
Thermodynamis1 Miroanonial ensembleConsider an isolated system with energy E and N partiles in a box of volumeV . Beause the volume is �nite, the energy levels are quantized, i.e. they aredisrete. However, if V is large, the level spaing is very small, usually muhsmaller than the resolution with whih the energy of the system an be mea-sured. These states, the eigenstates of the Hamiltonian are alled mirostates.The disrete mirostates are numbered by n and the energy of a mirostate isdenoted by En.One de�nes a marostate as a state de�ned by the parameters N; V; � andhaving an energy in the small interval E � En � E + ÆE. Here � denotes ad-ditional parameters needed to speify the system. This ould be e.g. the totalspin of the system. In equilibrium the system is fully spei�ed by (E;N; V );additonal parameters are needed to speify non-equilibriummarostates. Sinethe level spaing is small, there are very many mirostates in the energy rangebetween E and E + ÆE. For a large volume and a suitably hosen ÆE theresults depend only very weakly on ÆE.We denote by Z(E;N; V ;�) the number of mirostates that omprise themarostate de�ned by E;N; V ;�. We all Z(E;N; V ;�) the miroanonialpartition funtion or the statistial weight of the marostate. The partitionfuntion of the equailibrium state is denoted by Z(E;N; V ).Thermodynamis is built on the following basi postulates:1 In an isolated system all mirostates ompatible with the onstraints ofthe system (E;N; V ) are equally likely to our, i.e. they have equal apriori probabilities.2 The equilibrium state orrsponds to that value of � for whih Z(E;N; V ;�)attains its maximum value keeping E;N; V �xed.It follows from postulate 1 that the probability to be in a mirostate n ispn = 1=Z(En; N; V ); (1)1



while the probability to be in a marostate de�ned by � is proportional to thenumber of mirostates that omprise the marostatep(E;N; V ;�) = Z(E;N; V ;�)Z(E;N; V ) : (2)As an example onsider a system onsisting of N spin-12 partiles. We assumethat the spins are loated on a lattie and neglet all interations betweenthem, sine we only want to illustrate the problem of ounting states. We alsoassume that there is no external magneti �eld. Sine eah spin an point upor down there are 2N possible states. These are the mirostates. Sine thereare no interations and no magneti �eld, all mirostates have the same energyE0. We de�ne a marostate by the energy between E and E + ÆE and thenumber of up spins n. Here n orresponds to the parameter � above.For n = N all spins are pointing up. Clearly there is only one mirostate ofthis kind. Correspondingly, for n = N � 1, all spins exept one are pointingup. Sine there are N ways to pik the down spin, there are N independentmirostates orrepsonding to this value of n. For n = N � 2 again, there arN(N � 1)=2 mirostates. In general the orresponding partition funtion isgiven by the binomial oeÆientsZ(n) = �Nn� = N !n!(N � n)! : (3)The sum over all n yields Pn Z(n) = 2N . In �g. 1 the binomial distribution isshow for N = 100. The maximum probability is reahed for n = N=2, i.e., inthe equilibrium system, the number of up- and down-spins are the same; thesystem is unpolarized. Note the logarithmi sale. Already for 100 partilesthe number of mirostates for the equilibrium distribution is huge, � 1029!This is omparable to the total number of mirostates 2100 � 1030.In the �rst part of the letures we disussed the phase spae integrals, and alsode�ned the non-invariant phase spae integralZ(E;N; V ) = dNdE = V NN ! Z d3p1 � � �d3pN(2��h)3N Æ(E �Xi "i): (4)This funtion is just the number of mirostates with energy E and partilenumber N , i.e., it is the miroanonial partition funtion for a system ofnon-interating partiles. 2
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Figure 1: The binomial distribution (3) for N = 100.Now we are ready to de�ne the entropyS(E;N; V ;�) = kB lnZ(E;N; V ;�) (5)Consider two systems 1 and 2, with partition funtions Z1 and Z2. When thetwo systems are ombined, one obtains a system with Z = Z1Z2 mirostates,sine any mirostate of 1 an be ombined with any mirostate of 2. Henethe entropy of the ombined system is S = S1+S2, i.e. the entropy de�ned inthis way is an extensive quantity.The seond postulate above an now be reformulated for the entropy:In an isolated system out of equilibrium the entropy inreases and attains itsmaximum value in the equilibrium state.This is the seond law of thermodynamis!We an now de�ne an absolute temperature by means of1T = �S�E �����N;V : (6)Also the pressure and the hemial potential an be obtained from the entropy:P = T �S�V �����E;N (7)and � = �T �S�N �����E;V (8)3



