Thermodynamics cont’d

1 Mean-field approximations

We begin by recapitulating the thermodynamics that was discussed in the
last section. In the Grand-Canonical Ensemble, which we will use almost
exclusively from now on, the partition function is of the form

Z(Typu, V) =3 e PEnuln), (1)

The sum goes over microstates n, with energy E, and particle number N,
and 3 = 1/kgT, where kp is the Boltzmann constant. The probability that
the microstate n is occupied is

1
Pn= o n €

—B(En—pNp) 2
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The mean energy and particle number are then given by
(E) = Zn: E,pn
(N) = Xn: Noup, . (3)
The thermodynamic potential is
QUT, 1, V)= —=kgTlog Z(T,n,V) =E —TS — uN, (4)

where E' = (F) and N = (N) is the mean energy and mean particle number,
respectively. The differentials of the thermodynamic potential are given by

dQ = —SdT — Ndp — pdV (5)

where p is the pressure. In a homogeneous system, the thermodynamic poten-
tial is given by
Q=—pV. (6)

In a non-interacting system, the partition sum can be performed. The energy
and particle number that enter the partition function (1) are given by

E,=3 ey (7)
¢
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and
N, =Y, (8)
l

where ﬁén) = 0,1,2,3,4,... for bosons and ﬁén) = 0,1 for fermions, is the

occupation number of the single-particle state ¢ in the microstate n.

One finds

1
Zo(T, p, V) = 1;[ 1= o 8G=n (9)
for bosons, and
Zo(T, 11, V) =TT (1 + e77Er=m) (10)
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for fermions. Thus, the thermodynamic potential of the non-interacting quan-
tum gas is given by

Qo(T, 11, V) = FkpT Y In(1 £ e ey, (11)
¢

where the upper sign is for fermions and lower one for bosons. For a uniform
system, the thermodynamic potential is proportional to the pressure, i.e., 2 =
—pV. Consequently, the so called thermodynamic pressure of a non-interacting
gas is

L kT
Po = J"; 21 (14 e Blm)y (12)

In such a system, we can use plane wave states, labeled by the momentum
k. Setting kg = k we can convert the sum into an integral using )., =
(V/(27)?) [ d*k. One then recovers the expression for the kinetic pressure by
partial integration

d3k 1
kBT/ . 77]9 ng , (13)

where nj, = 1/(efC+=#) £ 1),

2 Second quantization

In this section we give a very brief, and necessarily incomplete introduction to
second quantization. The reader who feels uncomfortable with this admittedly
sketchy treatment is referred to one of the standard textbooks on the subject .

le.g. Fetter & Walecka, Bjorken & Drell, Ttzykson & Zuber



Consider a state in many-body Hilbert space
|71, My -+ vy Pl (14)

with ny particles in state 1, ny particles in state 2 etc.. We define an annihi-
lation operator, which annihilates a particle in state &

gk|---;ﬁk;--->:Vﬁk|---aﬁk_1;---> (15)

and a creation operator, which creates a particle in the state k

all o gy = e+ 1] e+ 1, (16)

It is straightforward to verify that the operator n = CLL a, counts the number
of particles, i.e.,

NI ST 1

where 1, denotes the number of particles in the state k. In terms of this
operator, the number operator, which counts the total number of particles is
N =3, n, while the free Hamiltonian is

Z&k a, Nk (18)

Thus,

g|ﬁ1,ﬁ2,...,ﬁoo>:ngﬁk|ﬁ1,ﬁ2,...,ﬁoo>. (19)
k

For completeness we give the commutation relations for bosons

{gk’ QH = & aL - a,t a,, = Ok

[gk’gk’] - [g;[c’Nk’] =0 (20)
and for fermions

{gk’ gL,} = 4.4 CLL + CLL a,, = Ok

{goa.} = {dha}=0. (21)

We introduce the compact notation

im) = ™, ™ Al (22)



for a many-body state, where the one-body state k is occupied by fzfgm) particles.
In second quantization the partition function of the free system is then given
by

Zo(T, 1, V) = Y (mle”” 2l 8t )

m

= S e AN mn (23)
m

where the second line is obtained by using the fact that |m) is an eigenstate
of n . Using the fact that ﬁ,‘j”’ = {0, 1} for fermions and ﬁ,gm) ={0,1,2,3,...}
for bosons, we recover the partion functions for the free Bose-Einstein and
Fermi-Dirac gases (9) and (10).

3 Including interactions

In this section we discuss how one can include the effect of interactions in the
partition sum in the so called mean-field approximation. We consider a uniform
system of interacting fermions. As a single particle basis it is convenient to
use eigenstates of the momentum operator, i.e., plane waves. For a system of
volume V', these are .
ik

\/‘76 . (24)
At the end of the calculation one can take the limit V' — oo. Thus, the single
particle states are labeled by the momentum k. Tn order not to overload the
equations, we will in general suppress the arrow on the momentum. Since
it usually should be clear what is meant, we hope that this will not lead to
confusion.

