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already a width in vauum due to deay modes with the "states" of partiles indense matter, whih obtain a width due to ollisions (ollisional broadening).The theoretial onepts for a proper many body desription in terms of areal time nonequilibrium �eld theory have already been devised by Shwinger1,Kadano� and Baym2, and Keldysh3 in the early sixties, extensions to relativis-ti plasmas followed by Bezzerides and DuBois 4. First investigations of thequantum e�ets on the Boltzmann ollision term were given by Danielewiz 5,the prinipal oneptual problems on the level of quantum �eld theory wereinvestigated by Landsmann 6, while appliations whih seriously inlude the�nite width of the partiles in transport desriptions were arried out only inreent times, e.g. refs. 5;7;8;9;10;11;12;13. For resonanes, e.g. the delta reso-nane, it was natural to onsider broad mass distributions and ad ho reipeshave been invented to inlude this in transport simulation models. However,many of these reipes are not orret as they violate some basi priniples likedetailed balane (see disussion in ref. 7), and the desription of resonanes indense matter has to be improved 12.In this ontribution the onsequenes of the propagation of partiles withshort life-times are disussed. First we address a genuine problem relatedto the ourrene of broad damping width, i.e. the soft mode problem. Atthe lassial level we investigate the oupling of a oherent lassial �eld, theMaxwell �eld, to a stohasti soure desribed by the Brownian motion of aharged partile. In this ase the lassial urrent-urrent orrelation fun-tion, an be obtained in losed analytial terms and disussed as a funtionof the marosopi transport properties, the frition and di�usion oeÆientof the Brownian partile. The result orresponds to a partial re-summation ofphoton self-energy diagrams in the real-time formulation of �eld theory. Sub-sequently the properties of partiles with broad damping width is illustrated atthe example of the �-meson in dense matter at �nite temperature. In the �nalpart we disuss how partiles with suh broad mass-width an be desribedonsistently within a transport theoretial piture.We are going to argue that the Kadano�{Baym equations in the �rst gradi-ent approximation together with the �-funtional method of Baym 14 providea proper frame for kineti desription of systems of partiles with a broadmass-width. To this end, we disuss relevant problems onerning harge andenergy{momentum onservation, thermodynami onsisteny, memory e�etsin the ollision term and the growth of entropy in spei� ases. For simpliitywe onentrate on systems of non-relativisti partiles. Generalization to sys-tems of relativisti partiles and bosoni mean �elds an be straight forwardlydone along the lines given in ref. 15. 2



Figure 1: Left: Current-urrent orrelation funtion in units of e2 < v2 > as a funtion oftime (in units of 1=�x) for di�erent values of the photon momentum q2 = 3k2�2x=< v2 >with k = 0; 1; 2; 3. Right: Rate of real photons d2N=(d!dt) in units of 4�e2 
v2� =3 fora non-relativisti soure for �x =50,100,150 MeV; for omparison the IQF results (dashedlines) are also shown.1 Bremsstrahlung from Classial SouresFor a lari�ation of the soft mode problem we disus an example in lassialeletrodynamis. We onsider a stohasti soure, the hard matter, where themotion of a single harge is desribed by a di�usion proess in terms of aFokker-Plank equation for the probability distribution f of position x andveloity v ��tf(x;v; t) = �D�2x �2�v2 + �x ��vv � v ��x� f(x;v; t): (1)Flutuations also evolve in time aording to this equation, or equivalently bya random walk proess 13, and this way determine orrelations. This harge isoupled to the Maxwell �eld. On the assumption of a non-relativisti soure,this ase does not su�er from standard pathologies enountered in hard thermalloop (HTL) problems of QCD, namely the ollinear singularities, where vq � 1,and from diverging Bose-fators. The advantage of this Abelian example isthat damping an be fully inluded without violating urrent onservation andgauge invariane. This problem is related to the Landau{Pommeranhuk{Migdal e�et of Bremsstrahlung in high-energy sattering 16.The two marosopi parameters, the spatial di�usion D and frition �xoeÆients determine the relaxation rates of veloities. In the equilibrium limit(t ! 1) the distribution attains a Maxwell-Boltzmann veloity distributionwith the temperature T = m 
v2� =3 = mD�x. The orrelation funtion an3



