
Thermodynami
s1 Mi
ro
anoni
al ensembleConsider an isolated system with energy E and N parti
les in a box of volumeV . Be
ause the volume is �nite, the energy levels are quantized, i.e. they aredis
rete. However, if V is large, the level spa
ing is very small, usually mu
hsmaller than the resolution with whi
h the energy of the system 
an be mea-sured. These states, the eigenstates of the Hamiltonian are 
alled mi
rostates.The dis
rete mi
rostates are numbered by n and the energy of a mi
rostate isdenoted by En.One de�nes a ma
rostate as a state de�ned by the parameters N; V; � andhaving an energy in the small interval E � En � E + ÆE. Here � denotes ad-ditional parameters needed to spe
ify the system. This 
ould be e.g. the totalspin of the system. In equilibrium the system is fully spe
i�ed by (E;N; V );additonal parameters are needed to spe
ify non-equilibriumma
rostates. Sin
ethe level spa
ing is small, there are very many mi
rostates in the energy rangebetween E and E + ÆE. For a large volume and a suitably 
hosen ÆE theresults depend only very weakly on ÆE.We denote by Z(E;N; V ;�) the number of mi
rostates that 
omprise thema
rostate de�ned by E;N; V ;�. We 
all Z(E;N; V ;�) the mi
ro
anoni
alpartition fun
tion or the statisti
al weight of the ma
rostate. The partitionfun
tion of the equailibrium state is denoted by Z(E;N; V ).Thermodynami
s is built on the following basi
 postulates:1 In an isolated system all mi
rostates 
ompatible with the 
onstraints ofthe system (E;N; V ) are equally likely to o

ur, i.e. they have equal apriori probabilities.2 The equilibrium state 
orrsponds to that value of � for whi
h Z(E;N; V ;�)attains its maximum value keeping E;N; V �xed.It follows from postulate 1 that the probability to be in a mi
rostate n ispn = 1=Z(En; N; V ); (1)1



while the probability to be in a ma
rostate de�ned by � is proportional to thenumber of mi
rostates that 
omprise the ma
rostatep(E;N; V ;�) = Z(E;N; V ;�)Z(E;N; V ) : (2)As an example 
onsider a system 
onsisting of N spin-12 parti
les. We assumethat the spins are lo
ated on a latti
e and negle
t all intera
tions betweenthem, sin
e we only want to illustrate the problem of 
ounting states. We alsoassume that there is no external magneti
 �eld. Sin
e ea
h spin 
an point upor down there are 2N possible states. These are the mi
rostates. Sin
e thereare no intera
tions and no magneti
 �eld, all mi
rostates have the same energyE0. We de�ne a ma
rostate by the energy between E and E + ÆE and thenumber of up spins n. Here n 
orresponds to the parameter � above.For n = N all spins are pointing up. Clearly there is only one mi
rostate ofthis kind. Correspondingly, for n = N � 1, all spins ex
ept one are pointingup. Sin
e there are N ways to pi
k the down spin, there are N independentmi
rostates 
orrepsonding to this value of n. For n = N � 2 again, there arN(N � 1)=2 mi
rostates. In general the 
orresponding partition fun
tion isgiven by the binomial 
oeÆ
ientsZ(n) = �Nn� = N !n!(N � n)! : (3)The sum over all n yields Pn Z(n) = 2N . In �g. 1 the binomial distribution isshow for N = 100. The maximum probability is rea
hed for n = N=2, i.e., inthe equilibrium system, the number of up- and down-spins are the same; thesystem is unpolarized. Note the logarithmi
 s
ale. Already for 100 parti
lesthe number of mi
rostates for the equilibrium distribution is huge, � 1029!This is 
omparable to the total number of mi
rostates 2100 � 1030.In the �rst part of the le
tures we dis
ussed the phase spa
e integrals, and alsode�ned the non-invariant phase spa
e integralZ(E;N; V ) = dNdE = V NN ! Z d3p1 � � �d3pN(2��h)3N Æ(E �Xi "i): (4)This fun
tion is just the number of mi
rostates with energy E and parti
lenumber N , i.e., it is the mi
ro
anoni
al partition fun
tion for a system ofnon-intera
ting parti
les. 2
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Figure 1: The binomial distribution (3) for N = 100.Now we are ready to de�ne the entropyS(E;N; V ;�) = kB lnZ(E;N; V ;�) (5)Consider two systems 1 and 2, with partition fun
tions Z1 and Z2. When thetwo systems are 
ombined, one obtains a system with Z = Z1Z2 mi
rostates,sin
e any mi
rostate of 1 
an be 
ombined with any mi
rostate of 2. Hen
ethe entropy of the 
ombined system is S = S1+S2, i.e. the entropy de�ned inthis way is an extensive quantity.The se
ond postulate above 
an now be reformulated for the entropy:In an isolated system out of equilibrium the entropy in
reases and attains itsmaximum value in the equilibrium state.This is the se
ond law of thermodynami
s!We 
an now de�ne an absolute temperature by means of1T = �S�E �����N;V : (6)Also the pressure and the 
hemi
al potential 
an be obtained from the entropy:P = T �S�V �����E;N (7)and � = �T �S�N �����E;V (8)3