We start by considering a system consisting of non-relativistic particles. To be
concrete, we consider a system of fermions, described by the Hamiltonian

1
H = Zkiekgz @, +5 gj Vig)al, al,_ a.a. (25)
K'q

where the sum over k includes possible sums over internal degrees of freedom
like spin and isospin. The partition sum, which is given by

Z(T, 1, V) = Y (mle "2 |m) (26)
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is formally expanded

Z(T,, V) = > (ml[1—p(H - pN)

m

~

bSO~ N) Sl — )+ Jlm) . (27)

where we have introduced a complete set of states in the second-order term.
We restrict the sum over n to the term with n = m. This is the first step in
obtaining a mean-field approximation. Then one can resum the exponential

Z(T,p, V) = 3 e FlmiE=nim). (28)

We now have to compute expectation values of the Hamiltonian. It is easily
seen that only matrix elements involving A\™ = (m|n, |m) are non-zero. One

finds
(m|H|m) = Zeknk + = Z[ ——Vk Y[ al™alm - (29)

2w
where v is the spin and isospin degeneracy. In symmetric nuclear matter v = 4,
while in neutron matter » = 2. In order to simplify things, we introduce the
notation U(k — k') = V(0) — 1V (k — k).

The partition sum, as it stands, cannot be performed analytically. Thus, in

order to perform the partition sum, we linearize in the difference between the
occupation number and its average, 5™ = #{™ — n;. Only the interaction

term, which is quadratic in ﬁ,gm) needs to be linearized. Thus, we write

A agY = A 4+ agop + gy + oo
~ ﬁkﬁ](;n) + T_lklflgcm) — NNy, (30)

where we have dropped terms of second order in 6,(;”) in the second line. Using
the fact that U(k, k") = U(K', k), one then finds

(mHm) = 3|2+ S Uk, K )i | 2"
k k

1 o
- 5 Z U(k, k')nknk/ . (31)
kk!
which we determine below. The term in square brackets we identify with the
in-medium single particle energy

e =cp+ Y Ulk, k') . (32)
kl
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Now, the partition function in the mean-field approximation is given by

Zng (T, Vi {e}) = € Do VORIt 57 m0Rueemion™ (33

where we have indicated that the partition function depends on the mean
occupation numbers {7, }. The partition sum can now be performed, just like
in the free case

Ty (T, 11, V5 {0y }) = €7 L VR T (1 4 @ 001) (34)
k

and one finds the thermodynamic potential in the mean-field approximation

1
= - S Uk, K )agsi — kpT > In(1 + e PEe=1)35)
kk' k

Here, the average occupation numbers {7, } are a set of parameters, that should
be determined by minimizing the thermodynamic potential. Remembering
that the in-medium single-particle energy ¢, depends on 7, we find

5Q N[ 1
We note that the last equality holds for any potential U(k, k") if the term in
square brackets vanishes. Thus, we finally arrive at the Fermi-Dirac distribu-
tion with an in-medium single-particle energy

1

eﬁ(gk*ﬂ) +1 ' (37)

N =
The mean-field thermodynamic potential is then given by €, evaluated at the
stationary point, where (37) is satisfied

1
U (T, 11, V) = =3 STUKk, K ngng — kpT Y In(1 +e PEmmy - (38)
kk' k

Note that eq. (37) is an implicit equation for the distribution function, since
the single particle energy depends on n. This reflects the fact that the mean-
field approximation is a self consistent approximation. We will return to this
point later, when we discuss the diagrammatic interpretation of the mean-field
approximation.



As a consequence of the stationarity (36), €2,,,; has some nice properties. For
instance, the average particle number is given by

052 1

3u . eﬁ(ﬁk*ﬂ) +1 ;nk ( )

Here, the implicit dependence on p through the Fermi-Dirac distribution does
not contribute. This is because it gives rise to terms of the form

082 Ony, (40)
& 5nk 8u ’
which vanish because of (36). Similarly, one finds for the entropy
oQ
S = — 2y [ln(l +e Pl my 4 Bley, — u)nk]
oT .
= —kp>_ [nInng + (1 —ng)In(l —ny)] , (41)
[

which is the expression for the entropy of a non-interacting Fermi gas, ex-
cept that the occupation numbers n; depend on the in-medium single-particle
energies £,. This form of the entropy is characteristic for a mean-field ap-
proximation, since the particle move as independent particles in a static field.
Corrections to this general form of the entropy appear when correlations are
taken into account.