be obtained in losed form and one an disuss the resulting time orrelationsof the urrent at various values of the spatial photon momentum q, Fig. 1 (de-tails are given in ref. 13). For the transverse part of the orrelation tensor thisorrelation deays exponentially as � e��x� at q = 0, and its width further de-reases with inreasing momentum q = jqj. The in-medium prodution rate isgiven by the time Fourier transform � ! !, Fig. 1 (right part). The hard partof the spetrum behaves as intuitively expeted, namely, it is proportional tothe mirosopi ollision rate expressed through �x (f. below) and thus anbe treated pertubatively by inoherent quasi-free (IQF) sattering presrip-tions. However, independently of �x the rate saturates at a value of � 1=2in these units around ! � �x, and the soft part shows the inverse behavior.That is, with inreasing ollision rate the prodution rate is more and moresuppressed! This is in line with the piture, where photons annot resolve theindividual ollisions any more. Sine the soft part of the spetrum behaveslike !=�x, it shows a genuine non-perturbative feature whih annot be ob-tained by any power series in �x. For omparison: the dashed lines show theorresponding IQF yields, whih agree with the orret rates for the hard partwhile ompletely fail and diverge towards the soft end of the spetrum. Fornon-relativisti soures 
v2� � 1 one an ignore the additional q-dependene(dipole approximation; f. Fig. 1) and the entire spetrum is determined byone marosopi sale, the relaxation rate �x. This sale provides a quenhingfator C0(!) = !2!2 + �2x (2)by whih the IQF results have to be orreted in order to aount for the �niteollision time e�ets in dense matter.The di�usion result represents a re-summation of the mirosopi Langevinmultiple ollision piture and altogether only marosopi sales are relevantfor the form of the spetrum and not the details of the mirosopi ollisions.Note also that the lassial result ful�ll the lassial version (�h ! 0) of thesum rules disussed in refs. 17;13.2 Radiation on the Quantum levelWe have seen that at the lassial level the problem of radiation from densematter an be solved quite naturally and ompletely at least for simple ex-amples, and Figs. 1 display the main physis. They show, that the dampingof the partiles due to sattering is an important feature, whih in partiularhas to be inluded right from the onset. This does not only assure results4



that no longer diverge, but also provides a systemati and onvergent sheme.On the quantum level suh problems requires tehniques beyond the standardrepertoire of perturbation theory or the quasi-partile approximation.In terms of nonequilibrium diagrammati tehnique in Keldyshnotation, the prodution or absorption rates are given by pho-ton self-energy diagrams of the type to the right with an in{and out-going photon line (dashed). The hathed loop area �� �����CCC���CCC���CCC���CCC���CCCdenotes all strong interations of the soure. The latter give rise to a wholeseries of diagrams. As mentioned, for the partiles of the soure, e.g. the nule-ons, one has to re-sum Dyson's equation with the orresponding full omplexself-energy in order to determine the full Green's funtions in dense matter.One one has these Green's funtions together with the interation verties athand, one ould in priniple alulate the required diagrams. However, boththe omputational e�ort to alulate a single diagram and the number of di-agrams inrease dramatially with the loop order of the diagrams, suh thatin pratie only lowest-order loop diagrams an be onsidered in the quantumase. In ertain limits some diagrams drop out. We ould show that in thelassial limit, whih in this ase implies the hierarhy !; jqj;� � T � m to-gether with low phase-spae oupations for the soure, i.e. f(x; p) � 1, onlythe following set of diagrams survives�� ��s s + �� ��s s�� �� + �� ��s s�� ���� ��: : : �� ��: : : : : : (3)In these diagrams the bold lines denote the full nuleon Green's funtionswhih also inlude the damping width, the blak bloks represent the e�etivenuleon-nuleon interation in matter, and the full dots the oupling vertexto the photon. Eah of these diagrams with n interation loop insertions justorresponds to the nth term in the orresponding lassial Langevin proess,where hard satterings our at random with a onstant mean ollision rate�. These satterings onseutively hange the veloity of a point harge fromv0 to v1 to v2, : : :. In between satterings the harge moves freely. For suha multiple ollision proess the spae integrated urrent-urrent orrelationfuntion takes a simple Poisson formi����+ / Z d3x1d3x2
j�(x1; t� �2 )j�(x2; t+ �2 )�= e2 hv�(0)v�(�)i = e2e�j�� j 1Xn=0 j�� jnn! hv�0 v�ni (4)5



