explicit form

i
∂φ

∂t
=

1

i
~σ · ~∇χ , (47)

i
∂χ

∂t
=

1

i
~σ · ~∇φ− 2mχ . (48)

In the latter equation one can neglect the time derivative compared to the
mass term, since the time dependence of the two-spinors is slow. Thus,

χ =
1

2 im
~σ · ~∇φ , (49)

which we can insert into the first equation:

i
∂φ

∂t
= − 1

2m
(~σ · ~∇)(~σ · ~∇)φ . (50)

Note that the lower components are small (∼ (p/m)φ) compared to ther upper
components. Thus, the upper components dominate for particle states. Now,
using the identity

σiσj = δij + i ǫijkσk , (51)

where ǫijk is the completely antisymmetric tensor3 of rank 3, one recovers the
Schrödinger equation for the upper components

i
∂φ

∂t
= −

~∇ 2φ

2m
(52)

3ǫijk = 1 for even permutations of 123, −1 for odd permutations and 0 otherwise
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Thus, in the non-relativistic limit, the upper components can be identified
with the Schrödinger wave function.

We note that one can perform the same analysis for an electron in an elec-
tromagnetic potential (scalar potential Φ and vector potential ~A). The corre-

sponding Dirac equation is obtained by minimal substitution (~∇ → ~∇− ie ~A).
One finds (e = −|e|)

i
∂Ψ

∂t
=
(

~α ·
(

1

i
~∇− e ~A

)

+ βm+ eΦ
)

Ψ . (53)

After some algebra, which we leave as an exercise (see e.g. Bjorken & Drell,
vol. 1), one finds for a slow electron

i
∂φ

∂t
=




(−i~∇− e ~A)2

2m
− e

2m
~σ · ~B + eΦ



 φ , (54)

where ~B = ~∇× ~A is the magnetic field. This is the so called Pauli equation,
which describes a non-relativistic particle, with spin 1/2. We compare the ~σ · ~B
term with the energy of a particle with a magnetic moment µ in a magnetic
field

Emagn = −~µ · ~B . (55)

For a particle with spin ~S and mass m

~µ =
e

2m
g~S =

e

2m

g

2
~σ (56)

where g is the gyromagnetic ratio. We thus find that the Dirac equation
describes a spin-1/2 particle with gyromagnetic ratio g = 2. Experimentally
(g − 2)/2 is ≃ 10−3. Hence, the Dirac equation reproduces the correct value
of the electron (and muon) magnetic moment to a very good approximation.
The difference is understood in QED, the quantum field theory of the electro-
magnetic interactions of spin-1/2 particles.
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6 Dirac equation in covariant form

The Dirac equation can be written in a form, which is explicitly Lorentz co-
variant. Since any 4-vector product AµB

µ is invariant under Lorentz transfor-
mations, we want to bring the Dirac equation

i
∂Ψ

∂t
=
(

1

i
~α · ~∇ + βm

)

Ψ , (57)

into such a form, which explicitly shows the symmetry between time and space.
To this end we define the γ matrices

γ0 = β γi = βαi (58)

Multiplying the Dirac equation by β, we then find

[

i

(

γ0 ∂

∂t
+

3∑

i=1

γi
∂

∂xi

)

−m

]

Ψ =

[

iγµ
∂

∂xµ
−m

]

Ψ = 0 (59)

or in compact form
(iγµ∂µ −m) Ψ = 0. (60)

An even more compact form can be obtained by introducing the Feynman
slash notation a/ = γµaµ (

i∂/ −m
)

Ψ = 0 . (61)

The new matrices satisfy the anticommutation relation

{γµ, γν} = 2gµν , (62)

where

gµν =








1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1








(63)

The fact that the Dirac equation is Lorentz covariant means that in a different
Lorentz frame, the Dirac equation has the same form, i.e.,

[

iγµ
∂

∂xµ
−m

]

Ψ(x) = 0 (64)
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in the Lorentz frame {xµ} and
[

iγµ
∂

∂(x′)µ
−m

]

Ψ(x′) = 0 (65)

in the frame {(x′)µ}, which is connected with the original frame by a Lorentz
transformation. The mathematical proof that the Dirac equation is Lorentz
covariant is outside the scope of these lectures, but can be found in textbooks,
like Bjorken & Drell vol.1 and Schmüser.

In order to obtain the Dirac equation for the conjugate field, we need the
properties of the γ matrices under conjugation

(γ0)† = γ0 (γi)† = −γi ⇒ γ0(γµ)†γ0 = γµ . (66)

The conjugate wave equation is

Ψ†



−i(γµ)†
←

∂

∂xµ
−m



 = 0 . (67)

Multiplying this equation from the left with γ0, using the properties of the γ
matrices and defining Ψ̄ ≡ Ψ†γ0, one finds

Ψ̄(i
←

∂/ +m) = 0 . (68)

One can also write the current explicitly in 4-vector form

jµ = Ψ̄γµΨ = (Ψ†Ψ,Ψ†~αΨ) (69)

∂µj
µ = 0 . (70)

The proof that the current is conserved is left as an exercise.

