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hwerionenfors
hung mbH, Plan
kstr. 1, 64291 Darmstadt,GermanyE-mail: Y.Ivanov�gsi.de, J.Knoll�gsi.de, voskre�tpri6k.gsi.deThe e�e
ts of the propagation of parti
les whi
h have a �nite life-time and ana

ording width in their mass spe
trum are dis
ussed in the 
ontext of transportdes
riptions. In the �rst part the 
oupling of soft photon modes to a sour
e of
harged parti
les is studied in a 
lassi
al model whi
h 
an be solved 
ompletelyin analyti
al terms. The solution 
orresponds to a re-summation of 
ertain �eldtheory diagrams. The general properties of broad resonan
es in dense �nite tem-perature systems are dis
ussed at the example of the �-meson in hadroni
 matter.The se
ond part addresses the problem of transport des
riptions whi
h also a
-
ount for the damping width of the parti
les. The Kadano�{Baym equation aftergradient approximation together with the �-derivable method of Baym provides aself-
onsistent and 
onserving s
heme. Memory e�e
ts appearing in 
ollision termdiagrams of higher order are dis
ussed. We derive a generalized expression forthe nonequilibrium kineti
 entropy 
ow, whi
h in
ludes 
orre
tions from 
u
tua-tions and mass-width e�e
ts. In spe
ial 
ases an H-theorem is proved. Memorye�e
ts in 
ollision terms provide 
ontributions to the kineti
 entropy 
ow that inthe Fermi-liquid 
ase re
over the famous bosoni
 type T 3 lnT 
orre
tion to thespe
i�
 heat of liquid Helium-3.With the aim to des
ribe the 
ollision of two nu
lei at intermediate or evenhigh energies one is 
onfronted with the fa
t that the dynami
s has to in
ludeparti
les like the delta or rho-meson resonan
es with life-times of less than 2fm/
 or equivalently with damping widths above 100 MeV. Also the 
ollisionaldamping rates dedu
ed from presently used transport 
odes are 
omparablein magnitude, whereas typi
al mean temperatures range between 50 to 150MeV depending on beam energy. Thus, the damping width of most of the
onstituents in the system 
an by no means be treated as a perturbation. Asa 
onsequen
e the mass spe
trum of the parti
les in the dense matter is nolonger a sharp delta fun
tion but rather a
quires a width due to 
ollisionsand de
ays. One thus 
omes to a pi
ture whi
h uni�es resonan
es whi
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already a width in va
uum due to de
ay modes with the "states" of parti
les indense matter, whi
h obtain a width due to 
ollisions (
ollisional broadening).The theoreti
al 
on
epts for a proper many body des
ription in terms of areal time nonequilibrium �eld theory have already been devised by S
hwinger1,Kadano� and Baym2, and Keldysh3 in the early sixties, extensions to relativis-ti
 plasmas followed by Bezzerides and DuBois 4. First investigations of thequantum e�e
ts on the Boltzmann 
ollision term were given by Danielewi
z 5,the prin
ipal 
on
eptual problems on the level of quantum �eld theory wereinvestigated by Landsmann 6, while appli
ations whi
h seriously in
lude the�nite width of the parti
les in transport des
riptions were 
arried out only inre
ent times, e.g. refs. 5;7;8;9;10;11;12;13. For resonan
es, e.g. the delta reso-nan
e, it was natural to 
onsider broad mass distributions and ad ho
 re
ipeshave been invented to in
lude this in transport simulation models. However,many of these re
ipes are not 
orre
t as they violate some basi
 prin
iples likedetailed balan
e (see dis
ussion in ref. 7), and the des
ription of resonan
es indense matter has to be improved 12.In this 
ontribution the 
onsequen
es of the propagation of parti
les withshort life-times are dis
ussed. First we address a genuine problem relatedto the o

