
1 Remarks on potential scattering

What does one learn when one studies the scattering of hadrons, and fits
the scattering data in some model? Since one can adjust the parameters of
a potential model one may think that one learns what the potential is like.
This is true in an ideal case, where one knows the scattering phase shift from
threshold to infinite energy, as well as the asymptotic coefficients of the wave
function of bound states, if any. Furthermore, one must assume that the
interaction is a local potential. However, in reality the energy range over
which one has data is always limited, and consequently the potential is is not
unique. This is because the energies that can be achieved in experiments is
limited, and because a potential picture breaks down at high energies, where
inelastic channels become important and/or the relevant degrees of freedom
change.
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Figure 1: NN-potentials that reproduce the low-energy scattering data in the
1S0 channel.

As an illustration of this, we show in fig. ?? six NN potentials that all repro-
duce the low energy nucleon-nucleon scattering data in the 1S0 channel. What
is meant by this is that they all yield the same values for the scattering length
a and the effective range parameter r0, which is defined by the effective-range
expansion

k cot δ = −1

a
+

1

2
k2r0 + · · · (1)
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Thus, in this simple example we see that the ambiguity in the potential is
enormous, if one fits only the low-energy data. The ambiguity is reduced
as the energy range is increased, but a certain amount of ambiguity always
remains. There is an infinite amount of so called phase-equivalent potentials!
Hence the goal of this type of work is not to determine the potential but rather
to determine the scattering amplitude. As we will see later, the physics that
one wants to address, like e.g. the properties of a certain hadron in nuclear
matter, can be formulated completely in terms of scattering amplitudes.

Now, one may ask, why not use the scattering data directly without the in-
termediate step of fitting a model to the data? A model is useful, because
if it is a good model it summarizes a large amount of scattering data in a
few parameters. Furthermore, such a model yields the scattering amplitude at
subthreshold energies, which which cannot be obtained directly from the data.
This is of importance for the discussion of hadron properties in matter.

2 Breit-Wigner description of resonances

In this section we describe the Breit-Wigner resonance formula, and modifica-
tions thereof. Recall the form of the scattering amplitude for a given partial
wave (24)

fℓ =
1

2ik

(

ηℓe
2iδℓ − 1

)

. (2)

We assume for simplicity that we have a pure resonance located at the energy
E = ER, without any back-ground phase. (In this section E refers to the
energy in the cm frame.) Thus, the resonance corresponds to a phase shift of
δℓ(ER) = π/2. Furthermore, we assume that only one channel is open, so that
only elastic scattering is possible. Thus, ηℓ = 1 and

fℓ =
1

k
eiδℓ sin δℓ. (3)

Using
e−iδℓ = cos δℓ − i sin δℓ (4)

and simple manipulations one can rewrite the scattering amplitude in the form

fℓ =
1

k

1

cot δℓ − i
. (5)
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Now, for energies close to to the resonance, the phase shift is close to π/2 and
cot δℓ ≃ 0. We expand the denominator of fℓ in a Taylor series. Using

cot δ(E) = cot δ(ER) + (E −ER)

[

d

dE
cot δ(E)

]

E=ER

+ · · · (6)

≃ −(E − ER)
2

Γ
.

We have defined 2/Γ = [d(cot δ)/dE]E=ER
. Γ turns out to be the width of

the resonance. Terms of higher order in the expansion can be neglected if
Γ << ER, i.e., when the width of the resonance is small compared to its
energy. How broad resonances can be treated will be discussed below. By
using eq. ??, one obtains the phase shift in the Breit-Wigner approximation

δBW (E) = arctan

[

Γ/2

ER −E

]

. (7)

Inserting the expansion in the scattering amplitude one finds

fℓ(E) =
1

k

Γ/2

ER −E − iΓ/2
, (8)

and using
σℓ = 4π|fℓ|2, (9)

where we have defined the contribution of the ℓ’th partial wave to the elastic
cross section (see (27)),

σℓ(E) =
4π

k2
(2ℓ+ 1)

Γ2/4

(E −ER)2 + Γ2/4
︸ ︷︷ ︸

sin2 δℓ

. (10)

This is the famous Breit-Wigner formula for a resonant cross section. The
width Γ is defined such that the cross section at |E − ER| = ±Γ/2 is half
its maximum value. Note that last term, which can be identified with sin2 δℓ,
equals unity at the resonance energy E = ER, i.e., where δℓ = π/2.