with v = (1;v). Here h: : :i denotes the average over the disrete ollision se-quene. This form, whih one writes down intuitively, agrees with the analytiresult of the quantum orrelation diagrams (3) in the limit n� 1 and �� T .Fourier transformed it determines the spetrum in ompletely regular terms(void of any infra-red singularities), where eah term desribes the interfereneof the photon being emitted at a ertain time or n ollisions later. In speialases where veloity utuations are degraded by a onstant fration � in eahollision, suh that hv0 � vni = �n hv0 � v0i, one an re-sum the whole series inEq. (4) and thus reover the relaxation result with 2�x 
v2� = � 
(v0 � v1)2�at least for q = 0 and the orresponding quenhing fator (2). Thus the las-sial multiple ollision example provides a quite intuitive piture about suhdiagrams. Further details are given in ref. 13.The above example shows that we have to deal with partile transportthat expliitly takes aount of the partile mass-width in order to properlydesribe soft radiation from the system.3 The �-meson in dense matterAnother example we like to disuss onerns properties of the �-meson andtheir onsequenes for the �-deay into di-leptons are disussed. In terms ofthe nonequilibrium diagrammati tehnique, the exat prodution rate of di-leptons is given by the following formuladne+e�dtdm = ��I��	e+e� ������������������������� �� ��r r��� +������������������������� ����	����Ie+e�r r= f�(m;p;x; t) A�(m;p;x; t) 2m �� e+e�(m): (5)Here �� e+e�(m) / 1=m3 is the mass-dependent eletromagneti deay rate ofthe �-meson of mass m into the di-eletron hannel. The phase-spae distribu-tion f�(m;p;x; t) and the spetral funtion A�(m;p;x; t) de�ne the propertiesof the �-meson at spae-time point x; t. Both quantities are in priniple to bedetermined dynamially by an appropriate transport model. However till to-date the spetral funtions are not treated dynamially in most of the presenttransport models. Rather one employs on-shell Æ-funtions for all stable par-tiles and spetral funtions �xed to the vauum shape for resonanes.As an illustration, the model ase is disussed, where the �-meson juststrongly ouples to two hannels, i.e. the �+�� and �N $ �N hannels,the latter being relevant at �nite nulear densities. The latter omponent is6



representative for all hannels ontributing to the so-alled diret � in trans-port odes. For a �rst orientation the equilibrium propertiesa are disussed insimple analytial terms with the aim to disuss the onsequenes for the im-plementation of suh resonane proesses into dynamial transport simulationodes.Both onsidered proesses add to the total width of the �-meson�tot(m;p) = ��!�+��(m;p) + ��!�NN�1(m;p); (6)and the equilibrium spetral funtion then results from the uts of the twodiagramsA�(m;p) = �� ��r r� �� ��r r��� �����+���� �� �� + �� ��r r� �� ��r r�� �� �-�N�1�N��� �� ��| {z }2m�� �+�� + 2m�� �NN�1�m2 �m2� �Re�R�2 +m2�2tot : (7)
In priniple, both diagrams have to be alulated in terms of fully self-onsistentpropagators, i.e. with orresponding widths for all partiles involved. Thisformidable task has not been done yet. Using miro-reversibility and the prop-erties of thermal distributions, the two terms in Eq. (7) ontributing to the di-lepton yield (5), an indeed approximately be reformulated as the thermal aver-age of a �+�� ! �! e+e�-annihilation proess and a �N ! �N ! e+e�N -sattering proess, i.e.dne+e�dmdt / 
f�+f�� v�� �(�+�� ! �! e+e�)+ f�fN v�N �(�N ! �N ! e+e�N)�T (8)However, the important fat to be notied is that in order to preserve unitar-ity the orresponding ross setions are no longer the free ones, as given bythe vauum deay width in the denominator, but rather involve the mediumdependent total width (6). This illustrates in simple terms that rates of broadresonanes an no longer simply be added in a perturbative way. Sine it on-erns a oupled hannel problem, there is a ross talk between the di�erentaFar more sophistiated and in parts unitary onsistent equilibrium alulations have alreadybeen presented in the literature 18;19;20;21;22 . It is not the point to ompete with them atthis plae. 7
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Figure 2: e+e� rates (arb. units) as a funtion of the invariant pair massm at T = 110 MeVfrom �+�� annihilation (dotted line) and diret �-meson ontribution (dashed line), the fullline gives the sum of both ontributions. Left part: using the free ross setion reipe, i.e.with �tot = �� �+�� ; right part: the orret partial rates (7). A� is given by the thik line.The alulations are done with ��$��(m�) = 150 MeV and ��$�NN�1 (m�) = 70 MeV.hannels to the extent that the ommon resonane propagator attains the totalwidth arising from all partial widths feeding and depopulating the resonane.While a perturbative treatment with free ross setions in Eq. (8) would en-hane the yield at resonane mass, m = m�, if a hannel is added, f. Fig. 2left part, the orret treatment (7) even inverts the trend and indeed depletesthe yield at resonane mass, right part in Fig. 2. Furthermore, one sees thatonly the total yield involves the spetral funtion, while any partial ross se-tion only refers to that partial term with the orresponding partial width inthe numerator! Unfortunately so far all these fats have been ignored or evenoverlooked in the present transport treatment of broad resonanes. Comparedto the spetral funtion both thermal omponents in Fig. 2 show a signi�antenhanement on the low mass side and a strong depletion at high masses dueto the thermal weight f / exp(�p0=T ) in the rate (5).As an example we show an exploratory study of the interating system of�, � and a1-mesons desribed by the �-funtional� = ��� + ��a1 + ���� (9)8