urren
e of broad damping width, i.e. the soft mode problem. Atthe 
lassi
al level we investigate the 
oupling of a 
oherent 
lassi
al �eld, theMaxwell �eld, to a sto
hasti
 sour
e des
ribed by the Brownian motion of a
harged parti
le. In this 
ase the 
lassi
al 
urrent-
urrent 
orrelation fun
-tion, 
an be obtained in 
losed analyti
al terms and dis
ussed as a fun
tionof the ma
ros
opi
 transport properties, the fri
tion and di�usion 
oeÆ
ientof the Brownian parti
le. The result 
orresponds to a partial re-summation ofphoton self-energy diagrams in the real-time formulation of �eld theory. Sub-sequently the properties of parti
les with broad damping width is illustrated atthe example of the �-meson in dense matter at �nite temperature. In the �nalpart we dis
uss how parti
les with su
h broad mass-width 
an be des
ribed
onsistently within a transport theoreti
al pi
ture.We are going to argue that the Kadano�{Baym equations in the �rst gradi-ent approximation together with the �-fun
tional method of Baym 14 providea proper frame for kineti
 des
ription of systems of parti
les with a broadmass-width. To this end, we dis
uss relevant problems 
on
erning 
harge andenergy{momentum 
onservation, thermodynami
 
onsisten
y, memory e�e
tsin the 
ollision term and the growth of entropy in spe
i�
 
ases. For simpli
itywe 
on
entrate on systems of non-relativisti
 parti
les. Generalization to sys-tems of relativisti
 parti
les and bosoni
 mean �elds 
an be straight forwardlydone along the lines given in ref. 15. 2



Figure 1: Left: Current-
urrent 
orrelation fun
tion in units of e2 < v2 > as a fun
tion oftime (in units of 1=�x) for di�erent values of the photon momentum q2 = 3k2�2x=< v2 >with k = 0; 1; 2; 3. Right: Rate of real photons d2N=(d!dt) in units of 4�e2 
v2� =3 fora non-relativisti
 sour
e for �x =50,100,150 MeV; for 
omparison the IQF results (dashedlines) are also shown.1 Bremsstrahlung from Classi
al Sour
esFor a 
lari�
ation of the soft mode problem we dis
us an example in 
lassi
alele
trodynami
s. We 
onsider a sto
hasti
 sour
e, the hard matter, where themotion of a single 
harge is des
ribed by a di�usion pro
ess in terms of aFokker-Plan
k equation for the probability distribution f of position x andvelo
ity v ��tf(x;v; t) = �D�2x �2�v2 + �x ��vv � v ��x� f(x;v; t): (1)Flu
tuations also evolve in time a

ording to this equation, or equivalently bya random walk pro
ess 13, and this way determine 
orrelations. This 
harge is
oupled to the Maxwell �eld. On the assumption of a non-relativisti
 sour
e,this 
ase does not su�er from standard pathologies en
ountered in hard thermalloop (HTL) problems of QCD, namely the 
ollinear singularities, where vq � 1,and from diverging Bose-fa
tors. The advantage of this Abelian example isthat damping 
an be fully in
luded without violating 
urrent 
onservation andgauge invarian
e. This problem is related to the Landau{Pommeran
huk{Migdal e�e
t of Bremsstrahlung in high-energy s
attering 16.The two ma
ros
opi
 parameters, the spatial di�usion D and fri
tion �x
oeÆ
ients determine the relaxation rates of velo
ities. In the equilibrium limit(t ! 1) the distribution attains a Maxwell-Boltzmann velo
ity distributionwith the temperature T = m 
v2� =3 = mD�x. The 
orrelation fun
tion 
an3



be obtained in 
losed form and one 
an dis
uss the resulting time 
orrelationsof the 
urrent at various values of the spatial photon momentum q, Fig. 1 (de-tails are given in ref. 13). For the transverse part of the 
orrelation tensor this
orrelation de
ays exponentially as � e��x� at q = 0, and its width further de-
reases with in
reasing momentum q = jqj. The in-medium produ
tion rate isgiven by the time Fourier transform � ! !, Fig. 1 (right part). The hard partof the spe
trum behaves as intuitively expe
ted, namely, it is proportional tothe mi
ros
opi
 