These results 
an be summarized in the di�erentialdS = 1T dE + PT dV � �T dN (9)Let us dis
uss a simple example, where the mi
ro
anoni
al partition fun
tion
an be evaluated. Consider a gas of N non/intera
ting, non/relativisti
 parti-
les. The partition fun
tion is the non/invariant phase spa
e distribution (4).Using s
aling arguments, one �nds that Z(E;N; V ) = AE3N=2�1 ' AE3N=2,where a is a 
onstant independent of E and the approximate equality holds forlargeN . Now, using (5) and (6) one �nds the well-known relation E=N = 3T=22 Canoni
al ensembleIn this se
tion we brie
y dis
uss the 
anoni
al ensemble, whi
h is sometimesalso 
alled Gibb's ensemble. Consider a system in 
onta
t with a heat bath.This means that energy 
an be ex
hanged between the system and the heatbath. Thus, the energy of the system is not 
onstant; the system is not isolated.Sin
e only energy 
an be ex
hanged and not parti
les, the parti
le number isstill 
onstant.If the heat bath is very large, the 
u
tuations of its energy are small 
omparedto its total energy. This means that the temperature is 
onstant. Thus, whenone 
hanges from the mi
ro
anoni
al des
ription to the 
anoni
al one, theextensive variable E = 
onst. is repla
ed by the intensive one T = 
onst..After some standard manipulations whi
h 
an be found in any good textbookon thermodynami
s, one �nds the probability that the system is in a mi
rostaten pn = 
onst.e��En; (10)where � = 1=(kBT ). The 
onstant is determined by the normalization 
ondi-tion Pn pn = 1, whi
h yieldspn = 1Z(T;N; V ) e��En (11)where Z(T;N; V ) =Xn e��En : (12)This is the 
anoni
al partition fun
tion. Note that for a given system (N andV �xed) the probability that a mi
rostate is o

upied depends only on its4



energy! The dependen
e of Z on N and V is lodged in the energy eigenvaluesEn.There may be several mi
rostates with the same energy. Then we 
an rewritethe sum over states into a sum over energy eigenvaluesZ(T;N; V ) =XEn e��Eng(En; N; V ); (13)where g(En; N; V ) is the degenera
y of the eigenvalue En. The probability foran eigenvalue En to be o

upied isp(En) = 1Z(T;N; V ) g(En; N; V ) e��En: (14)Often the level spa
ing is so small that one 
an approximate the sum over thelevels with an integral over a 
ontinuous distributionZ(T;N; V ) = Z f(E;N; V ) e��E dE (15)where f(E;N; V ) = 1�E Xn;E�En�E+�E = 1�E XEn;E�En�E+�E g(En) (16)is the density of states. Note that the mi
ro
anoni
al partition fun
tion isproportional to the density of states Z(E;N; V ) = f(E;N; V ) ÆE.The average energy of the system is given byhEi =Xn pnEn = �� lnZ�� = 1Z Xn En e��En: (17)It is interesting to estimate how large the 
u
tuations in the energy are. One�nds h(�E)2i = h(E � hEi)2i = hE2i � hEi2= �2 lnZ��2 = ��hEi�� = kBT 2C; (18)where C = �hEi=�T is the heat 
apa
ity of the system, whi
h is proportionalto the number of parti
les N . Sin
e the energy hEi is also proportional to N(h(�E)2i)1=2hEi = (kBT 2C)1=2hEi / 1pN : (19)5



Thus, the 
u
tuations of the energy are small provided the system is largeenough.In the 
anoni
al ensemble the logarithm of the partition sum yieldskB lnZ(T;N; V ) = S � hEiT : (20)A 
onvenient quantity for doing 
al
ulations in this ensemble is Helmholtz freeenergy F (T;N; V ) = hEi � TS: (21)The derivatives of the free energy yieldsS = � �F�T �����V;NP = � �F�V �����T;N (22)� = �F�N �����T;V ;or in 
ompa
t form dF = �SdT � PdV + �dN (23)The 
anoni
al partition fun
tion for a free, gas of indistinguishable 
lassi
alparti
les is given by ZCl(T;N; V ) = 1N !  X̀ e��"`!N : (24)Similarly for a free Fermi=Dira
 and Bose-Einstein gasZFD(T;N; V ) = X`1<`2<���<`N e��("`1+"`2+���+"`N ) (25)and ZBE(T;N; V ) = X`1�`2�����`N e��("`1+"`2+���+"`N ) (26)respe
tively. Note that the form of the probability distribution in the 
anoni
alensemble (11) has nothing to do with with the Maxwell-Boltzmann distribu-tion. Equation (11) is the probability distribution for the whole system, and isthe same for any statisti
s, while the Maxwell-Boltzmann distribution yieldsthe single-parti
le distribution. 6