rho-meson spectral function, T=150 MeV
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Figure 3: left part: ontour plot of the self-onsistent spetral funtion of the �-meson as afuntion of energy and spatial momentum; right part: thermal di-lepton rate as a funtionof invariant mass at p = 300 MeV=(f. setion 5 below). The ouplings and masses are hosen as to reproduethe known vauum properties of the � and a1 meson with nominal massesand widths m� = 770 MeV, ma1 = 1200 MeV, �� = 150 MeV, �a1 = 400MeV. The results of a �nite temperature alulation at T = 150 MeV withall self-energy loops resulting from the �-funtional of Eq. (9) omputed 23with self-onsistent broad width Green's funtions are displayed in Fig. 3 (or-retions to the real part of the self-energies were not yet inluded). The lastdiagram of � with the four pion self-oupling has been added in order to supplypion with broad mass-width as they would result from the oupling of pions tonuleons and the � resonane in nulear matter environment. As ompared to�rst-order one-loop results whih drop to zero below the 2-pion threshold at280 MeV, the self-onsistent results essentially add in strength at the low-massside of the di-lepton spetrum.4 Quantum Kineti EquationThe two above-presented examples unambiguously show that for onsistentdynamial treatment of nonequilibrium evolution of soft radiation and broadresonanes we need a transport theory that takes due aount of mass-widthsof onstituent partiles. A proper frame for suh a transport is provided byKadano�{Baym equations. We onsider the Kadano�{Baym in the �rst-ordergradient approximation, assuming that time{spae evolution of a system issmooth enough to justify this approximation.9



First of all, it is helpful to avoid all the imaginary fators inherent inthe standard Green funtion formulation (Gij with i; j 2 f�+g) and intro-due quantities whih are real and, in the quasi-homogeneous limit, positiveand therefore have a straightforward physial interpretation, muh like for theBoltzmann equation. In the Wigner representation we de�neF (X; p) = A(X; p)f(X; p) = (�)iG�+(X; p);eF (X; p) = A(X; p)[1� f(X; p)℄ = iG+�(X; p) (10)A(X; p) � �2ImGR(X; p) = eF � F = i �G+� �G�+� (11)for the generalized Wigner funtions F and eF with the orresponding four-phase-spae distribution funtions f(X; p) and Fermi/Bose fators [1�f(X; p)℄,with the spetral funtion A(X; p) and the retarded propagator GR. Here andbelow the upper sign orresponds to fermions and the lower one, to bosons.Aording to relations between Green funtions Gij only two independent realfuntions of all the Gij are required for a omplete desription. Likewise theredued gain and loss rates of the ollision integral and the damping rate arede�ned as �in(X; p) = (�)i��+(X; p); �out(X; p) = i�+�(X; p); (12)�(X; p) � �2Im�R(X; p) = �out(X; p)� �in(X; p); (13)where �ij are ontour omponents of the self-energy, and �R is the retardedself-energy.In terms of this notation and within the �rst-order gradient approximation,the Kadano�{Baym equations for F and eF (whih result from di�erenes ofthe orresponding Dyson's equations with their adjoint ones) take the kinetiform DF � ��in;ReGR	 = C; (14)D eF � ��out;ReGR	 = �C (15)with the drift operator and ollision term respetivelyD = �v� � �Re�R�p� � ��X + �Re�R�X� ��p� ; v� = (1;p=m); (16)C(X; p) = �in(X; p) eF (X; p)� �out(X; p)F (X; p): (17)Within the same approximation level there are two alternative equationsfor F and eF MF �ReGR�in = 14 (f�; Fg � f�in; Ag) ; (18)10



M eF �ReGR�out = 14 �n�; eFo� f�out; Ag� (19)with the \mass" funtion M(X; p) = p0 � p2=2m � Re�R(X; p). These twoequations result from sums of the orresponding Dyson's equations with theiradjoint ones. Eqs. (18) and (19) an be alled the mass-shell equations, sinein the quasipartile limit they provide the on-mass-shell ondition M = 0.Appropriate ombinations of the two sets (14){(15) and (18){(19) provide uswith retarded Green's funtion equations, whih are simultaneously solved 2;8by GR = 1M(X; p) + i�(X; p)=2 ) 8><>: A = �M2 + �2=4 ;ReGR = MM2 + �2=4 : (20)With the solution (20) for GR equations (14) and (15) beome identialto eah other, as well as Eqs. (18) and (19). However, Eqs. (14){(15) stillare not idential to Eqs. (18){(19), while they were idential before the gra-dient expansion. Indeed, one an show 24 that Eqs. (14){(15) di�er from Eqs.(18){(19) in seond order gradient terms. This is aeptable within the gradi-ent approximation, however, the still remaining di�erene in the seond-orderterms is inonvenient from the pratial point of view. Following Botermansand Maliet 8, we express �in = �f + O(�X ) and �in = �(1 � f) + O(�X )from the l.h.s. of mass-shell Eqs. (18) and (19), substitute them into thePoisson braketed terms of Eqs. (14) and (15), and neglet all the result-ing seond-order gradient terms. The so obtained quantum four-phase-spaekineti equations for F = fA and eF = (1� f)A then readD (fA)� ��f;ReGR	 = C; (21)D ((1� f)A)� ��(1� f);ReGR	 = �C: (22)These quantum four-phase-spae kineti equations, whih are idential to eahother in view of retarded relation (20), are at the same time ompletely iden-tial to the orrespondingly substituted mass-shell Eqs. (18) and (19).The validity of the gradient approximation24 relies on the averall smallnessof the ollision term C = fgain � lossg rather than on the smallness of thedamping width �. Indeed, while utuations and orrelations are governedby time sales given by �, the Kadano�{Baym Eqs. desribe the behavior ofthe ensemble mean of the oupation in phase-spae F (X; p). It implies thatF (X; p) varies on spae-time sales determined by C. In ases where � is notsmall enough by itself, the system has to be suÆiently lose to equilibrium in11