The Breit-Wigner formula is very useful for describing the scattering ampli-
tude and cross section in cases where a resonance dominates the cross section.
However, often background processes cannot be neglected, so the Breit-Wigner
amplitude must be supplemented with a model for these processes.
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The Breit-Wigner formula has been generalized in many ways. However, before
we discuss this, let us see how well it does in describing a baryonic resonance
like the ∆33 resonance in πN scattering. In fig. ?? we show a comparison of this
simple form, for ER = 1232 MeV and Γ = 120 MeV, with the empirical phase
shift We note that the phase shift is well described only near the resonance
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Figure 2: The scattering phase shift in the p33 channel as a function of the
cm-energy in MeV.

energy. The threshold is not correctly described and neither is the high-energy
part. A correct description of the threshold can be achieved by using a phase-
space corrected width rather than a constant one. Using the phase-space
techniques discussed in the first part of these lectures and the fact that we are
considering a p-wave channel one finds

Γ(E) = Γ0

(
ER

E

)2
(

k(E)

k(ER)

)3

. (11)

The correcponding phase shift is shown in fig. ??. Now the threshold is cor-
rectly described, but on the high-energy side the description is worse! The
problem is that we have assumed that the form of the matrix element is
const. × k, which means that the width keeps growing with energy. This
corresponds to the bare interaction of pointlike objects in field theory. Since
the nucleon and the pion are neither bare nor pointlike, the matrix element
decreases at large momenta (small distances). This is often taken into account
phenomenologically by introducing formfactors. In fig. ?? the phase shift ob-
tained by multiplying the width by a factor (Λ2 + k(ER)2)/(Λ2 + k(E)2) is
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Figure 3: Same as the previous figure, but with a phase-space corrected width.

shown. A considerable improvement is obtained already with this trivial form
factor. Better fits exist in the literature.
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Figure 4: Same as the previous figure, but with a form factor.

The Breit-Wigner form for the cross section has been generalized to describe
relativistic particles. One then usually writes the amplitude in the form

fℓ(
√
s) =

1

k

√
sΓ

m2
R − s− i

√
sΓ
. (12)

In some papers one finds a factor mR in front of Γ rather than
√
s. This corre-

sponds to a trivial redefinition of the width, which plays no role in microscopic
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calculations or when the width is phase-space corrected, but may well play a
role when the width is approximated by a constant.

For particles with spin s1 and s2, the spin-averaged Breit-Wigner cross section
is then of the form

σℓ(s) =
4π

k2

(2J + 1)

(2s1 + 1)(2s2 + 1)

sΓ2

(s−m2
R)2 + sΓ2

, (13)

where J is the total spin of the resonance. When one considers particular spin
states in the initial and final state, i.e. an experiment with a polarized beam
and target, the corresponding Clebsch-Gordan coefficients must be included.
Similarly, particular isospins in the initial and final states can be accounted
for. Thus e.g. the spin-averaged Breit-Wigner cross section for the reaction
π−p→ π−p scattering through the I = 3/2, J = 3/2 ∆ resonance is

σℓ(s) =

(

1√
3

)2
4π

k2

4

2

sΓ2
∆

(s−m2
∆)2 + sΓ2

∆

. (14)

For the reaction π+p → π+p the Clebsch-Gordan coefficient, which in the
above example is (1/

√
3)2, equals unity.

Finally, we generalize the Breit-Wigner formula to the case when several chan-
nels are open, i.e., when inelastic reactions are possible. Denote the partial
width of the resonance R to decay into channel a by Γa and the total width by
ΓR. Then the cross section for scattering from channel a to channel b through
the resonance R is given by

σa→b(s) =
4π

k2

(2J + 1)

(2s1 + 1)(2s2 + 1)

sΓaΓb

(s−mR)2 + sΓ2
R

, (15)

while the total cross section is given by

σa(s) =
4π

k2

(2J + 1)

(2s1 + 1)(2s2 + 1)

sΓaΓR

(s−mR)2 + sΓ2
R

. (16)

Thus, the peak value of the total cross section is proportional to the branching
ratio for the resonance to decay into the channel a.
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3 Inelastic collisions

In this section we discuss inelastic collisions to specific channels. For elastic
scattering we found

fℓ =
1

2ik




ηℓe

2iδℓ

︸ ︷︷ ︸

Sℓ

−1




 , (17)

where Sℓ is the S-matrix for the elastic channel. If only elastic scattering is
possible, ηℓ = 1, while if inelastic channels are open, ηℓ is less than unity.
Consider now a reaction a→ b, where the states a and b are both assumed to
contain two particles, but the particle species may be changed in the reaction.
The asymptotic form of the wave function of the initial state is just as in the
discussion of elastic scattering

ψa
r→∞−→ eikaz +

1

r
faa(θ)e

ikar. (18)

The cross section for elastic scattering is then as before

dσaa

dΩi

= |faa(θ)|2 (19)