The current jµ transforms like a 4-vector (e.g. xµ, pµ). This is just one exam-
ple for so called bilinear forms, which are important because they enter the
coupling of fermions to mesons of different quantum numbers. A list of the
most important forms are

form name JP Lorentz transf. (~x→ −~x)
S = Ψ̄Ψ scalar 0+ invariant (+)
P = Ψ̄γ5Ψ pseudoscalar 0− invariant (−)
V µ = Ψ̄γµΨ vector 1− 4-vector (−)
Aµ = Ψ̄γµγ5Ψ axial vector 1+ 4-vector (+)
T µν = Ψ̄σµνΨ tensor 2+ xµpν (+)

(71)
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Here we have introduced two new combinations of γ matrices

γ5 = γ5 = iγ0γ1γ2γ3 (72)

σµν =
i

2
[γµ, γν] (73)

where

γ5 =

(

0 1

1 0

)

(74)

σij =
3∑

k=1

ǫijk
(

σk 0
0 σk

)

i, j ∈ {1, 2, 3} (75)

σ0i = iαi = i

(

0 σi

σi 0

)

. (76)

7 Solutions of the free Dirac equation

Consider a free particle described by the Dirac equation
[

iγµ
∂

∂xµ
−m

]

Ψ(x) = 0 . (77)

Since the momentum is a constant of motion for a free particle, the solution
must be a plane wave

Ψp(x) =

(

φ(p)
χ(p)

)

e−ipx , (78)

where px is a short form for the four-vector product pµxµ = p0x0 − ~p · ~x =
Et − ~p · ~x. The notation is chosen so that E =

√
~p2 +m2 throughout. By

evaluating the derivatives, one finds

(p/ −m)

(

φ(p)
χ(p)

)

= 0 , (79)

which is a matrix equation for the four components. One finds 2 positive
energy solutions of the form

Ψi(x) = ui(p)e
−ipx , (80)

where

u1(p) =

√

E +m

2m

(

ϕ↑
~σ·~p
E+m

ϕ↑

)

(81)
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and

u2(p) =

√

E +m

2m

(

ϕ↓
~σ·~p
E+m

ϕ↓

)

(82)

are so called four-spinors or Dirac spinors. Furthermore

ϕ↑ =

(

1
0

)

ϕ↓ =

(

0
1

)

(83)

are two-spinors4.

There are also 2 negative energy solutions of the form

Ψi(x) = v5−i(p)e
ipx i ∈ 3, 4 , (84)

where the four-vector p is the same as above and

v1(p) =

√

E +m

2m

(
~σ·~p
E+m

ϕ↓
ϕ↓

)

(85)

and

v2(p) =

√

E +m

2m

(
~σ·~p
E+m

ϕ↑
ϕ↑

)

(86)

are the corresponding spinors. Note that in the negative energy solutions, the
lower components are large. In the next section we will provide an interpreta-
tion for these solutions.

For a particle at rest these solutions agree with the ones obtained in section
5. The spinors are normalized such that

u†i (p)uj(p) =
E

m
δij v†i (p)vj(p) =

E

m
δij (87)

u†i(p)vj(p̃) = v†i (p)uj(p̃) = 0 , (88)

where p̃ = (E,−~p). The factor E/m is due to the Lorentz contraction of the
volume element along the direction of motion. Furthermore, for ū = u†γ0 etc.,

ūi(p)uj(p) = δij v̄i(p)vj(p) = −δij (89)

ūi(p)vj(p) = v̄i(p)uj(p) = 0 . (90)

Thus, ūu is a Lorentz invariant quantity, in agreement with eq. 71. The
verification of these solutions is left as an exercise.

4When there is no risk for confusion one often refers to the Dirac spinors as spinors for
simplicity.
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8 The negative energy solutions

If we use the standard quantum mechanics interpretation of one-body wave
equations for the Dirac and Klein-Gordon equations we run into deep trouble.
The reason is the existence of the negative energy solutions. Because the
spectrum is not bounded from below, this lead to an instability of any state
with one or more electrons, like an atom. Nothing prevents an electron in
a positive energy state from making a transition to any one of the infinite
number of negative energy states, thereby emitting photons. In fact, the rate
for an electron in the ground state of the hydrogen atom to make a transition
into the energy interval −2m < E < −m is on the order of 108sec−1. The
lifetime of the hydrogen atom goes to zero as all negative energy states are
included. Clearly this cannot be!

In order to avoid this catastrophe we must abandon the one-body interpreta-
tion of the Dirac equation. The first solution, presented by Dirac in 1927, is to
postulate that all the negative energy states are filled with electrons, with one
electron in each state. Since the Pauli principle allows only one electron per
state, the positive energy states are now stable. This is analogous to the sta-
bility of the last filled electron orbit in an atom, which cannot decay, because
all lower lying states are filled. Because of the analogy with a filled Fermi sea,
the filled negative energy states are called the Dirac sea.

Figure 1: Pair production in the hole theory. (Figure from J.D. Bjorken &
S.D. Drell, Relativistic Quantum Mechanics)

In order not to have infinite energy and charge, one renormalizes these quan-
tities in vacuum. In other words, the energy and charge is measured relative
to the filled Dirac sea. We have now arrived at a many-body theory of the
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electron. The vacuum is filled with electrons in the Dirac sea, which become
detectable only if we excite a negative energy electron into a positive energy
state (see Fig. 1). This process results in an empty state in the Dirac sea, a
hole. Relative to the filled Dirac sea, the hole carries the opposite quantum
numbers of the original electron, e.g. the charge is positive. The hole is in-
terpreted as an antiparticle. Based on these considerations, Dirac postulated
the existence of antiparticles and in particular the positron in 1930-31. The
positron was found in cosmic rays by Anderson in 1932. Our treatment of the
hole theory is very brief. A more detailed discussion can be found in textbooks,
e.g. Bjorken & Drell vol 1.

Diracs interpretation was revolutionary. Remember that at the time he made
his prediction there were no experimental results that required the existence
of antiparticles. Nevertheless, it is not satisfactory because it works only for
fermions but not for bosons and it requires the vacuum to be filled with an
infinitely charged unobservable sea of electrons.