order to provide a valid gradient approximation through the smallness of theollision term C. Both the Kadano�{Baym (14) and the Botermans{Maliethoie (21) are, of ourse, equivalent within the validity range of the �rst-ordergradient approximation. Frequently, however, suh equations are used beyondthe limits of their validity as ad-ho equations, and then the di�erent versionsmay lead to di�erent results. So far we have no physial ondition to prefereone of the hoies. The proedure, where in all Poisson brakets the �in and�out terms have onsistently been replaed by f� and (1�f)�, respetively, istherefore optional. However, in doing so we gained some advantages. Besidethe fat that quantum four-phase-spae kineti equation (21) and the mass-shell equation are then exatly equivalent to eah other, this set of equations hasa partiular features with respet to the de�nition of a nonequilibrium entropyow in onnetion with the formulation of an exat H-theorem in ertain ases.If we omit these substitutions, both these features would beome approximatewith deviations at the seond-order gradient level.The equations so far presented, mostly with the Kadano�{Baym hoie(14), were the starting point for many derivations of extended Boltzmann andgeneralized kineti equations, ever sine these equations have been formulatedin 1962. Most of those derivations use the equal-time redution by integratingthe four-phase-spae equations over energy p0, thus reduing the desription tothree-phase-spae information, f. refs. 4;25;26;27;28;29;30;31;32 and refs. therein.This an only onsistently be done in the limit of small width � employingsome kind of quasi-partile ansatz for the spetral funtion A(X; p). Parti-ular attention has been payed to the treatment of the time-derivative partsin the Poisson brakets, whih in the four-phase-spae formulation still ap-pear time-loal, i.e. Markovian, while they lead to retardation e�ets in theequal-time redution. Generalized quasipartile ans�atze were proposed, whihessentially improve the quality and onsisteny of the approximation, provid-ing those extra terms to the naive Boltzmann equation (some times alledadditional ollision term) whih are responsible for the orret seond-ordervirial orretions and the appropriate onservation of total energy, f. 26;29 andrefs. therein. However, all these derivations imply some information loss aboutthe di�erential mass spetrum due to the inherent redution to a 3-momentumrepresentation of the distribution funtions by some spei� ansatz. With theaim to treat ases as those displayed in Figs. 2 and 3, where the di�erentialmass spetrum an be observed by di-lepton spetra, within a self-onsistentnon-equiblibrium approah, one has to treat the di�erential mass informationdynamially, i.e. by means of Eq. (20) avoiding any kind of quasi-partile re-dutions and work with the full quantum four phase-spae kineti Eq. (21). Inthe following we disuss the properties of this set of quantum kineti equations.12