On the other hand, for inelastic scattering a → b, where b 6= a, the wave
function for the final state is somewhat different

ψb
r→∞−→ 1

r
fba(θ)

√

µb

µa

eikbr, (20)

where µa and µb are the reduced masses in the initial and final channels re-
spectively. We use the notations fba = fa→b interchangeably. The square root
factor in (??)is a convention, which leads to a convenient normalization of the
scattering amplitude. (Note that this form applies to a non-relativistic system.
In a relativistic treatment, µa = ω1aω2a/(ω1a +ω2a) etc., where ω1a and ω2a are
the energies of the two incident particles in the cm frame. The relation between
the S-matrix and the scattering matrix, eq. ?? below, remains unchanged.)

The leading contribution to the rate for particles to scatter in the solid angle
dΩb is given by

kb

µb

|ψb|2r2dΩb
r→∞−→ kb

µa

|fba(θ)|2dΩb (21)

while the current of incident particles is ka/µa (in a relativistic treatment
the current is ka(ω1a + ω2a)/ω1aω2a). Consequently the cross section for the
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inelastic reaction a→ b is

dσba

dΩb

=
kb

ka

|fba(θ)|2. (22)

Also the inelastic scattering amplitudes can be expanded in partial waves

fba(θ) =
∑

ℓ

(2ℓ+ 1)f
(ℓ)
ba Pℓ(cos θ). (23)

The corresponding S-matrix is given by

S
(ℓ)
ba = δba + 2i

√

kbkaf
(ℓ)
ba . (24)

Note that in the elastic channel (??) reduces to the relation (??).

The total cross section for elastic scattering is given by

σaa =
π

k2
a

∑

ℓ

(2ℓ+ 1)|S(ℓ)
aa − 1|2, (25)

while the cross section for the reaction a→ b (b 6= a) is

σba =
π

k2
a

∑

ℓ

(2ℓ+ 1)|S(ℓ)
ba |2. (26)

The reaction cross section is obtained by summing over all inelastic channels

σr =
∑

b6=a

σba =
π

k2
a

∑

ℓ

(2ℓ+ 1)
∑

b6=a

|S(ℓ)
ba |2. (27)

Unitarity of the S-matrix (
∑

b |S(ℓ)
ba |2 = 1) implies that

σr =
π

k2
a

∑

ℓ

(2ℓ+ 1)(1 − |S(ℓ)
aa |2). (28)

Finally, the total cross section is the sum of the elastic and reaction cross
sections

σtot = σaa + σr =
2π

k2
a

∑

ℓ

(2ℓ+ 1)(1 − Re(Saa)). (29)

Using (??) and (??) as well as Pℓ(1) = 1 we recover the optical theorem

σtot =
4π

ka

∑

ℓ

(2ℓ+ 1)Imf (ℓ)
aa =

4π

ka

Imfaa(θ = 0). (30)
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Figure 5: The reaction a→ b and its timereversed counterpart.

4 Detailed balance

Consider an inelastic reaction a → b, illustrated in fig. ??. Timereversal
invariance implies that the S-matrix for this reaction equals that of the time
reversed one b⋆ → a⋆, i.e.,

Sba = Sa⋆b⋆ . (31)

Here a⋆ and b⋆ are the time reversed states to a and b, respectively. This means
that the momenta and the spins are reversed. Using eq. ?? one finds that also
the corresponding scattering amplitudes are equal

fba = fa⋆b⋆ . (32)

The cross sections are

dσba = |fba|2
kb

ka

dΩb (33)

and

dσa⋆b⋆ = |fa⋆b⋆|2k
⋆
a

k⋆
b

dΩ⋆
a (34)

Now, using (??) one finds

dσba

dΩb

ka

kb

=
dσa⋆b⋆

dΩa⋆

kb⋆

ka⋆

(35)

This is the detailed balance relation. More explicitly, this give a relation
between the cross section for the inelastic scattering of two particles with
relative momentum ~ka and spins ~s1a and ~s2a into a state with different particles
species of relative momentum ~kb and spins ~s1b and ~s2b and the cross section
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for scattering of the latter type with momentum −~kb and spins −~s1b and −~s2b

into particles of the former type with relative momentum −~ka and spins −~s1a

and −~s2a. If one averages over the spins in the initial states and sums over
those in the final states, one obtains the spin-averaged cross sections. If we also
integrate over the final direction and average over the initial one, the difference
between the transition a→ b and a⋆ → b⋆ no longer exist. We define the cross
section

σba =
1

4π(2s1a + 1)(2s2a + 1)

∑

(spins)

∫ ∫
dσba

dΩb

dΩbdΩa. (36)

Now, if space is homogeneous (no magnetic fields etc.)