3Thermodynami
sensembles

Properties,naturalstate variables density operatorpartition sum - thermodynami
 potential- Di�erential form- Equilibrium 
ondition

Isolated SystemE;N; Vmi
ro 
anoni
al ens. ^�M = 1ZM Æ�E(E � ^H)ZM = Æ�E(E � ^H)Z = lim�E!0 1�EZM= Æ(E � ^H)
Entropy : S(E;�E;N; V ) = ln (ZM(E;�E;N; V ))dS = 1T (dE � �dN + p dV )Equilibrium 
orrespond to maximization of entropy.

Energy ex
hange�;N; V
anoni
al ens. ^�C = 1ZC e�� ^HZC = e�� ^H Free Energy :F = �T ln(Z
(�;N; V )) = E � T SdF = �S dT + � dN � p dVEquilibrium 
orrespond tominimization of free energy.

Energy & parti
leex
hange�; �; Vgrand-
anoni
al ens. ^�G = 1ZG e��( ^H�� ^N)ZC = e��( ^H�� ^N) Grand potential :
 = �T ln(ZG(�; �; V )) = E � T S � �NFor homogeneous systems 
 = �p dVd
 = �S dT +N d� � p dVEquilibrium 
orrespond to minimization of grand po-tential.
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4 Two systems in 
onta
t : Prin
iple of maximum oftotal entropy !The system 1 is 
hara
terized by Ĥ1 and the system 2 by Ĥ2. We negle
t theintera
tion potential V̂12 between the two systems.Ztot = Z1 � Z2 ;Stot = S1 + S2 :The energy ex
hange E0 = E1 + E2 = 
onst: ;thus �Stot�E0 = �S1�E1 � �S2�E2 ;= � � � ;= 0 ;) �̂ = 1Z e��Ĥ : 
anoni
al ensembleIn the 
ase of parti
le ex
hange.N0 = N1 +N2 = 
onst: ;�Stot�N0 = �S1�N1 � �S2�N2 ;= ��� �� ;= 0 ;) �̂ = 1Z e��(Ĥ��N̂) : grand 
anoni
al ensemble
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5 Ideal quantum gasesFermi-Dira
 Bose-Einstein Classi
alO

upations: bk = 1; 2 bk = 1; 2; 3; : : : ;1 hbki � 1Z(E;N; V ) - - AE3N=2�1Z(T;N; V ) Xk1<k2<���<kNe��(�k1+���+�k1) Xk1�k2�����kNe��(�k1+���+�k1) 1N !  Xk e���k!NZ(T; �; V ) 1Yk=1 �1 + e��(�k��)� 1Yk=1 �1� e��(�k��)��1 exp 1Xk=1 e��(�k��)!lnZ(T; �; V ) 1Xk=1 ln �1 + e��(�k��)� � 1Xk=1 ln �1� e��(�k��)� 1Xk=1 e��(�k��)av. o

upationfk = hbki 1e�(�k+�) + 1 1e�(�k��) � 1 e��(�k��)Entropy S = � 1Xk=1 [fk ln fk+ (1� fk) ln(1� fk℄ S = � 1Xk=1 [fk ln fk� (1 + fk) ln(1 + fk℄ S = � 1Xk=1 fk ln fk6 Hard Core Equation of State6.1 Semi-
lassi
al partition sum with ex
luded volumeSpatial part (ignoring over
ounting of multi-parti
le overlaps):ZV (N) = V (V � VEx)(V � 2VEx) � � � (V � (N � 1)VEx)N ! =  V=VExN !V NEx(27)with VEx = 4�3 (2R)3 (28)Momentum part:ZP (�;N) = Z 3k1(2�)3 � � � 3kN(2�)3 exp "�Xi �E(ki)# = (ZP (�))N (29)with ZP (�) = Z 3k(2�)3 exp[��E(k)℄ZP (�; �) = ZP (�) exp(��) (30)9



Log of grand 
anoni
al partition sum:lnZ(T; �) = ln(XN ZV (N)ZP (�;N) exp(��N)) (31)= ln(XN �V=VExN � [VExZP (�; �)℄N) (32)= lnn[1 + VExZP (�; �)℄(V=VEx)o (33)= VVEx ln(1 + VEx Z 3k(2�)3 exp[��(E(k)� �)℄) (34)Parti
le number and pressure:N = hNi = ���� lnZ(�; �) = V ZP (�; �)1 + VExZP (�; �) (35)) ZP (�; �) = NV �NVEx (36)p = TV lnZ(�; �) = TVEx ln [1 + VExZP (�; �)℄ (37)= TVEx ln � VV �NVEx � (38)= TNV  1 + 12NVExV + 13 �NVExV �2 + � � �! (39)

10