5 �-derivable approximationsThe preeding onsiderations have shown that one needs a transport shemeadapted to broad resonanes. Besides the onservation laws it should omplywith requirements of unitarity and detailed balane. A pratial suggestion hasbeen given in ref. 7 in terms of ross-setions. However, this piture is tied tothe onept of asymptoti states and therefore not well suited for the generalase, in partiular, if more than one hannel feeds into a broad resonane.Therefore, we suggest to revive the so-alled �-derivable sheme, originallyproposed by Baym 14 on the basis of the generating funtional, or partitionsum, given by Luttinger and Ward 33, and later reformulated in terms of path-integrals 34. The auxiliary funtional � is given by two-partile irreduiblevauum diagrams. It solely depends on fully re-summed, i.e. self-onsistentlygenerated propagators G(x; y). The onsisteny is provided by the fat that �is the generating funtional for the re-summed self-energy �(x; y) via funtionalvariation of � with respet to any propagator G(y; x), i.e.�i�(x; y) = �Æi�=ÆiG(y; x); (23)while in omponents i; k 2 f�+g it reads�i�ik(x; y) = � Æi�ÆiGki(y; x) ) �i�ik(X; p) = � Æi�ÆiGki(X; p) ; (24)An extension to inlude lassial �elds or ondensates into the sheme is pre-sented in ref. 15 In graphial terms, the variation (23) with respet to G isrealized by opening a propagator line in all diagrams of �. The resulting setof thus opened diagrams must then be that of proper skeleton diagrams of �in terms of full propagators, i.e. void of any self-energy insertions. As a on-sequene, the �-diagrams have to be two-partile irreduible, i.e. they annotbe deomposed into two piees by utting two propagator lines.The key property is that trunating the auxiliary funtional � to a limitedsubset of diagrams leads to a self-onsistent, i.e losed, approximation sheme.Thereby the approximate forms of � de�ne e�etive theories, where �(appr.)serves as a generating funtional for the approximate self-energies �(appr.)(x; y)through relation (23), whih then enter as driving terms for the Dyson's equa-tions of the di�erent speies in the system. As Baym 14 has shown, suh a�-derivable approximation is onserving as related to global symmetries of theoriginal theory. We expliitly ite the forms of the onserved Noether urrentand of the energy{momentum tensor, f. ref. 15,j�(X) = e2 Z d4p(2�)4 v� �F (X; p)� eF (X; p)� ; (25)13



���(X) = 12 Z d4p(2�)4 v�p� �F (X; p)� eF (X; p)�+ g�� �E int � Epot� ; (26)where E int(X) = D� bL int(X)E = � Æ�Æ�(X) �����=1is the density of interation energy (�(X) loally sales the oupling strength ofverties, f. ref. 15) and the density of potential energy Epot takes the followingsimple form within the �rst-order gradient approximationEpot(X) = 12 Z d4p(2�)4 hRe�R �F � eF�+ReGR (�in � �out)i :The �rst term of Epot omplies with quasi-partile expetations, namely meanpotential times density, the seond term displays the role of utuations I =�in � �out in the potential energy density. This utuation term preiselyarises form the Poisson braket term in the kineti Eq. (21) whih indues abak-ow. It restores the Noether expressions (25) and (26) as being indeedthe exatly onserved quantities. In this ompensation we see the essentialrole of the utuation term in the quantum four-phase-spae kineti equation.Dropping or approximating this term would spoil the onservation laws. Beforethe gradient expansion, quantities (25) and (26) are exat integrals of equationsof motion. While after the gradient expansion, they omply with the quantumfour-phase-spae kineti equation (21) up to the �rst-order gradient terms.At the same time the �-derivable sheme provides thermodynamial on-sisteny. The latter automatially implies orret detailed balane relationsbetween the various transport proesses. For multiomponent systems it leadsto a atio = reatio priniple. This implies that the properties of one speiesare not hanged by the interation with other speies without a�eting theproperties of the latter ones, too. Some thermodynami examples have beenonsidered reently, e.g., for the interating �N� system 12 and for a relativis-ti QED plasma 35.6 Collision TermTo further disuss the transport treatment we need an expliit form of theollision term (16), whih is provided from the � funtional in the �+ matrixnotation via the variation rules (24) asC(X; p) = Æi�Æ eF (X; p) eF (X; p)� Æi�ÆF (X; p)F (X; p): (27)14



Here we assumed � be transformed into the Wigner representation and all�iG�+ and iG+� to be replaed by the Wigner-densities F and eF . Thus,the struture of the ollision term an be inferred from the struture of thediagrams ontributing to the funtional �. To this end, in lose analogy to theonsideration of ref. 13, we disuss various deompositions of the �-funtional,from whih the in- and out-rates are derived. For the sake of physial trans-pareny, we on�ne our treatment to the loal ase, where in the Wigner repre-sentation all the Green funtions are taken at the same spae-time oordinateX and all non-loalities, i.e. derivative orretions, are disregarded. Deriva-tive orretions give rise to memory e�ets in the ollision term, whih will beanalyzed separately for the spei� ase of the triangle diagram.Consider a given losed diagram of �, at this level spei�ed by a ertainnumber n� of verties and a ertain ontration pattern. This �xes the topol-ogy of suh a ontour diagram. It leads to 2n� di�erent diagrams in the �+notation from the summation over all �+ signs attahed to eah vertex. Any�+ notation diagram of �, whih ontains verties of either sign, an be de-omposed into two piees in suh a way that eah of the two sub-piees ontainsverties of only one type of signbi��� = ��� ���---��� = �� ���F1::: eF 01:::����� (28)) Z d4p1(2�)4 � � � d4p01(2�)4 � � � (2�)4Æ4 Xi pi �Xi p0i!V ��F1::: eF 01:::V�with F1 � � �Fm eF 01 � � � eF 0~m linking the two amplitudes. The V �� (X ; p1; :::p01; :::)and V�(X ; p1; :::p01; :::) amplitudes represent multi-point vertex funtions ofonly one sign for the verties, i.e. they are either entirely time ordered (�verties) or entirely anti-time ordered (+ verties). Here we used the fat thatadjoint expressions are omplex onjugate to eah other. Eah suh vertexfuntion is determined by normal Feynman diagram rules. Applying the matrixvariation rules (27), we �nd that the onsidered � diagram gives the followingontribution to the loal part of the ollision term (16)C lo(X; p)) 12 Z d4p1(2�)4 � � � d4p01(2�)4 � � �R"Xi Æ4(pi � p)�Xi Æ4(p0i � p)#bTo onstrut the deomposition, just deform a given mixed-vertex diagram of � in suh away that all + and � verties are plaed left and respetively right from a vertial divisionline and then ut along this line. 15