These results an be summarized in the di�erentialdS = 1T dE + PT dV � �T dN (9)Let us disuss a simple example, where the miroanonial partition funtionan be evaluated. Consider a gas of N non/interating, non/relativisti parti-les. The partition funtion is the non/invariant phase spae distribution (4).Using saling arguments, one �nds that Z(E;N; V ) = AE3N=2�1 ' AE3N=2,where a is a onstant independent of E and the approximate equality holds forlargeN . Now, using (5) and (6) one �nds the well-known relation E=N = 3T=22 Canonial ensembleIn this setion we briey disuss the anonial ensemble, whih is sometimesalso alled Gibb's ensemble. Consider a system in ontat with a heat bath.This means that energy an be exhanged between the system and the heatbath. Thus, the energy of the system is not onstant; the system is not isolated.Sine only energy an be exhanged and not partiles, the partile number isstill onstant.If the heat bath is very large, the utuations of its energy are small omparedto its total energy. This means that the temperature is onstant. Thus, whenone hanges from the miroanonial desription to the anonial one, theextensive variable E = onst. is replaed by the intensive one T = onst..After some standard manipulations whih an be found in any good textbookon thermodynamis, one �nds the probability that the system is in a mirostaten pn = onst.e��En; (10)where � = 1=(kBT ). The onstant is determined by the normalization ondi-tion Pn pn = 1, whih yieldspn = 1Z(T;N; V ) e��En (11)where Z(T;N; V ) =Xn e��En : (12)This is the anonial partition funtion. Note that for a given system (N andV �xed) the probability that a mirostate is oupied depends only on its4



energy! The dependene of Z on N and V is lodged in the energy eigenvaluesEn.There may be several mirostates with the same energy. Then we an rewritethe sum over states into a sum over energy eigenvaluesZ(T;N; V ) =XEn e��Eng(En; N; V ); (13)where g(En; N; V ) is the degeneray of the eigenvalue En. The probability foran eigenvalue En to be oupied isp(En) = 1Z(T;N; V ) g(En; N; V ) e��En: (14)Often the level spaing is so small that one an approximate the sum over thelevels with an integral over a ontinuous distributionZ(T;N; V ) = Z f(E;N; V ) e��E dE (15)where f(E;N; V ) = 1�E Xn;E�En�E+�E = 1�E XEn;E�En�E+�E g(En) (16)is the density of states. Note that the miroanonial partition funtion isproportional to the density of states Z(E;N; V ) = f(E;N; V ) ÆE.The average energy of the system is given byhEi =Xn pnEn = �� lnZ�� = 1Z Xn En e��En: (17)It is interesting to estimate how large the utuations in the energy are. One�nds h(�E)2i = h(E � hEi)2i = hE2i � hEi2= �2 lnZ��2 = ��hEi�� = kBT 2C; (18)where C = �hEi=�T is the heat apaity of the system, whih is proportionalto the number of partiles N . Sine the energy hEi is also proportional to N(h(�E)2i)1=2hEi = (kBT 2C)1=2hEi / 1pN : (19)5



Thus, the utuations of the energy are small provided the system is largeenough.In the anonial ensemble the logarithm of the partition sum yieldskB lnZ(T;N; V ) = S � hEiT : (20)A onvenient quantity for doing alulations in this ensemble is Helmholtz freeenergy F (T;N; V ) = hEi � TS: (21)The derivatives of the free energy yieldsS = � �F�T �����V;NP = � �F�V �����T;N (22)� = �F�N �����T;V ;or in ompat form dF = �SdT � PdV + �dN (23)The anonial partition funtion for a free, gas of indistinguishable lassialpartiles is given by ZCl(T;N; V ) = 1N !  X̀ e��"`!N : (24)Similarly for a free Fermi=Dira and Bose-Einstein gasZFD(T;N; V ) = X`1<`2<���<`N e��("`1+"`2+���+"`N ) (25)and ZBE(T;N; V ) = X`1�`2�����`N e��("`1+"`2+���+"`N ) (26)respetively. Note that the form of the probability distribution in the anonialensemble (11) has nothing to do with with the Maxwell-Boltzmann distribu-tion. Equation (11) is the probability distribution for the whole system, and isthe same for any statistis, while the Maxwell-Boltzmann distribution yieldsthe single-partile distribution. 6



3Thermodynamisensembles

Properties,naturalstate variables density operatorpartition sum - thermodynami potential- Di�erential form- Equilibrium ondition

Isolated SystemE;N; Vmiro anonial ens. ^�M = 1ZM Æ�E(E � ^H)ZM = Æ�E(E � ^H)Z = lim�E!0 1�EZM= Æ(E � ^H)
Entropy : S(E;�E;N; V ) = ln (ZM(E;�E;N; V ))dS = 1T (dE � �dN + p dV )Equilibrium orrespond to maximization of entropy.

