
Thermodynamis ont'd1 Mean-�eld approximationsWe begin by reapitulating the thermodynamis that was disussed in thelast setion. In the Grand-Canonial Ensemble, whih we will use almostexlusively from now on, the partition funtion is of the formZ(T; �; V ) =Xn e��(En��Nn) : (1)The sum goes over mirostates n, with energy En and partile number Nn,and � = 1=kBT , where kB is the Boltzmann onstant. The probability thatthe mirostate n is oupied ispn = 1Z(T; �; V )e��(En��Nn) : (2)The mean energy and partile number are then given byhEi =Xn EnpnhNi =Xn Nnpn : (3)The thermodynami potential is
(T; �; V ) = �kBT logZ(T; �; V ) = E � TS � �N ; (4)where E = hEi and N = hNi is the mean energy and mean partile number,respetively. The di�erentials of the thermodynami potential are given byd
 = �SdT �Nd�� pdV (5)where p is the pressure. In a homogeneous system, the thermodynami poten-tial is given by 
 = �pV : (6)In a non-interating system, the partition sum an be performed. The energyand partile number that enter the partition funtion (1) are given byEn = X̀ "` n̂(n)` (7)1



and Nn = X̀ n̂(n)` ; (8)where n̂(n)` = 0; 1; 2; 3; 4; : : : for bosons and n̂(n)` = 0; 1 for fermions, is theoupation number of the single-partile state ` in the mirostate n.One �nds Z0(T; �; V ) = Ỳ 11� e��("`��) (9)for bosons, and Z0(T; �; V ) = Ỳ �1 + e��("`��)� (10)for fermions. Thus, the thermodynami potential of the non-interating quan-tum gas is given by
0(T; �; V ) = �kBT X̀ ln(1� e��("`��)) ; (11)where the upper sign is for fermions and lower one for bosons. For a uniformsystem, the thermodynami potential is proportional to the pressure, i.e., 
 =�pV . Consequently, the so alled thermodynami pressure of a non-interatinggas is p0 = �kBTV X̀ ln(1� e��("`��)) ; (12)In suh a system, we an use plane-wave states, labeled by the momentum~k. Setting ~k` = ~k, we an onvert the sum into an integral using P` =(V=(2�)3) R d3k. One then reovers the expression for the kineti pressure bypartial integration p0 = kBT Z d3k(2�)3 13~k � ~vk nk ; (13)where nk = 1=(e�("k��) � 1).2 Seond quantizationIn this setion we give a very brief, and neessarily inomplete introdution toseond quantization. The reader who feels unomfortable with this admittedlyskethy treatment is referred to one of the standard textbooks on the subjet 1.1e.g. Fetter & Waleka, Bjorken & Drell, Itzykson & Zuber2



Consider a state in many-body Hilbert spaejn̂1; n̂2; : : : ; n̂1i (14)with n̂1 partiles in state 1, n̂2 partiles in state 2 et.. We de�ne an annihi-lation operator, whih annihilates a partile in state ka�kj : : : ; n̂k; : : :i = qn̂k j : : : ; n̂k � 1; : : :i (15)and a reation operator, whih reates a partile in the state ka�ykj : : : ; n̂k; : : :i = qn̂k + 1 j : : : ; n̂k + 1; : : :i : (16)It is straightforward to verify that the operator n�k = a�yk a�k ounts the numberof partiles, i.e., n�kj : : : ; n̂k; : : :i = n̂kj : : : ; n̂k; : : :i ; (17)where n̂k denotes the number of partiles in the state k. In terms of thisoperator, the number operator, whih ounts the total number of partiles isN� = Pk n�k while the free Hamiltonian isH� =Xk "k a�yk a�k : (18)Thus, H� jn̂1; n̂2; : : : ; n̂1i =Xk "k n̂k jn̂1; n̂2; : : : ; n̂1i : (19)For ompleteness we give the ommutation relations for bosonsha�k; a�yk0i = a�k a�yk0 � a�yk a�k0 = Æk;k0ha�k; a�k0i = ha�yk; a�yk0i = 0 (20)and for fermions na�k; a�yk0o = a�k a�yk0 + a�yk a�k0 = Æk;k0na�k; a�k0o = na�yk; a�yk0o = 0 : (21)We introdue the ompat notationjmi = jn̂(m)1 ; n̂(m)2 ; : : : ; n̂(m)1 i (22)3



for a many-body state, where the one-body state k is oupied by n̂(m)k partiles.In seond quantization the partition funtion of the free system is then givenby Z0(T; �; V ) = Xm hmje��Pk("k��) a�yk a�k jmi= Xm e��Pk("k��)n̂(m)k ; (23)where the seond line is obtained by using the fat that jmi is an eigenstateof n�k. Using the fat that n̂(m)k = f0; 1g for fermions and n̂(m)k = f0; 1; 2; 3; : : :gfor bosons, we reover the partion funtions for the free Bose-Einstein andFermi-Dira gases (9) and (10).3 Inluding interationsIn this setion we disuss how one an inlude the e�et of interations in thepartition sum in the so alled mean-�eld approximation. We onsider a uniformsystem of interating fermions. As a single partile basis it is onvenient touse eigenstates of the momentum operator, i.e., plane waves. For a system ofvolume V , these are 1pV ei~k�~r : (24)At the end of the alulation one an take the limit V !1. Thus, the singlepartile states are labeled by the momentum ~k. In order not to overload theequations, we will in general suppress the arrow on the momentum. Sineit usually should be lear what is meant, we hope that this will not lead toonfusion.We start by onsidering a system onsisting of non-relativisti partiles. To beonrete, we onsider a system of fermions, desribed by the HamiltonianH� =Xk "ka�yk a�k + 12 Xk;k0;q V (q) a�yk+q a�yk0�q a�k0 a�k ; (25)where the sum over k inludes possible sums over internal degrees of freedomlike spin and isospin. The partition sum, whih is given byZ(T; �; V ) =Xm hmje��(H���N�)jmi (26)4