Figure 2: The interpretation of an electron moving backwards in time with
negative energy as a positron with positive energy. (Figure from P. Schmüser,
Feynman Graphen und Eichtheorien für Experimentalphysiker)

The presently accepted interpretation of the negative energy states is due to
Stückelberg and Feynman. In their interpretation the negative energy states
make sense when one lets them propagate backwards in time. A negative
energy solution propagating backwards in time describes an antiparticle prop-
agating forwards in time, as illustrated in Fig. 2. Thus, an electron with
negative energy propagating backwards in time from point (2) to point (1)
is equivalent to a positron propagating forwards in time from point (1) to
point (2). Within this picture, which works also for bosons, one can describe
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all scattering processes of particles and antiparticles as well as the annihila-
tion and production of particle-antiparticle pairs. The Stückelberg-Feynman
interpretation leads to the following statements:

- The emission of an antiparticle with four-momentum pµ is equivalent to
the absorption of a particle with four-momentum −pµ.

- The absorption of an antiparticle with four-momentum pµ is equivalent
to the emission of a particle with four-momentum −pµ.

Consider the scattering of charged pions off a time-dependent electromagnetic
potential. We call the π+ particles and π− antiparticles. The time dependence
of the potential is assumed to be of the simple form V (t) = V0 exp(−iωt). The
sign in the exponent means that the potential gives energy to the pion, i.e. the
pion absorbs gamma quanta. We consider three cases:

1. π+ scattering (Fig. 3a). The transition matrix element is given by

M ∝
∫

φ⋆outV (t)φindt , (91)

where
φin ∝ exp(−iEint) φ⋆out ∝ exp(iEoutt) . (92)

The time integration yields

M ∝ δ(Eout − Ein − ω) ⇒ Eout = Ein + ω . (93)

Thus the π+ meson has absorbed a photon of energy ω.

2. π− scattering (Fig. 3b). The incoming π− with energy E1 > 0 corre-
sponds to an outgoing π+ with negative energy Eout = −E1 < 0, while the
outgoing π− with energy E2 > 0 corresponds to an incoming π+ with energy
Ein = −E2 < 0. The transition matrix element is computed for the backwards
running particle with negative energy

M ∝
∫

φ⋆outV (t)φindt ∝
∫

exp
(

i
(

Eout − Ein − ω
)

t
)

dt . (94)

Expressed in terms of the π− energies

M ∝
∫

exp (i (E2 −E1 − ω) t) dt = 2πδ(E2 − E1 − ω) . (95)

Thus the energy of the π− meson is also increased by the amount ω.
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Figure 3: a) π+ scattering off a time dependent potential. b) Scattering of
a backwards propagating π+ with negative energy is equivalent to a forward
propagating π− with positive energy. (Figure from P. Schmüser, Feynman
Graphen und Eichtheorien für Experimentalphysiker)

3. Creation of a π+π− pair (Fig. 4a). In the Stückelberg-Feynman interpreta-
tion this corresponds to a negative energy π+ propagating backwards in time,
which through the interaction with the potential is converted into a positive
energy π+ propagating forwards in time.

M ∝
∫

exp
(

i
(

Eout − Ein − ω
)

t
)

dt = 2πδ(E2 + E1 − ω) , (96)

which implies E1 + E2 = ω. Thus, the energy of the absorbed photon equals
the total energy of the created pair.

For the absorption of a pion pair (Fig. 4b) one must choose a potential of
the form V (t) = V0 exp(iωt), in order that energy can be absorbed by the
potential. One finds that the energy absorbed by the potential equals the
total energy of the absorbed pair.

These considerations are only qualitative, but they illustrate the utility of the
Stückelberg-Feynman approach, where four different processes can be handled
in the same formalism.

We have found that a relativistic quantum field theory necessarily involves an-
tiparticles. These lead to new processes, not present in non-relativistic quan-
tum mechanics. We have discussed the lowest order processes, the creation
and annihilation of particles and antiparticles. In processes that are of higher
order in the sense of a perturbation expansion, these processes give rise to new
contributions to the scattering of particles. Consider electron scattering off a
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Figure 4: a) π+π− creation by a time dependent potential. b) π+π− anni-
hilation. (Figure from P. Schmüser, Feynman Graphen und Eichtheorien für
Experimentalphysiker)

potential. To second order in the interaction two processes are possible, as
shown in Fig. 5.

1. For t2 > t1 one obtains the standard double scattering term, which is present
also in ordinary second order perturbation theory of the Schrödinger type.

2. For t2 < t1, a new type of contribution arises, where at t = t2 an e+e− pair
is created by the potential and at t = t1 the positron and the incoming electron
is annihilated by the potential. This process illustrates the many-body nature
of QFT, where in an intermediate state there are three particles present, two
electrons and a positron.

Because the initial and final states are identical, the two processes must be
added coherently! Thus, there will be interference between the two contribu-
tions. At low energies the processes of the second type are generally expected
to be small, due to the large energy of the intermediate state. However, for
electromagnetic interactions they cannot be neglected, since they are required
by gauge invariance. In fact at threshold, such a term dominates scattering
of photons off electrons and gives rise to the famous Thomson term, obtained
also using classical considerations.

We conclude that the Dirac “wavefunction”, due to the interpretation of the
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Figure 5: Electron scattering to second order in the interaction. a) Ordinary
double scattering. b) production and destruction of a virtual electron-positron
pair. (Figure from P. Schmüser, Feynman Graphen und Eichtheorien für Ex-
perimentalphysiker.)

negative energy states, describes many-body processes in a complicated vac-
uum.
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9 Feynman diagrams

So far we have dealt only with non-interacting particles, except for the qual-
itative arguments at the end of section 8. For the more interesting case of
interacting particles one is not in general able to find the exact solution. There-
fore one has developed strategies to find approximate answers to problems one
is interested in. The most important approximate method for dealing with
quantum mechanical problems is perturbation theory. In QFT the perturba-
tion series can be phrased in terms of the Feynman diagrams, which is the
subject of this section. Before we come to the Feynman diagrams we need
some preliminaries, in particular the Green’s functions or propagators.