�n eF1:::F 01:::� F1::: eF 01:::o (2�)4Æ4 Xi pi �Xi p0i! : (29)with the partial proess ratesR(X ; p1; :::p01; :::) = X(��)2�Re fV �� (X ; p1; :::p01; :::)V�(X ; p1; :::p01; :::)g : (30)The restrition to the real part arises, sine with (�j�) also the adjoint (�j�) di-agram ontributes to this ollision term. However these rates are not neessar-ily positive. In this point, the generalized sheme di�ers from the onventionalBoltzmann kinetis.An important example of approximate � whih we extensively use belowis i� = 12 r-� + 14 r r--�� + 16 r rr�� ^- ℄� (31)where logarithmi fators due to the speial features of the �-diagrammatitehnique are written out expliitly, f. ref. 24. In this example we assume asystem of fermions interating via a two-body potential V = V0Æ(x � y), and,for the sake of simpliity, disregard its spin struture. The � funtional of Eq.(31) results in the following loal ollision termC lo = d2 Z d4p1(2�)4 d4p2(2�)4 d4p3(2�)4 0������ q���wR + qq��6?---- �����2 � ����� qq��6?---- �����21A�Æ4 (p+ p1 � p2 � p3)�F2F3 eF eF1 � eF2 eF3FF1� ; (32)where d is the spin (and maybe isospin) degeneray fator. From this exampleone an see that the positive de�niteness of transition rate is not evident.The �rst-order gradient orretions to the loal ollision term (29) arealled memory orretions. Only diagrams of third and higher order in thenumber of verties give rise to memory e�ets. In partiular, only the lastdiagram of Eq. (31) gives rise to the memory orretion, whih is alulatedin ref. 24.7 EntropyCompared to exat desriptions, whih are time reversible, redued desriptionshemes in terms of relevant degrees of freedom have aess only to some limited16



information and thus normally lead to irreversibility. In the Green's funtionformalism presented here the information loss arises from the trunation of theexat Martin{Shwinger hierarhy, where the exat one-partile Green funtionouples to the two-partile Green funtions, f. refs. 2;8, whih in turn areoupled to the three-partile level, et. This trunation is ahieved by thestandardWik deomposition, where all observables are expressed through one-partile propagators and therefore higher-order orrelations are dropped. Thisstep provides the Dyson's equation and the orresponding loss of informationis expeted to lead to a growth of entropy with time.We start with general manipulations whih lead us to de�nition of thekineti entropy ow. We multiply Eq. (21) by � ln(F=A), Eq. (22) by(�) ln( eF=A), take their sum, integrate it over d4p=(2�)4, and �nally sum theresult over internal degrees of freedom like spin (Tr). Then we arrive at thefollowing relation ��s�lo(X) = TrZ d4p(2�)4 ln eFaF C(X; p); (33)where the quantitys�lo = Tr Z d4p(2�)4 A2�2 ��v� � �Re�R�p� ��M��1 ���p� ��(X; p) (34)(where �(X; p) = �[1 � f ℄ ln[1 � f ℄ � f ln f) obtained from the l.h.s. of thekineti equation is interpreted as the loal (Markovian) part of the entropyow. Indeed, the s0lo has proper thermodynami and quasipartile limits 24.However, to be sure that this is indeed the entropy ow we must prove theH-theorem for this quantity.First, let us onsider the ase, when memory orretions to the ollisionterm are negligible. Then we an make use of the form (29) of the loal ollisionterm. Thus, we arrive at the relationTr Z d4p(2�)4 ln eFF Clo(X; p)) Tr12 Z d4p1(2�)4 � � � d4p01(2�)4 � � �R�nF1::: eF 01:::� eF1:::F 01:::o ln F1::: eF 01:::eF1:::F 01::: (2�)4Æ4 Xi pi �Xi p0i! : (35)In ase all rates R are non-negative, i.e. R � 0, this expression is non-negative,sine (x � y) ln(x=y) � 0 for any positive x and y. In partiular, R � 0 takesplae for all �-funtionals up to two verties. Then the divergene of s�lo is17



