Thermodynamics

1 Microcanonical ensemble

Consider an isolated system with energy F and N particles in a box of volume
V. Because the volume is finite, the energy levels are quantized, i.e. they are
discrete. However, if V' is large, the level spacing is very small, usually much
smaller than the resolution with which the energy of the system can be mea-
sured. These states, the eigenstates of the Hamiltonian are called microstates.
The discrete microstates are numbered by n and the energy of a microstate is
denoted by FE,.

One defines a macrostate as a state defined by the parameters N,V,a and
having an energy in the small interval £ < F,, < F' 4+ §FE. Here a denotes ad-
ditional parameters needed to specify the system. This could be e.g. the total
spin of the system. In equilibrium the system is fully specified by (E, N,V);
additonal parameters are needed to specify non-equilibrium macrostates. Since
the level spacing is small, there are very many microstates in the energy range
between E and F + JFE. For a large volume and a suitably chosen JF the
results depend only very weakly on dF.

We denote by Z(E,N,V;«) the number of microstates that comprise the
macrostate defined by E, N,V;a. We call Z(E, N,V;«) the microcanonical
partition function or the statistical weight of the macrostate. The partition
function of the equailibrium state is denoted by Z(FE, N, V).

Thermodynamics is built on the following basic postulates:

1 In an isolated system all microstates compatible with the constraints of
the system (E,N,V) are equally likely to occur, i.e. they have equal a
priori probabilities.

2 The equilibrium state corrsponds to that value of a for which Z(E, N, V; «)
attains its mazximum value keeping E, N,V fixed.

It follows from postulate 1 that the probability to be in a microstate n is

Pn = 1/Z(Ey, N, V), (1)



while the probability to be in a macrostate defined by « is proportional to the
number of microstates that comprise the macrostate
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As an example consider a system consisting of N spin—% particles. We assume
that the spins are located on a lattice and neglect all interactions between
them, since we only want to illustrate the problem of counting states. We also
assume that there is no external magnetic field. Since each spin can point up
or down there are 2V possible states. These are the microstates. Since there
are no interactions and no magnetic field, all microstates have the same energy
Ey. We define a macrostate by the energy between E and E + 0F and the
number of up spins n. Here n corresponds to the parameter o above.

For n = N all spins are pointing up. Clearly there is only one microstate of
this kind. Correspondingly, for n = N — 1, all spins except one are pointing
up. Since there are N ways to pick the down spin, there are /N independent
microstates correpsonding to this value of n. For n = N — 2 again, there ar
N(N — 1)/2 microstates. In general the corresponding partition function is
given by the binomial coefficients

Z(n) = (Q’) - n'(NLln)' (3)

The sum over all n yields 3, Z(n) = 2. In fig. 1 the binomial distribution is
show for N = 100. The maximum probability is reached for n = N/2, i.e., in
the equilibrium system, the number of up- and down-spins are the same; the
system is unpolarized. Note the logarithmic scale. Already for 100 particles
the number of microstates for the equilibrium distribution is huge, ~ 10%°!
This is comparable to the total number of microstates 210 ~ 10,

In the first part of the lectures we discussed the phase space integrals, and also
defined the non-invariant phase space integral
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This function is just the number of microstates with energy F and particle
number N, i.e., it is the microcanonical partition function for a system of
non-interacting particles.
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Figure 1: The binomial distribution (3) for N = 100.

Now we are ready to define the entropy
S(E,N,V;a)=kglnZ(E,N,V;«) (5)

Consider two systems 1 and 2, with partition functions Z; and Z,. When the
two systems are combined, one obtains a system with Z = Z;Z, microstates,
since any microstate of 1 can be combined with any microstate of 2. Hence
the entropy of the combined system is S = Sy + 95, i.e. the entropy defined in
this way is an extensive quantity.

The second postulate above can now be reformulated for the entropy:

In an isolated system out of equilibrium the entropy increases and attains its
mazimum value in the equilibrium state.

This is the second law of thermodynamics!

We can now define an absolute temperature by means of
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Also the pressure and the chemical potential can be obtained from the entropy:
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These results can be summarized in the differential
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Let us discuss a simple example, where the microcanonical partition function
can be evaluated. Consider a gas of N non/interacting, non/relativistic parti-
cles. The partition function is the non/invariant phase space distribution (4).
Using scaling arguments, one finds that Z(E, N,V) = AE3N/271 ~ AE3N/2,
where a is a constant independent of E' and the approximate equality holds for
large N. Now, using (5) and (6) one finds the well-known relation E/N = 3T/2

2 Canonical ensemble

In this section we briefly discuss the canonical ensemble, which is sometimes
also called Gibb’s ensemble. Consider a system in contact with a heat bath.
This means that energy can be exchanged between the system and the heat
bath. Thus, the energy of the system is not constant; the system is not isolated.
Since only energy can be exchanged and not particles, the particle number is
still constant.

If the heat bath is very large, the fluctuations of its energy are small compared
to its total energy. This means that the temperature is constant. Thus, when
one changes from the microcanonical description to the canonical one, the
extensive variable E' = const. is replaced by the intensive one 7" = const..