9.1 Green’s functions

The Dirac equation for an electron in an electromagnetic field is most simply
obtained by minimal substitution ∂µ → ∂µ+ieAµ, a procedure which preserves
gauge invariance5. One thus finds

[iγµ (∂µ + ieAµ(x)) −m] Ψ(x) = 0 , (97)

where we have introduced the four-dimensional vector potential Aµ = (Φ, ~A),
which transforms like a four-vector. By moving the interaction term to the
right hand side, we obtain the free Dirac equation on the left hand side with
an inhomogeneity on the right hand side

[

i∂/ −m
]

Ψ(x) = eA/(x)Ψ(x) . (98)

This equation is not in general analytically solvable. In order to understand
the technique for solving this equation, we need to understand the Green’s
function technique for solving differential equations. To recall this technique,
we consider the Poisson equation for the electric field generated by a charge
distribution ρ(~x)

~∇ 2Φ(~x) = −ρ(~x) (99)

One first solves the equation for a point charge at ~x0, ρp(~x) = qδ(3)(~x − ~x0).
This is easily done by a Fourier transform to momentum space

Φ(~x) =
∫

d3k

(2π)3
Φ(~k) ei

~k·~x (100)

5This is the Lorentz covariant version of the substitution used in non-relativistic problems,
see also eq. 53
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ρp(~x) =
∫

d3k

(2π)3
ρp(~k) e

i~k·(~x−~x0) , (101)

where ρp(~k) = q. Each Fourier component satisfies the equation

−~k 2
Φp(~k) = −q e−i~k·~x0 (102)

or
Φp(~k) =

q

~k
2 e
−i~k·~x0 . (103)

Inserting this into the Fourier integral (101) we find

Φp(~x) = q
∫ d3k

(2π)3

1

~k
2 e

i~k·(~x−~x0) =
q

4 π

1

|~x− ~x0|
(104)

=
∫

d3x′G(~x, ~x ′) ρp(~x
′). (105)

Using the last equation we can identify the Green’s function

G(~x, ~x ′) ≡ G(|~x− ~x ′|) =
1

4 π

1

|~x− ~x ′| . (106)

In a translationally invariant system the Green’s function depends only on the
difference in the coordinates. With the help of the Green’s function one can
construct the solution to the original problem (99)

Φ(~x) =
∫

d3x′G(|~x− ~x ′|) ρ(~x ′) . (107)

In summary, The Green’s function for the Poisson equation, which is given by
eq. (106), satisfies the equation

~∇ 2

x G(|~x− ~x ′|) = −δ(3)(~x− ~x ′) . (108)

In momentum space the Green’s function is simply G(~k) = 1/~k
2
.

Now we return to the Dirac equation for an electron in an electromagnetic
field (98). In analogy with the Green’s function for the Poisson equation, we
define a Green’s function S(x, y) for the free Dirac equation, which satisfies
the differential equation6

[

i∂/ −m
]

S(x, y) = 1δ(4)(x− y) . (109)

6For simplicity we use the following convention: a function of a 4-vector (e.g. xµ) is
denoted by f(x), while a function of only the spatial components is denoted by f(~x). We will
also sometimes for simplicity drop the indices in products of four vectors: e.g. xp ≡ xµpµ.
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Here 1 is the 4×4 unit matrix. The Green’s function is also a 4×4 matrix. It
follows from invariance under time reversal, space inversion and translational
invariance that S(x, y) = S(y, x) = S(x− y). The 4-dimensional δ function is
defined by δ(4)(x− y) = δ(x0 − y0)δ(3)(~x−~x ′), where x0 is the time coordinate
of the four vector x = (x0, ~x) etc..

A formal solution of the (98) is then given by

Ψ(x) = φ(x) + e
∫

d4y S(x− y)A/(y)Ψ(y) (110)

where φ(x) is a solution of the free Dirac equation, i.e.,

(

i ∂/ −m
)

φ(x) = 0 (111)

and d4x = dtd3x. This is determined by fixing the boundary conditions. For
instance in a scattering problem one has to fix the current of incident particles.
However, (110) is not really a solution to the problem, since it is not in closed
form, i.e. the unknown function Ψ appears also on the right hand side of (110).

However, since the electromagnetic coupling constant is small, the second term
in (110) can be treated as a perturbation. The relevant parameter is the fine
structure constant α = e2/(4π) ≃ 1/137. Thus, we try to solve the problem
by iteration:

Ψ(0)(x) = φ(x) (112)

Ψ(1)(x) = φ(x) + e
∫

S(x− y)A/(y)Ψ(0)(y)d4y (113)

Ψ(2)(x) = φ(x) + e
∫

S(x− y)A/(y)Ψ(1)(y)d4y

= φ(x) + e
∫

S(x− y)A/(y)φ(y)d4y

+ e2
∫ ∫

S(x− y)A/(y)S(y − z)A/(z)φ(z)d4yd4z (114)

The three terms in the second order expression correspond to unperturbed
motion, single scattering and double scattering off the potential Aµ.