Energy exhange�;N; Vanonial ens. ^�C = 1ZC e�� ^HZC = e�� ^H Free Energy :F = �T ln(Z(�;N; V )) = E � T SdF = �S dT + � dN � p dVEquilibrium orrespond tominimization of free energy.

Energy & partileexhange�; �; Vgrand-anonial ens. ^�G = 1ZG e��( ^H�� ^N)ZC = e��( ^H�� ^N) Grand potential :
 = �T ln(ZG(�; �; V )) = E � T S � �NFor homogeneous systems 
 = �p dVd
 = �S dT +N d� � p dVEquilibrium orrespond to minimization of grand po-tential.
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4 Two systems in ontat : Priniple of maximum oftotal entropy !The system 1 is haraterized by Ĥ1 and the system 2 by Ĥ2. We neglet theinteration potential V̂12 between the two systems.Ztot = Z1 � Z2 ;Stot = S1 + S2 :The energy exhange E0 = E1 + E2 = onst: ;thus �Stot�E0 = �S1�E1 � �S2�E2 ;= � � � ;= 0 ;) �̂ = 1Z e��Ĥ : anonial ensembleIn the ase of partile exhange.N0 = N1 +N2 = onst: ;�Stot�N0 = �S1�N1 � �S2�N2 ;= ��� �� ;= 0 ;) �̂ = 1Z e��(Ĥ��N̂) : grand anonial ensemble
8



5 Ideal quantum gasesFermi-Dira Bose-Einstein ClassialOupations: bk = 1; 2 bk = 1; 2; 3; : : : ;1 hbki � 1Z(E;N; V ) - - AE3N=2�1Z(T;N; V ) Xk1<k2<���<kNe��(�k1+���+�k1) Xk1�k2�����kNe��(�k1+���+�k1) 1N !  Xk e���k!NZ(T; �; V ) 1Yk=1 �1 + e��(�k��)� 1Yk=1 �1� e��(�k��)��1 exp 1Xk=1 e��(�k��)!lnZ(T; �; V ) 1Xk=1 ln �1 + e��(�k��)� � 1Xk=1 ln �1� e��(�k��)� 1Xk=1 e��(�k��)av. oupationfk = hbki 1e�(�k+�) + 1 1e�(�k��) � 1 e��(�k��)Entropy S = � 1Xk=1 [fk ln fk+ (1� fk) ln(1� fk℄ S = � 1Xk=1 [fk ln fk� (1 + fk) ln(1 + fk℄ S = � 1Xk=1 fk ln fk6 Hard Core Equation of State6.1 Semi-lassial partition sum with exluded volumeSpatial part (ignoring overounting of multi-partile overlaps):ZV (N) = V (V � VEx)(V � 2VEx) � � � (V � (N � 1)VEx)N ! =  V=VExN !V NEx(27)with VEx = 4�3 (2R)3 (28)Momentum part:ZP (�;N) = Z 3k1(2�)3 � � � 3kN(2�)3 exp "�Xi �E(ki)# = (ZP (�))N (29)with ZP (�) = Z 3k(2�)3 exp[��E(k)℄ZP (�; �) = ZP (�) exp(��) (30)9



Log of grand anonial partition sum:lnZ(T; �) = ln(XN ZV (N)ZP (�;N) exp(��N)) (31)= ln(XN �V=VExN � [VExZP (�; �)℄N) (32)= lnn[1 + VExZP (�; �)℄(V=VEx)o (33)= VVEx ln(1 + VEx Z 3k(2�)3 exp[��(E(k)� �)℄) (34)Partile number and pressure:N = hNi = ���� lnZ(�; �) = V ZP (�; �)1 + VExZP (�; �) (35)) ZP (�; �) = NV �NVEx (36)p = TV lnZ(�; �) = TVEx ln [1 + VExZP (�; �)℄ (37)= TVEx ln � VV �NVEx � (38)= TNV  1 + 12NVExV + 13 �NVExV �2 + � � �! (39)
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