After some standard manipulations which can be found in any good textbook
on thermodynamics, one finds the probability that the system is in a microstate
n

pn = const.e PP, (10)

where § = 1/(kgT). The constant is determined by the normalization condi-
tion Y, p, = 1, which yields
1

=———— ¢ 11
=71 N V) © (11)

where

Z(T,N,V) =3 e b, (12)

This is the canonical partition function. Note that for a given system (N and
V fixed) the probability that a microstate is occupied depends only on its
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energy! The dependence of Z on N and V is lodged in the energy eigenvalues
E,.

There may be several microstates with the same energy. Then we can rewrite
the sum over states into a sum over energy eigenvalues

Z(T,N,V) Ze BEng(E,, N, V), (13)

where g(E,, N,V) is the degeneracy of the eigenvalue FE,. The probability for
an eigenvalue F, to be occupied is

1
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p(Ey) =

Often the level spacing is so small that one can approximate the sum over the
levels with an integral over a continuous distribution

Z(T,N,V) = /f(E, N, V) e PEdE (15)

where
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f(E,N,V)=

is the density of states. Note that the microcanonical partition function is
proportional to the density of states Z(E, N,V) = f(E,N,V)JE.

The average energy of the system is given by
81 Z
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It is interesting to estimate how large the fluctuations in the energy are. One
finds
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where C' = 0(F) /0T is the heat capacity of the system, which is proportional
to the number of particles N. Since the energy (FE) is also proportional to N
((AE))? _ (kpT?C)'? 1
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Thus, the fluctuations of the energy are small provided the system is large
enough.

In the canonical ensemble the logarithm of the partition sum yields

E
kBan(T,N,V):S—<—T>. (20)
A convenient quantity for doing calculations in this ensemble is Helmholtz free

energy

F(T,N,V)=(E)-TS. (21)
The derivatives of the free energy yields
F
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or in compact form
dF = —SdT — PdV + udN (23)

The canonical partition function for a free, gas of indistinguishable classical
particles is given by

N
1
Cl —fe
7 (T,N,V):m@jeﬂf) : (24)
Similarly for a free Fermi=Dirac and Bose-Einstein gas
ZFP(T,N, VY= Y e flententtay) (25)
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and
ZPE(T,N VY= Y e flutentotay) (26)
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respectively. Note that the form of the probability distribution in the canonical
ensemble (11) has nothing to do with with the Maxwell-Boltzmann distribu-
tion. Equation (11) is the probability distribution for the whole system, and is
the same for any statistics, while the Maxwell-Boltzmann distribution yields
the single-particle distribution.



Properties,natural
state variables

density operator
partition sum

- thermodynamic potential
- Differential form
- Equilibrium condition

) L (E—H)

P = g R Entropy : S(E,AE,N,V) = In(Zy(E, AE,N,V))
Isolated System Zy = 6ap(E—H) 1
E,N,V ds = f(dE—,udN+pdV)
micro canonical ens.

Z = lim —Zy e e e .
AE—0 AE Equilibrium correspond to maximization of entropy.
. = d(F—H)
B b 1 X Free Energy :
“]e\;g‘ﬁ exchange po = e F=-T(Z(8,N,V)) = E-TS
BN, 1 | fﬁﬁ dF = —SdT + pdN — pdV
canonicat ens. Zo = e Equilibrium correspond to minimization of free energy.
Grand potential :

Energy & particle 1 P Q=-Th(Zsp,pV) = E-TS—uN
exchange pa = Z—Gefﬁ( ) For homogeneous systems Q = —pdV
/B7N7V ZC - e*ﬁ(ﬁfﬂN) dQ:—SdT+Nd/L —pdV

grand-canonical ens.

Equilibrium correspond to minimization of grand po-
tential.
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4 Two systems in contact : Principle of maximum of
total entropy !

The system 1 is characterized by H; and the system 2 by H,. We neglect the
interaction potential Vj5 between the two systems.

Ziot = 21 X Zy,
Stot - 51+SQ.

The energy exchange

Ey = E,+ E5 = const.

thus
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In the case of particle exchange.

Ny = N;+ Ny =const. ,
8Stot 651 652

ON, ON, ON, '’
= pp—0Ou,
=0,

= p= %e‘ﬂm_’“\?) : grand canonical ensemble



5 Ideal quantum gases

Fermi-Dirac Bose-Einstein Classical
Occupations: by =1,2 b =1,2,3,...,00 Ty < 1
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6 Hard Core Equation of State
6.1 Semi-classical partition sum with excluded volume
Spatial part (ignoring overcounting of multi-particle overlaps):
VIV =Vg)(V—=2Vgg) - (V= (N = 1)Vg, V/Vis
N! N
4
with Vg, = %(23)3 (28)
Momentum part:
31161 SkN N
Ze(B.N) = [ G e | S BE(k)| = (Zp(B)"  (29)
3
with  Zp(f) :/WGXP[_ﬂE(k)]
Zp(B, 1) = Zp(B)exp(Bp) (30)




Log of grand canonical partition sum:
InZ(T,p) = In {Z Zv(N)Zp(B, N) exp(ﬂuN)}
N
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Particle number and pressure:
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