9.2 The Dirac propagator

In quantum field theory the Green’s functions are most often referred to as
propagators, because they “propagate” a solution in time. The form of the
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propagators for free particles are rather simple in momentum space but fairly
complicated in configuration space. It is therefore usually easier to work in
momentum space. The free Dirac propagator satisfies the equation (109). Its
Fourier transform is defined by

S(x− y) =
∫

d4p

(2π)4
S(p) e−ip(x−y) , (115)

where d4p = dp0d3p = dEd3p. Similarly,

δ(4)(x− y) =
∫

d4p

(2π)4
e−ip(x−y) , (116)

We thus obtain the equation satisfied by the momentum space propagator

(p/ −m)S(p) = 1 . (117)

One then obtains the propagator by multiplying from the left by p/ + m and
using (p/−m)(p/+m) = p2 −m2, which follows from the anticommutation rule
for γ matrices (62). One thus finds

S(p) =
p/ +m

p2 −m2
. (118)

or in short hand form

S(p) =
1

p/ −m
, (119)

where the matrix inversion is not explicitly performed. Thus, the propagator
in configuration space is given by

S(x− y) =
∫

d4p

(2π)4

p/ +m

p2 −m2
e−ip(x−y) . (120)

For the propagator to be well defined one must specify how the poles at

p2 = m2, i.e., at p0 = ±
√

~p
2
+m2 = ±E are to be circumvented. This corre-

sponds to a boundary condition on the propagator in configuration space. The
physically sensible boundary condition, that positive energy solutions propa-

gate forwards and negative energy solutions propagate backwards in time, is
implemented by adding an infinitesimal imaginary part iδ to the denominator

SF (p) =
p/ +m

p2 −m2 + iδ
=

1

p/ −m+ iδ
, (121)
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This propagator is called the Feynman propagator. A corresponding Feynman
propagator exists for all particle species in a QFT. The Feynman propagator
in configuration space is then given by

SF (x− y) =
∫

d4p

(2π)4

p/ +m

p2 −m2 + iδ
e−ip(x−y) . (122)

Let us now discuss how solutions of the Dirac equation are propagated in time
by the Feynman propagator SF . We use the identity

p/ +m

p2 −m2 + iδ
=
m

E

(

Λ+ (~p)
1

p0 −E + iδ
− Λ− (~p)

1

p0 + E − iδ

)

, (123)

where

Λ+(~p) =
γ0E − ~γ · ~p+m

2m
=

∑

s=1,2

u(~p, s)ū(~p, s) (124)

Λ−(~p) =
−γ0E + ~γ · ~p+m

2m
= −

∑

s=1,2

v(~p, s)v̄(~p, s) , (125)

where Λ+ and Λ− project onto positive and negative energy states, respectively.
The integral over p0 is then easily performed

SF (x− x′) = −i
∫

d3p

(2π)3

m

E

[

e−ip(x−x
′) Λ+(~p) θ(t− t′)

+ eip(x−x
′) Λ−(~p) θ(t′ − t)

]

. (126)

Note that here the zeroth component of p0 = E =
√

~p
2
+m2.

Let’s now consider a positive energy solution at time t (x = (t, ~x))

Ψ
(+)
k (x) = Nu(k) e−ikx . (127)

The solution at another time t′ (x′ = (t′, ~x ′)) is given by

θ(t′ − t)Ψ
(+)
k (x′) = i

∫

d3xSF (x′ − x)γ0Ψ
(+)
k (x) . (128)

To prove this, one uses (126), the identity

∫

d3xeipx e−ikx = (2π)3δ(3)(~p− ~k) , (129)
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as well as

Λ+(~p)γ0u(p) =
E

m
u(p) Λ−(~p)γ

0u(p) = 0 (130)

For the conjugate solution one finds similarly

θ(t′ − t)Ψ̄
(+)
k (x′) = i

∫

d3xΨ̄
(+)
k (x) γ0 SF (x− x′) (131)

Analogously one can show that a negative energy solution is propagated only
backwards in time, i.e.,

θ(t− t′)Ψ
(−)
k (x′) = −i

∫

d3xSF (x′ − x)γ0Ψ
(−)
k (x) . (132)

We will not expand further on this subject here. For a more detailed discussion
see the textbooks by Schmüser and Bjorken & Drell vol. 1.

We close this subsection by discussing the interacting propagator S ′F , which
includes the effects of the interactions. For the problem at hand, the interacting
propagator is defined by

[

iγµ
∂

∂xµ
− eA/ −m

]

S ′F (x− y) = δ(4)(x− y) , (133)

i.e., it describes the propagation of an electron including the interaction effects.
It is straightforward to show that the solution of the Dirac equation can now
be written as

Ψ(x) = φ(x) + e
∫

S ′F (x− y)A/(y)φ(y)d4y , (134)

where the unknown function Ψ no longer appears on the right hand side, i.e.,
it is an explicit equation for Ψ. However, the interacting propagator S ′F must
be determined before this equation can be used. By taking the difference of
the defining equations for the interacting and free Dirac propagator

[

i∂/ − eA/ −m
]

S ′F (x− y) = δ(4)(x− y) (135)
[

i∂/ −m
]

SF (x− y) = δ(4)(x− y) , (136)

one finds
[

i∂/ −m
]

(S ′F (x− y) − SF (x− y)) = eA/(x)S ′f (x− y) . (137)
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Figure 6: Space time diagram illustrating the nth order contribution to the
Feynman propagator. (Figure from J.D. Bjorken & S.D. Drell, Relativistic
Quantum Mechanics.)

Now we can use the Green’s function technique to formally solve this equa-
tion. We then arrive at the Dyson equation, which determines the interacting
propagator in terms of the free one for a given interaction

S ′F (x− y) = SF (x− y) + e
∫

SF (x− z)A/(z)S ′F (z − y)d4z . (138)

Clearly this is an implicit equation for S ′F . Consequently, we have just moved
the difficulties to a different level.