is formally expandedZ(T; �; V ) = Xm hmj[1� �(H� � �N� )+ 12�(H� � �N� )Xn jnihnj�(H� � �N� ) + : : : ℄jmi ; (27)where we have introdued a omplete set of states in the seond-order term.We restrit the sum over n to the term with n = m. This is the �rst step inobtaining a mean-�eld approximation. Then one an resum the exponentialZ(T; �; V ) 'Xm e��hmjH���N� jmi : (28)We now have to ompute expetation values of the Hamiltonian. It is easilyseen that only matrix elements involving n̂(m)k = hmjn�kjmi are non-zero. One�nds hmjH� jmi =Xk "0kn̂(m)k + 12Xkk0 �V (0)� 1� V (k � k0)� n̂(m)k n̂(m)k0 ; (29)where � is the spin and isospin degeneray. In symmetri nulear matter � = 4,while in neutron matter � = 2. In order to simplify things, we introdue thenotation U(k � k0) = V (0)� 1�V (k � k0).The partition sum, as it stands, annot be performed analytially. Thus, inorder to perform the partition sum, we linearize in the di�erene between theoupation number and its average, Æ(m)k = n̂(m)k � �nk. Only the interationterm, whih is quadrati in n̂(m)k needs to be linearized. Thus, we writen̂(m)k n̂(m)k0 = �nk�nk0 + �nkÆ(m)k0 + �nk0Æ(m)k + Æ(m)k Æ(m)k0' �nkn̂(m)k0 + �nk0n̂(m)k � �nk�nk0 ; (30)where we have dropped terms of seond order in Æ(m)k in the seond line. Usingthe fat that U(k; k0) = U(k0; k), one then �ndshmjH� jmi = Xk ""0k +Xk U(k; k0)�nk0# n̂(m)k� 12Xkk0 U(k; k0)�nk�nk0 : (31)whih we determine below. The term in square brakets we identify with thein-medium single partile energy"k = "0k +Xk0 U(k; k0)�nk0 : (32)5



Now, the partition funtion in the mean-�eld approximation is given byZmf (T; �; V ; f�nkg) = e�2 Pkk0 U(k;k0)�nk�nk0 Xm e��Pk("k��)n̂(m)k ; (33)where we have indiated that the partition funtion depends on the meanoupation numbers f�nkg. The partition sum an now be performed, just likein the free aseZmf(T; �; V ; f�nkg) = e�2 Pkk0 U(k;k0)�nk�nk0 Yk (1 + e��("k��)) ; (34)and one �nds the thermodynami potential in the mean-�eld approximation�
mf (T; �; V ; f�nkg) = �kBT lnZmf(T; �; V ; f�nkg)= �12Xkk0 U(k; k0)�nk�nk0 � kBT Xk ln(1 + e��("k��)) :(35)Here, the average oupation numbers f�nkg are a set of parameters, that shouldbe determined by minimizing the thermodynami potential. Rememberingthat the in-medium single-partile energy "k depends on �nk, we �ndÆ �
Æ�nk = �Xk0 U(k; k0) ��nk0 � 1e�("k0��) + 1� = 0 : (36)We note that the last equality holds for any potential U(k; k0) if the term insquare brakets vanishes. Thus, we �nally arrive at the Fermi-Dira distribu-tion with an in-medium single-partile energynk = 1e�("k��) + 1 : (37)The mean-�eld thermodynami potential is then given by �
, evaluated at thestationary point, where (37) is satis�ed
mf (T; �; V ) = �12Xkk0 U(k; k0)nknk0 � kBT Xk ln(1 + e��("k��)) : (38)Note that eq. (37) is an impliit equation for the distribution funtion, sinethe single partile energy depends on nk. This reets the fat that the mean-�eld approximation is a self onsistent approximation. We will return to thispoint later, when we disuss the diagrammati interpretation of the mean-�eldapproximation. 6



As a onsequene of the stationarity (36), 
mf has some nie properties. Forinstane, the average partile number is given byN = ��
�� =Xk 1e�("k��) + 1 =Xk nk : (39)Here, the impliit dependene on � through the Fermi-Dira distribution doesnot ontribute. This is beause it gives rise to terms of the formXk Æ
Ænk �nk�� ; (40)whih vanish beause of (36). Similarly, one �nds for the entropyS = ��
�T = kBXk hln(1 + e��("k��)) + �("k � �)nki= �kB Xk [nk lnnk + (1� nk) ln(1� nk)℄ ; (41)whih is the expression for the entropy of a non-interating Fermi gas, ex-ept that the oupation numbers nk depend on the in-medium single-partileenergies "k. This form of the entropy is harateristi for a mean-�eld ap-proximation, sine the partile move as independent partiles in a stati �eld.Corretions to this general form of the entropy appear when orrelations aretaken into aount.
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