ollision rate expressed through �x (
f. below) and thus 
anbe treated pertubatively by in
oherent quasi-free (IQF) s
attering pres
rip-tions. However, independently of �x the rate saturates at a value of � 1=2in these units around ! � �x, and the soft part shows the inverse behavior.That is, with in
reasing 
ollision rate the produ
tion rate is more and moresuppressed! This is in line with the pi
ture, where photons 
annot resolve theindividual 
ollisions any more. Sin
e the soft part of the spe
trum behaveslike !=�x, it shows a genuine non-perturbative feature whi
h 
annot be ob-tained by any power series in �x. For 
omparison: the dashed lines show the
orresponding IQF yields, whi
h agree with the 
orre
t rates for the hard partwhile 
ompletely fail and diverge towards the soft end of the spe
trum. Fornon-relativisti
 sour
es 
v2� � 1 one 
an ignore the additional q-dependen
e(dipole approximation; 
f. Fig. 1) and the entire spe
trum is determined byone ma
ros
opi
 s
ale, the relaxation rate �x. This s
ale provides a quen
hingfa
tor C0(!) = !2!2 + �2x (2)by whi
h the IQF results have to be 
orre
ted in order to a

ount for the �nite
ollision time e�e
ts in dense matter.The di�usion result represents a re-summation of the mi
ros
opi
 Langevinmultiple 
ollision pi
ture and altogether only ma
ros
opi
 s
ales are relevantfor the form of the spe
trum and not the details of the mi
ros
opi
 
ollisions.Note also that the 
lassi
al result ful�ll the 
lassi
al version (�h ! 0) of thesum rules dis
ussed in refs. 17;13.2 Radiation on the Quantum levelWe have seen that at the 
lassi
al level the problem of radiation from densematter 
an be solved quite naturally and 
ompletely at least for simple ex-amples, and Figs. 1 display the main physi
s. They show, that the dampingof the parti
les due to s
attering is an important feature, whi
h in parti
ularhas to be in
luded right from the onset. This does not only assure results4



that no longer diverge, but also provides a systemati
 and 
onvergent s
heme.On the quantum level su
h problems requires te
hniques beyond the standardrepertoire of perturbation theory or the quasi-parti
le approximation.In terms of nonequilibrium diagrammati
 te
hnique in Keldyshnotation, the produ
tion or absorption rates are given by pho-ton self-energy diagrams of the type to the right with an in{and out-going photon line (dashed). The hat
hed loop area �� �����CCC���CCC���CCC���CCC���CCCdenotes all strong intera
tions of the sour
e. The latter give rise to a wholeseries of diagrams. As mentioned, for the parti
les of the sour
e, e.g. the nu
le-ons, one has to re-sum Dyson's equation with the 
orresponding full 
omplexself-energy in order to determine the full Green's fun
tions in dense matter.On
e one has these Green's fun
tions together with the intera
tion verti
es athand, one 
ould in prin
iple 
al
ulate the required diagrams. However, boththe 
omputational e�ort to 
al
ulate a single diagram and the number of di-agrams in
rease dramati
ally with the loop order of the diagrams, su
h thatin pra
ti
e only lowest-order loop diagrams 
an be 
onsidered in the quantum
ase. In 
ertain limits some diagrams drop out. We 
ould show that in the
lassi
al limit, whi
h in this 
ase implies the hierar
hy !; jqj;� � T � m to-gether with low phase-spa
e o

upations for the sour
e, i.e. f(x; p) � 1, onlythe following set of diagrams survives�� ��s s + �� ��s s�� �� + �� ��s s�� ���� ��: : : �� ��: : : : : : (3)In these diagrams the bold lines denote the full nu
leon Green's fun
tionswhi
h also in
lude the damping width, the bla
k blo
ks represent the e�e
tivenu
leon-nu
leon intera
tion in matter, and the full dots the 
oupling vertexto the photon. Ea
h of these diagrams with n intera
tion loop insertions just
orresponds to the nth term in the 
orresponding 
lassi
al Langevin pro
ess,where hard s
atterings o