We can generate the perturbation series for the propagator by iteration of the
Dyson equation (138)

S
(0)
F (x− x′) = SF (x− x′) (139)

S
(1)
F (x− x′) = SF (x− x′) + e

∫

SF (x− x1)A/(x1)SF (x1 − x′)d4x1 (140)

S
(2)
F (x− x′) = SF (x− x′) + e

∫

SF (x− x1)A/(x1)SF (x1 − x′)d4x1
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+ e2
∫ ∫

SF (x− x1)A/(x1)SF (x1 − x2)A/(x2)SF (x2 − x′)d4x1d
4x2 .

(141)

A typical term in the series is diagrammatically illustrated in Fig. 6. Each line
corresponds to a propagator SF and each intermediate dot to an interaction
with the electromagnetic field Aµ. All intermediate points are integrated over
all of space-time. This is a prototype Feynman diagram! Given the Feynman
rules there is a one-to-one correspondence between the Feynman diagrams
and the mathematical expression for the corresponding contribution to the
propagator. This will be discussed in more detail in the next section.

9.3 Rutherford scattering

As an example, which we use to illustrate the Feynman rules we consider the
scattering of electrons off a Coulomb potential, Rutherford scattering. The
scattering process is shown schematically in Fig. 7. At time t = t1 the incident
electron, denoted by a wave packet, is far away from the potential and does not
experience any interaction. At time t = t′ the electron arrives at the target,
and a scattered radially outwards traveling wave is created. Finally, at time
t = t2, the scattered wave reaches the detector, which is located at an angle
θ relative to the incident beam and covers a small solid angle ∆Ω. Only that
part of the scattered wave, which runs in the direction of ~pf is measured. Thus,
one must project out a final state φf with momentum direction ~pf from the
scattered wave. In order to compute the necessary matrix element, we define
the scattering matrix, S-matrix, through

ψscatt = Sφi . (142)

We obtain the matrix element for the transition i → f , by projecting the
scattering state onto the final state φf

Sfi =
∫

d3x2 φ
†
f (x2) S φi(x2)

︸ ︷︷ ︸

ψscatt(x2)

. (143)

By inserting the perturbation expansion for the scattered wave (112-114) we

obtain a perturbation expansion for the S-matrix: Sfi = δfi+S
(1)
fi +S

(2)
fi + . . ..

To lowest order in the interaction, the scattered wave is then given by (113)

ψ
(1)
scatt(x2) = φi(x2) + e

∫

SF (x2 − x′)A/(x′)φi(x
′)d4x′ , (144)
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Figure 7: The scattering of an electron off a potential. (Figure from P.
Schmüser, Feynman Graphen und Eichtheorien für Experimentalphysiker.)

and the corresponding S-matrix by

S
(1)
fi = e

∫

d4x′
∫

d3x2φ
†
f(x2)SF (x2 − x′)

︸ ︷︷ ︸

−iφ̄f (x′)

A/(x′)φi(x
′) (145)

Thus, the resulting S-matrix is

S
(1)
fi = −ie

∫

d4x′φ̄f(x
′)A/(x′)φi(x

′) . (146)

For the incoming and outgoing states we use the plain wave states7

φi(x) =

√

m

EiV
u(pi, si) e

−ipix

φ̄f(x) =

√

m

EfV
ū(pf , sf) e

ipfx . (147)

and for the electromagnetic field we assume a Coulomb potential8

A0(x) =
−Ze
4 π |~x|

~A(x) = 0 . (148)

Using this input, the S-matrix becomes

S
(1)
fi =

iZe2

4π

1

V

m
√

EiEf
ū(pf , sf)γ

0u(pi, si)
∫

d4x′
1

|~x ′|e
i(pf−pi)x′ (149)

7The normalization is chosen such that φ†φ = 1.
8Remember that for the electron e = −|e|, so that (148) corresponds to the Coulomb

field generated by a positive charge Z.
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The final integral is easily performed
∫

d4x′
1

|~x ′|e
i(pf−pi)x

′

= 2πδ(Ef − Ei)
4π

~q 2
, (150)

which yields

S
(1)
fi =

2πiZe2

V

m
√

EiEf

ū(pf , sf)γ
0u(pi, si)

~q 2
δ(Ef − Ei) . (151)

The transition probability per particle for pisi → pfsf is

|Sfi|2

density of states
︷ ︸︸ ︷

V d3pf
(2π)3

=
Z2e4m2

V Ei

|ū(pf , sf)γ0u(pi, si)|2
(~q 2)2

× d3pf
(2π)3Ef

(2πδ(Ef − Ei))
2 . (152)

For transitions in the time interval [−T/2, T/2], one of the factors 2πδ(Ef−Ei)
can be replaces by a factor T . The transition probability per unit time is then

R =
1

T
|Sfi|2

V d3pf
(2π)3

=
Z2e4m2

V Ei

|ūγ0u|2
(~q 2)2

d3pf
(2π)3Ef

2πδ(Ef − Ei) . (153)

Furthermore, the cross section is equal to R/J , where J is the flux of incident
particles

~J = φ̄f~γφi =
1

V

~p

Ei
=

1

V
~vi (154)

Furthermore, using d3pf = dΩp2
fdpf and EfdEf = pfdpf we find

dσ

dΩ
=

∫
Z2e4m2

|~vi|Ei
|ūγ0u|2
(~q 2)2

pfEfdEf
(2π)3ef

2πδ(Ef −Ei)

=
Z2e4m2

4π2

|ūγ0u|2
(~q 2)2

. (155)

