B. L. Friman & J. Knoll, Lectures SS 2000

Problem set 4, date 7.6.00 9:30h Seminarraum KPI/III

left over from last time:

1 ρ -meson- production in π N scattering: A pion scatters off a resting nucleon. From which energy on (kinetic beam energy t_{π} and c.m. energy \sqrt{s}) can one produce two pions $(\pi N \longrightarrow \pi \pi N)$? Calculate the invariant mass spectrum $F(\sqrt{s_{\pi\pi}})$ for the production of the pion pair under the assumption that an intermediate ρ -meson is formed which decays into the two pions $(\pi N \to \rho N \to \pi \pi N)$. The first coupling is assumed to be constant, while the $\rho\pi\pi$ coupling is taken to be p-wave (c.f. (56-59) in the lecture notes).

and some new problems:

- 2 Phase shifts and the phase of the scattering amplitude: Write the phase shift in terms of the real and imaginary parts of the scattering amplitude for elastic scattering in a given partial wave.
- 3 Phase shifts for an attractive square-well potential:
- a Derive the s-wave phase shift for an attractive square-well potential of depth V_0 and radius a using the general expression given in the lectures:

$$\tan \delta_{\ell} = \frac{k\hat{j}_{\ell}'(kr)\chi(r) - \hat{j}_{\ell}(kr)\chi'(r)}{k\hat{n}_{\ell}'(kr)\chi(r) - \hat{n}_{\ell}(kr)\chi'(r)}|_{r=R} ,$$

where R should be large than the range of the potential.

- b Compute the s-wave phase shift for low energies $(ka \ll 1)$.
- c Use e.g. Mathematica to compute the phase shift for $\mu = 1, V = -10, R = 2$ and momentum k between 0 and 10. What do you observe? (We will try to arrange a computer with Mathematica for the excercises on Wednesday, so that those who want can try out their solutions.)