ur at random with a 
onstant mean 
ollision rate�. These s
atterings 
onse
utively 
hange the velo
ity of a point 
harge fromv0 to v1 to v2, : : :. In between s
atterings the 
harge moves freely. For su
ha multiple 
ollision pro
ess the spa
e integrated 
urrent-
urrent 
orrelationfun
tion takes a simple Poisson formi����+ / Z d3x1d3x2
j�(x1; t� �2 )j�(x2; t+ �2 )�= e2 hv�(0)v�(�)i = e2e�j�� j 1Xn=0 j�� jnn! hv�0 v�ni (4)5



with v = (1;v). Here h: : :i denotes the average over the dis
rete 
ollision se-quen
e. This form, whi
h one writes down intuitively, agrees with the analyti
result of the quantum 
orrelation diagrams (3) in the limit n� 1 and �� T .Fourier transformed it determines the spe
trum in 
ompletely regular terms(void of any infra-red singularities), where ea
h term des
ribes the interferen
eof the photon being emitted at a 
ertain time or n 
ollisions later. In spe
ial
ases where velo
ity 
u
tuations are degraded by a 
onstant fra
tion � in ea
h
ollision, su
h that hv0 � vni = �n hv0 � v0i, one 
an re-sum the whole series inEq. (4) and thus re
over the relaxation result with 2�x 
v2� = � 
(v0 � v1)2�at least for q = 0 and the 
orresponding quen
hing fa
tor (2). Thus the 
las-si
al multiple 
ollision example provides a quite intuitive pi
ture about su
hdiagrams. Further details are given in ref. 13.The above example shows that we have to deal with parti
le transportthat expli
itly takes a

ount of the parti
le mass-width in order to properlydes
ribe soft radiation from the system.3 The �-meson in dense matterAnother example we like to dis
uss 
on
erns properties of the �-meson andtheir 
onsequen
es for the �-de
ay into di-leptons are dis
ussed. In terms ofthe nonequilibrium diagrammati
 te
hnique, the exa
t produ
tion rate of di-leptons is given by the following formuladne+e�dtdm = ��I��	e+e� ������������������������
� �� ��r r��� +������������������������
� ����	����Ie+e�r r= f�(m;p;x; t) A�(m;p;x; t) 2m �� e+e�(m): (5)Here �� e+e�(m) / 1=m3 is the mass-dependent ele
tromagneti
 de
ay rate ofthe �-meson of mass m into the di-ele
tron 
hannel. The phase-spa
e distribu-tion f�(m;p;x; t) and the spe
tral fun
tion A�(m;p;x; t) de�ne the propertiesof the �-meson at spa
e-time point x; t. Both quantities are in prin
iple to bedetermined dynami
ally by an appropriate transport model. However till to-date the spe
tral fun
tions are not treated dynami
ally in most of the presenttransport models. Rather one employs on-shell Æ-fun
tions for all stable par-ti
les and spe
tral fun
tions �xed to the va
uum shape for resonan
es.As an illustration, the model 
ase is dis
ussed, where the �-meson juststrongly 
ouples to two 
hannels, i.e. the �+�� and �N $ �N 
hannels,the latter being relevant at �nite nu
lear densities. The latter 
omponent is6