In an experiment, where the beam is unpolarized and the polarization of the
final particles is not measured, we must average over the initial polarizations
and sum over those in the final state. Thus the spin-averaged cross section is

dσ̄

dΩ
=
Z2e4m2

8π2

∑

sisf

|ūγ0u|2
(~q 2)2

. (156)
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The spin sum can be converted into a trace, which we evaluate using the trace
theorems

The trace of an odd number of γ matrices vanishes (157)

Tr1 = 4 (158)

Tra/b/ = 4ab = 4aµbµ (159)

Tra/b/c/d/ = 4[(ab)(cd) − (ac)(bd) + (ad)(bc)] (160)

Trγ5a/b/ = 0 (161)

Trγ5a/b/c/d/ = 4iǫαβγδa
αbβcγdδ . (162)

The spin sum can be written as
∑

sisf

ū(pf , sf)γ
0u(pi, si) u

†(pi, si)(γ
0)†(γ0)†u(pfsf )

︸ ︷︷ ︸

ū(pi,si)γ0u(pf ,sf )

(163)

Using the identity (124)

∑

s

u(p, s)αū(p, s)β =

(

p/ +m

2m

)

αβ

(164)

we can rewrite the spin sum

∑

αβγδ

∑

sf

ū(pf , sf )α (γ0)αβ

(

p/i +m

2m

)

βγ

(γ0)γδ u(pf , sf)δ

=
∑

αβγδ (γ0)αβ

(

p/i +m

2m

)

βγ

(γ0)γδ

(
p/f +m

2m

)

δα

. (165)

Thus, the trace, which we have to evaluate is

1

4m2
Tr

(

γ0(p/i +m)γ0(p/f +m)
)

(166)

Using the trace theorems we find

1

m2

(

2EiEf − (pipf ) +m2
)

. (167)

For elastic scattering |~pi| = |~pf | ≡ p and Ef = Ei ≡ E. Furthermore

(pipf ) = EiEf − |~pi||~pf | cos θ

= E2 − p2 cos θ

= m2 + p2 sin2 θ/2 (168)
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Thus, the trace reduces to

2
E2

m2
(1 − β2 sin2 θ/2) , (169)

where β = p/E, the velocity. Finally ~q 2 = (~pi − ~pf)
2 = 2p2(1 − cos θ) =

4p2 sin2 θ/2. We are now ready to write down the final form of the spin averaged
cross section

dσ̄

dΩ
=

Z2α2

4β2p2 sin4 θ/2
(1 − β2 sin2 θ/2) . (170)

This is the so called Mott cross section. We note that the factor (1−β2 sin2 θ/2)
is due to spin. In the limit of slow electrons (β → 0) the Mott cross section
reduces to

dσ̄

dΩ
=

Z2α2m2

4p4 sin4 θ/2
. (171)

This is the Rutherford cross section. In the ultrarelativistic limit again, β → 1,
one finds

dσ̄

dΩ
=

Z2α2

4β2E2 sin4 θ/2
(1 − sin2 θ/2) . (172)

Note that in the for an ultrarelativistic spin-1/2 particle, the spin factor is
(1 − sin2 θ/2) = (1/2)(1 + cos θ). Exercise: Why does the spin factor vanish
for θ = π in this case?

9.4 Photon propagator

In the previous section we discussed the interaction of an electron with an ex-
ternal potential Aµ. Such a calculation can be used for scattering off a heavy
nucleus, which is almost not affected by the scattered electron. However, for
scattering off a lighter object, like another electron or a muon, we must com-
pute the electromagnetic field generated by the target particle. We consider
the reaction e− + µ− → e− + µ−. The wave equation for the electromagnetic
field is the Maxwell equation

∂µ∂
µAν(x) = ejνmuon(x) , (173)

where jνmuon(x) is the muon current and Aν = (Φ, ~A) is the vector potential.
We solve the wave equation by using the Green’s function, which is defined by

∂µ∂
µDαβ(x− y) = gαβδ(4)(x− y) . (174)
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Then, the solution is given by

Aµ(x) = e
∫

d4y Dµν(x− y)jνmuon(y) . (175)

To determine the Green’s function we change to momentum space

Dµν(x− y) =
∫

d4q

(2π)4
Dµν(q)e−iq(x−y) . (176)

One finds

Dµν
F (q) = − gµν

q2 + iδ
(177)

where the imaginary infinitesimal iδ is due to the Feynman boundary condi-
tion, where positive energies propagate forwards and negative backwards.

The Dirac equation for the electron in the electromagnetic field is
[

i∂/ −m
]

Ψ(e)(x) = eA/(x)Ψ(e)(x) , (178)

while the electromagnetic field is given by

Aµ(x) = e
∫

d4y [DF (x− y)]µνj
ν
muon(y) . (179)

Inserting this into the S-matrix (146), one finds

Sfi = −ie2
∫ ∫

φ̄
(e)
f (x′)γαφ

(e)
i (x′)[DF (x′ − x)]αβj

β
muon(x)d

4xd4x′ . (180)

The electron current is

j(e)
α (x) = φ̄

(e)
f (x)γαφ

(e)
i (x). (181)

Since the muon also satisfies the Dirac equation, its current is of the same form

j(µ)
α (x) = φ̄

(µ)
f (x)γαφ

(µ)
i (x) . (182)

We thus find

Sfi = −ie2
∫ ∫

φ̄
(e)
f (x′)γαφ

(e)
i (x′)[DF (x′ − x)]αβφ̄

(µ)
f (x)γαφ

(µ)
i (x)d4xd4x′ .