non-negative ��s�lo(X) � 0; (36)whih proves the H-theorem in this ase with (34) as the nonequilibrium en-tropy ow. However, as has been mentioned above, we are unable to show thatR always takes non-negative values for all �-funtionals. It means that evenin the loal ase we annot state the H-theorem in general and hene laimthat Eq. (34) represents the entropy.If memory orretions are essential, the situation is even more involved.Let us onsider this situation again at the example of the � approximationgiven by Eq. (31). We assume that the fermion{fermion potential interation issuh that the orresponding transition rate of the orresponding loal ollisionterm (32) is always non-negative, so that the H-theorem takes plae in theloal approximation, i.e. when we keep only C lo. Here we will shematiallydesribe alulations of ref.24 whih, to our opinion, illustrate a general strategyfor the derivation of memory orretion to the entropy, provided theH-theoremholds for the loal part.Now Eq. (33) takes the form��s�lo(X) = TrZ d4p(2�)4 ln eFF C lo +Tr Z d4p(2�)4 ln eFF Cmem; (37)where s�lo is still the Markovian entropy ow de�ned by Eq. (34). Our aimhere is to present the last term on the r.h.s. of Eq. (37) in the form of fullx-derivative Tr Z d4p(2�)4 ln eFF Cmem = ���s�mem(X) + Æmem(X) (38)of some funtion s�mem(X), whih we then interpret as a non-Markovian or-retion to the entropy ow of Eq. (34) plus a orretion (Æmem) whih is smallin some sense. Indeed, this term on the r.h.s. of Eq. (38) is linear in X-and p-derivatives. Hene, it annot be transformed into a sign-de�nite form.The only possibility whih is left is to onstrut a full derivative out of it.Detailed alulations of ref. 24 show that suh kind of strategy may be realizednear equilibrium for the memory indued by the triangle diagram of Eq.(31).The ombined smallness of the Æmem, originating from small spae{time gra-dients and small deviation from equilibrium, allows us to neglet this term asompared with others in Eq. (37). Thus, we obtain�� (s�lo + s�mem) ' TrZ d4p(2�)4 ln eFF C lo � 0; (39)18



whih is the H-theorem for the non-Markovian kineti equation under onsid-eration with s�lo + s�mem as the proper entropy ow. The r.h.s. of Eq. (39) isnon-negative due to our assumption that the orresponding transition rate inthe loal ollision term of Eq. (32) is always non-negative.The expliit form of s�mem is very ompliated, see ref.24. In equilibrium atlow temperatures, s0mem � T 3 lnT gives the leading orretion to the standardFermi-liquid entropy. This is the famous orretion 36;37 to the spei� heatof liquid 3He. Sine this orretion is quite omparable (numerially) to theleading term in the spei� heat (� T ), one may laim that liquid 3He is aliquid with quite strong memory e�ets from the point of view of kinetis.8 SummaryA number of problems arising in heavy-ion ollisions require an expliit treat-ment of dynamial evolution of partiles with �nite mass-width. This wasdemonstrated for the example of Bremsstrahlung from a nulear soure, wherethe soft part of the spetrum an be reprodued only provided the mass-widthsof nuleons in the soure are taken expliitly into aount. In this ase themass-width arises due to ollisional broadening of nuleons. Another exam-ple onsidered onerns propagation of broad resonanes (like �-meson) in themedium. Deays of �-mesons are an important soure of di-leptons radiatedby exited nulear matter. As shown, a onsistent desription of the invariant-mass spetrum of radiated di-leptons an be only ahieved if one aounts forthe in-medium modi�ation of the �-meson width (more preisely, its spetralfuntion).We have argued that the Kadano�{Baym equation within the �rst-ordergradient approximation, slightly modi�ed to make the set of Dyson's equationsexatly onsistent (rather than up to the seond-order gradient terms), providea proper frame for a quantum four-phase-spae kineti desription that appliesalso to systems of unstable partiles. This quantum four-phase-spae kinetiequation proves to be harge and energy{momentum onserving and thermo-dynamially onsistent, provided it is based on a �-derivable approximation.The � funtional also gives rise to a very natural representation of the ollisionterm. Various self-onsistent approximations are known sine long time whihdo not expliitely use the �-derivable onept like self-onsistent Born andT-matrix approximations. The advantage the � funtional method onsists ino�ering a regular way of onstruting various self-onsistent approximations.We have also addressed the question whether a losed nonequilibrium sys-tem approahes the thermodynami equilibrium during its evolution. We ob-tained a de�nite expression for a loal (Markovian) entropy ow and were able19
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