representative for all 
hannels 
ontributing to the so-
alled dire
t � in trans-port 
odes. For a �rst orientation the equilibrium propertiesa are dis
ussed insimple analyti
al terms with the aim to dis
uss the 
onsequen
es for the im-plementation of su
h resonan
e pro
esses into dynami
al transport simulation
odes.Both 
onsidered pro
esses add to the total width of the �-meson�tot(m;p) = ��!�+��(m;p) + ��!�NN�1(m;p); (6)and the equilibrium spe
tral fun
tion then results from the 
uts of the twodiagramsA�(m;p) = �� ��r r� �� ��r r��� �����+���� �� �� + �� ��r r� �� ��r r�� �� �-�N�1�N��� �� ��| {z }2m�� �+�� + 2m�� �NN�1�m2 �m2� �Re�R�2 +m2�2tot : (7)
In prin
iple, both diagrams have to be 
al
ulated in terms of fully self-
onsistentpropagators, i.e. with 
orresponding widths for all parti
les involved. Thisformidable task has not been done yet. Using mi
ro-reversibility and the prop-erties of thermal distributions, the two terms in Eq. (7) 
ontributing to the di-lepton yield (5), 
an indeed approximately be reformulated as the thermal aver-age of a �+�� ! �! e+e�-annihilation pro
ess and a �N ! �N ! e+e�N -s
attering pro
ess, i.e.dne+e�dmdt / 
f�+f�� v�� �(�+�� ! �! e+e�)+ f�fN v�N �(�N ! �N ! e+e�N)�T (8)However, the important fa
t to be noti
ed is that in order to preserve unitar-ity the 
orresponding 
ross se
tions are no longer the free ones, as given bythe va
uum de
ay width in the denominator, but rather involve the mediumdependent total width (6). This illustrates in simple terms that rates of broadresonan
es 
an no longer simply be added in a perturbative way. Sin
e it 
on-
erns a 
oupled 
hannel problem, there is a 
ross talk between the di�erentaFar more sophisti
ated and in parts unitary 
onsistent equilibrium 
al
ulations have alreadybeen presented in the literature 18;19;20;21;22 . It is not the point to 
ompete with them atthis pla
e. 7
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Figure 2: e+e� rates (arb. units) as a fun
tion of the invariant pair massm at T = 110 MeVfrom �+�� annihilation (dotted line) and dire
t �-meson 
ontribution (dashed line), the fullline gives the sum of both 
ontributions. Left part: using the free 
ross se
tion re
ipe, i.e.with �tot = �� �+�� ; right part: the 
orre
t partial rates (7). A� is given by the thi
k line.The 
al
ulations are done with ��$��(m�) = 150 MeV and ��$�NN�1 (m�) = 70 MeV.
hannels to the extent that the 
ommon resonan
e propagator attains the totalwidth arising from all partial widths feeding and depopulating the resonan
e.While a perturbative treatment with free 
ross se
tions in Eq. (8) would en-han
e the yield at resonan
e mass, m = m�, if a 
hannel is added, 
f. Fig. 2left part, the 
orre
t treatment (7) even inverts the trend and indeed depletesthe yield at resonan
e mass, right part in Fig. 2. Furthermore, one sees thatonly the total yield involves the spe
tral fun
tion, while any partial 
ross se
-tion only refers to that partial term with the 
orresponding partial width inthe numerator! Unfortunately so far all these fa
ts have been ignored or evenoverlooked in the present transport treatment of broad resonan
es. Comparedto the spe
tral fun
tion both thermal 
omponents in Fig. 2 show a signi�
antenhan
ement on the low mass side and a strong depletion at high masses dueto the thermal weight f / exp(�p0=T ) in the rate (5).As an example we show an exploratory study of the intera
ting system of�, � and a1-mesons des
ribed by the �-fun
tional� = ��� + ��a1 + ���� (9)8



rho-meson spectral function, T=150 MeV
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Figure 3: left part: 
ontour plot of the self-
onsistent spe
tral fun
tion of the �-meson as afun
tion of energy and spatial momentum; right part: thermal di-lepton rate as a fun
tionof invariant mass at p = 300 MeV=
(
f. se
tion 5 below). The 
ouplings and masses are 
hosen as to reprodu
ethe known va
uum properties of the � and a1 meson with nominal massesand widths m� = 770 MeV, ma1 = 1200 MeV, �� = 150 MeV, �a1 = 400MeV. The results of a �nite temperature 
al
ulation at T = 150 MeV withall self-energy loops resulting from the �-fun
tional of Eq. (9) 
omputed 23with self-
onsistent broad width Green's fun
tions are displayed in Fig. 3 (
or-re
tions to the real part of the self-energies were not yet in
luded). The lastdiagram of � with the four pion self-
oupling has been added in order to supplypion with broad mass-width as they would result from the 
oupling of pions tonu
leons and the � resonan
e in nu
lear matter environment. As 
ompared to�rst-order one-loop results whi
h drop to zero below the 2-pion threshold at280 MeV, the self-
onsistent results essentially add in strength at the low-massside of the di-lepton spe
trum.4 Quantum Kineti
 EquationThe two above-presented examples unambiguously show that for 
onsistentdynami
al treatment of nonequilibrium evolution of soft radiation and broadresonan
es we need a transport theory that takes due a