(183)
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Using

φ
(e)
i (x) =

√
me

E
(e)
i V

u(e)(p1)e
−ip1x , (184)

φ̄
(e)
f (x) =

√
√
√
√

me

E
(e)
f V

ū(e)(p3)e
ip3x , (185)

φ
(µ)
i (x) =

√
mµ

E
(µ)
i V

u(µ)(p2)e
−ip2x , (186)

φ̄
(µ)
f (x) =

√
√
√
√

mµ

E
(µ)
f V

ū(µ)(p4)e
ip4x (187)

and (176-177) we then obtain

Sfi = −ie2 memµ

V 2
√

E
(e)
i E

(e)
f E

(µ)
i E

(µ)
f

ū(e)(p3)γ
αu(e)(p1)(−gαβ)ū(µ)(p4)γ

βu(µ)(p2)

×
∫ d4q

(2π)4

1

q2 + iδ

∫ ∫

d4xd4x′ei(p3−p1−q)xei(p4−p2+q)x
′

︸ ︷︷ ︸

(2π)4δ(4)(p3−p1−q)(2π)4δ(4)(p4−p2+q)

(188)

= ie2
memµ

V 2
√

E
(e)
i E

(e)
f E

(µ)
i E

(µ)
f

ū(e)γαu(e)ū(µ)γαu
(µ)

(p3 − p1)2 + iδ

× (2π)4δ(4)(p1 + p2 − p3 − p4) . (189)

We could now write down the cross section in terms of the S-matrix, like we
did for the Rutherford cross section. However, it is more convenient to extract
the kinematical factors which allways occur and deal with those once and for
all, and define a reduced object, the invariant matrix element, which for eµ
scattering is given by

M = ie2
ū(e)(p3)γ

αu(e)(p1)ū
(µ)(p4)γαu

(µ)(p2)

q2 + iδ
, (190)

where q = p3 − p1. One then has Feynman rules for calculating M. In
terms of the invariant matrix element, the cross section for the general reaction
involving only fermions 12 → 345 . . . n is

dσ =
1

|v1 − v2|
m1

E1

m2

E2
|M|2 m3d

3p3

E3(2π)3
· · · mnd

3pn
En(2π)3
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× (2π)4δ(4)(p1 + p2 −
n∑

i=3

pi)S , (191)

where Ei =
√

~p
2
i +m2

i and S is a symmetry factor, which is obtained by
including a factor 1/m! if there are m identical particles in the final state, i.e.,

S =
∏ 1

mi!
. (192)

For bosons the normalization is different, so for a bosons in the initial or final
state, the factor mi/Ei in (191) is replaced by 1/2Ei.

For eµ scattering we then obtain

dσ =
1

|ve − vµ|
me

E
(e)
i

mµ

E
(µ)
i

|M|2 med
3p3

E
(e)
f (2π)3

mµd
3p4

E
(µ)
f (2π)3

× (2π)4δ(4)(p1 + p2 − p3 − p4) , (193)

where the invariant matrix element is given by (190). The corresponding
Feynman diagram is shown in fig. 8. The Feynman rules relevant for this
diagram are indicated.

Figure 8: Feynman diagram for electron-muon scattering. (Figure from P.
Schmüser, Feynman Graphen und Eichtheorien für Experimentalphysiker.)

9.5 Feynman rules

With the help of the Feynman rules one can put together the invariant am-
plitude for a scattering problem, a Green’s function or some other amplitude
one may need. The ingredients are the interaction vertices and the propaga-
tors. Which vertices are relevant depends on the process of interest and on the
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theory one considers. In the Feynman diagram for eµ-scattering the relevant
vertices and propagator are indicated. The general Feynman rules for a theory
describing spin-1/2 fermions, spin-0 bosons and photons are (for details see
e.g. Bjorken & Drell)

1. Draw all connected diagrams for the process in question.

2. For each external spin-1/2 fermion line entering the graph, a factor u(p, s)
if the line is in the initial state and v(p, s) if it is in the final state.
Likewise, a factor ū(p, s) or v̄(p, s) for each line leaving the graph9.

3. For each external photon line, a polarization vector ǫµ.

4. For each internal spin-1/2 fermion line with momentum p, a factor

iSF (p) =
i

p/ −m+ iδ
=

i(p/ +m)

p2 −m2 + iδ
. (194)

5. For each internal meson line of spin zero with momentum q a factor

i∆F (q) =
i

q2 −m2 + iδ
. (195)

6. For each internal photon line with momentum q a factor10

iDµν
F (q) = − igµν

q2 + iδ
(196)

7. For each internal momentum k not fixed by momentum conservation, a
factor

∫ d4k

(2π)4
(197)

8. For each closed fermion loop, a factor −1

9. A factor −1 between graphs which differ only be an interchange of two
external identical fermions.

9In these lectures we do not consider so called loop diagrams. If such diagrams are
included, one must also include so called renormalization factors Z for the external lines.

10For an internal line of a vector meson (e.g. ρ or ω), add an m2 term to the denominator.
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Rules that are specific to a certain type of interaction are e.g.11

10. For the electrodynamics of spin-1/2 particles, a factor −ieγµ for each
vertex of the type shown in Fig. 812.

11. For the electrodynamics of spin-0 bosons, a factor −ie(p + p′)µ for each
vertex of the type shown to the left in Fig. 9 and a factor 2ie2gµν for the
type of vertices shown to the right.

Figure 9: Feynman diagrams for scalar electrodynamics. (Figure from J.D.
Bjorken & S.D. Drell, Relativistic Quantum Mechanics.)

For more examples, consult textbooks on QFT.

11Because we do not consider loop diagrams, we also ignore the counter terms for mass
renormalization etc..

12For the interactions of vector mesons with nucleons, a factor of the form −igγµ enters,
but also other types of vertices are possible.
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