∫
dσba

dΩb

dΩb (37)

is independent of the angles Ωa and the integral over dΩa yields just an overall
factor 4π. Thus, σba is just the spin-averaged total cross section

σba =
1

(2s1a + 1)(2s2a + 1)

∑

(spins)

∫
dσba

dΩb

dΩb. (38)

One then finds the common form of the detailed-balance relation

ga k
2
a σba = gb k

2
b σab, (39)

where ga = (2s1a + 1)(2s2a + 1) and gb = (2s1b + 1)(2s2b + 1) are the spin-
degeneracy factors for the initial and final states. A comparison with (??),
shows that the Breit-Wigner cross section for inelastic scattering satisfies the
detailed balance relation.

Now, let us consider as an example the case where below some energy E0 only
elastic scattering in channel a is possible, while above the threshold energy E0

another channel b with heavier particles opens up. What can one say about
the different cross sections for energies close to the threshold energy? Close to
threshold s-wave scattering dominates, so in the following ℓ = 0 is assumed and
all higher partial waves are neglected. Below threshold Sbb = 1 since elastic
scattering in the b channel is impossible. Slightly above threshold Sbb = e2iδb ,
where the phase shift δb is complex, since inelastic scattering b→ a is possible.

The parameter η in eq. (??) is related to the imaginary part of δ; ηb = e−2Imδb .
Near threshold, the phase shift varies linearly with the momentum δb = −kba.
Here a is the scattering length, which in this case is complex a = α + iβ. For
kb|a| << 1

Sbb ≃ 1 − 2ikbα + 2kbβ. (40)
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Since the modulus of Sbb < 1 the imaginary par β < 0. Substituting (??) into
(??) and (??) one finds

σbb = 4π|a|2, (41)

σab =
4π

kb

|β| − 4π|a|2.

Hence, the inelastic cross section for the heavier system scattering into the
lighter one, i.e., b → a diverges at threshold ∼ k−1

b , while the elastic cross
section for b→ b assumes a value which is independent of the momentum.

Now, we can obtain the cross section for the reverse reaction a → b by using
the detailed balance relation

σba ∼ k2
b

k2
a

σab ∼
kb

k2
a

|β|. (42)

Since ka is not small at the threshold, we can take it to be a constant. Thus,
the cross section for the production of the heavier particles is proportional to
the imaginary part of the b → b scattering length and vanishes linearly with
the momentum kb.
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Figure 6: The cross section for π−p→ ωn. The line shows a fit to the data.

As a more concrete example we consider the reaction π−p→ ωn. The empirical
cross section for this reaction is shown in fig. ??. The detailed balance relation
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tells us that the cross section for the inverse reaction ωn→ π−p is

σωn→π−p =
2

6

k2
π

k2
ω

σπ−p→ωn, (43)

where the factor 2/6 is the ratio of the spin degeneracies. In fig. ?? we show
the resulting cross section. The singularity at threshold shows that there is an
s-wave component present in the cross section.
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Figure 7: The cross section for ωn → π−p obtained using detailed balance.
The line shows the inverse cross section corresponding to the fit of the previous
figure.

As indicated above, one can also extract information on the imaginary part of
the elastic scattering amplitude for the heavy system, in this case for ωn→ ωn.
Using detailed balance and unitarity one finds

σπ−p→ωn = 12π
kω

k2
π

Imf (π−p)
ωn→ωn (44)

where Imf (π−p)
ωn→ωn denotes the imaginary part of the ωn → ωn scattering am-

plitude that is due to the π−p channel. In fig. ?? we show the scattering
amplitude obtained from the data of fig. ?? together with the corresponding
fit.

12



0 20 40 60 80 100 120 140 160
0.00

0.01

0.02

0.03

0.04

0.05

Im
 f ω

 N

( π
 N

)  [f
m

]

q
ω
 [MeV/c]

Figure 8: The imaginary part of the ωn→ ωn scattering amplitude due to the
π−p channel. The line shows the fit to the data, and corresponds to the lines
in the two previous figures.

As will be discussed later, knowledge of the hadron-nucleon scattering ampli-
tude is important for obtaining the properties of the hadron in nuclear matter.
The imaginary part of the scattering amplitude gives rise to an increased width
of the hadron in the nuclear medium.

We note that Imf (π−p)
ωn→ωn is unexpectedly small. The corresponding scatter-

ing amplitude for the η meson is more than an order of magnitude larger,
Imf (π−p)

ηn→ηn ≃ 0.25 fm. It is presently not understood why Imf (π−p)
ωn→ωn is so small.
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