ount of mass-widthsof 
onstituent parti
les. A proper frame for su
h a transport is provided byKadano�{Baym equations. We 
onsider the Kadano�{Baym in the �rst-ordergradient approximation, assuming that time{spa
e evolution of a system issmooth enough to justify this approximation.9



First of all, it is helpful to avoid all the imaginary fa
tors inherent inthe standard Green fun
tion formulation (Gij with i; j 2 f�+g) and intro-du
e quantities whi
h are real and, in the quasi-homogeneous limit, positiveand therefore have a straightforward physi
al interpretation, mu
h like for theBoltzmann equation. In the Wigner representation we de�neF (X; p) = A(X; p)f(X; p) = (�)iG�+(X; p);eF (X; p) = A(X; p)[1� f(X; p)℄ = iG+�(X; p) (10)A(X; p) � �2ImGR(X; p) = eF � F = i �G+� �G�+� (11)for the generalized Wigner fun
tions F and eF with the 
orresponding four-phase-spa
e distribution fun
tions f(X; p) and Fermi/Bose fa
tors [1�f(X; p)℄,with the spe
tral fun
tion A(X; p) and the retarded propagator GR. Here andbelow the upper sign 
orresponds to fermions and the lower one, to bosons.A

ording to relations between Green fun
tions Gij only two independent realfun
tions of all the Gij are required for a 
omplete des
ription. Likewise theredu
ed gain and loss rates of the 
ollision integral and the damping rate arede�ned as �in(X; p) = (�)i��+(X; p); �out(X; p) = i�+�(X; p); (12)�(X; p) � �2Im�R(X; p) = �out(X; p)� �in(X; p); (13)where �ij are 
ontour 
omponents of the self-energy, and �R is the retardedself-energy.In terms of this notation and within the �rst-order gradient approximation,the Kadano�{Baym equations for F and eF (whi
h result from di�eren
es ofthe 
orresponding Dyson's equations with their adjoint ones) take the kineti
form DF � ��in;ReGR	 = C; (14)D eF � ��out;ReGR	 = �C (15)with the drift operator and 
ollision term respe
tivelyD = �v� � �Re�R�p� � ��X + �Re�R�X� ��p� ; v� = (1;p=m); (16)C(X; p) = �in(X; p) eF (X; p)� �out(X; p)F (X; p): (17)Within the same approximation level there are two alternative equationsfor F and eF MF �ReGR�in = 14 (f�; Fg � f�in; Ag) ; (18)10



M eF �ReGR�out = 14 �n�; eFo� f�out; Ag� (19)with the \mass" fun
tion M(X; p) = p0 � p2=2m � Re�R(X; p). These twoequations result from sums of the 
orresponding Dyson's equations with theiradjoint ones. Eqs. (18) and (19) 
an be 
alled the mass-shell equations, sin
ein the quasiparti
le limit they provide the on-mass-shell 
ondition M = 0.Appropriate 
ombinations of the two sets (14){(15) and (18){(19) provide uswith retarded Green's fun
tion equations, whi
h are simultaneously solved 2;8by GR = 1M(X; p) + i�(X; p)=2 ) 8><>: A = �M2 + �2=4 ;ReGR = MM2 + �2=4 : (20)With the solution (20) for GR equations (14) and (15) be
ome identi
alto ea
h other, as well as Eqs. (18) and (19). However, Eqs. (14){(15) stillare not identi
al to Eqs. (18){(19), while they were identi
al before the gra-dient expansion. Indeed, one 
an show 24 that Eqs. (14){(15) di�er from Eqs.(18){(19) in se
ond order gradient terms. This is a

eptable within the gradi-ent approximation, however, the still remaining di�eren
e in the se
ond-orderterms is in
onvenient from the pra
ti
al point of view. Following Botermansand Mal
iet 8, we express �in = �f + O(�X ) and �in = �(1 � f) + O(�X )from the l.h.s. of mass-shell Eqs. (18) and (19), substitute them into thePoisson bra
keted terms of Eqs. (14) and (15), and negle
t all the result-ing se
ond-order gradient terms. The so obtained quantum four-phase-spa
ekineti
 equations for F = fA and eF = (1� f)A then readD (fA)� ��f;ReGR	 = C; (21)D ((1� f)A)� ��(1� f);ReGR	 = �C: (22)These quantum four-phase-spa
e kineti
 equations, whi
h are identi
al to ea
hother in view of retarded relation (20), are at the same time 
ompletely iden-ti
al to the 
orrespondingly substituted mass-shell Eqs. (18) and (19).The validity of the gradient approximation24 relies on the averall smallnessof the 
ollision term C = fgain � lossg rather than on the smallness of thedamping width �. Indeed, while 
u
tuations and 
orrelations are governedby time s
ales given by �, the Kadano�{Baym Eqs. des
ribe the behavior ofthe ensemble mean of the o

upation in phase-spa
e F (X; p). It implies thatF (X; p) varies on spa
e-time s
ales determined by C. In 
ases where � is notsmall enough by itself, the system has to be suÆ
iently 
lose to equilibrium in11



order to provide a valid gradient approximation through the smallness of the
ollision term C. Both the Kadano�{Baym (14) and the Botermans{Mal
iet
hoi
e (21) are, of 
ourse, equivalent within the validity range of the �rst-ordergradient approximation. Frequently, however, su
h equations are used beyondthe limits of their validity as ad-ho
 equations, and then the di�erent versionsmay lead to di�erent results. So far we have no physi
al 
ondition to prefereone of the 
hoi
es. The pro
edure, where in all Poisson bra
kets the �in and�out terms have 
onsistently been repla
ed by f� and (1�f)�, respe
tively, istherefore optional. However, in doing so we gained some advantages. Besidethe fa
t that quantum four-phase-spa
e kineti
 equation (21) and the mass-shell equation are then exa
tly equivalent to ea
h other, this set of equations hasa parti
ular features with respe
t to the de�nition of a nonequilibrium entropy
ow in 
onne
tion with the formulation of an exa
t H-theorem in 
ertain 
ases.If we omit these substitutions, both these features would be
ome approximatewith deviations at the se
ond-order gradient level.The equations so far presented, mostly with the Kadano�{Baym 
hoi
e(14), were the starting point for many derivations of extended Boltzmann andgeneralized kineti
 equations, ever sin
e these equations have been formulatedin 1962. Most of those derivations use the equal-time redu
tion by integratingthe four-phase-spa
e equations over energy p0, thus redu
ing the des
ription tothree-phase-spa
e information, 
f. refs. 4;25;26;27;28;29;30;31;32 and refs. therein.This 
an only 
onsistently be done in the limit of small width � employingsome kind of quasi-parti
le ansatz for the spe
tral fun
tion A(X; p). Parti
-ular attention has been payed to the treatment of the time-derivative partsin the Poisson bra
kets, whi
h in the four-phase-spa
e formulation still ap-pear time-lo
al, i.e. Markovian, while they lead to retardation e�e
ts in theequal-time redu
tion. Generalized quasiparti
le ans�atze were proposed, whi
hessentially improve the quality and 
onsisten
y of the approximation, provid-ing those extra terms to the naive Boltzmann equation (some times 
alledadditional 
ollision term) whi
h are responsible for the 
orre
t se
ond-ordervirial 
orre
tions and the appropriate 
onservation of total energy, 
f. 26;29 andrefs. therein. However, all these derivations imply some information loss aboutthe di�erential mass spe
trum due to the inherent redu
tion to a 3-momentumrepresentation of the distribution fun
tions by some spe
i�
 ansatz. With theaim to treat 
ases as those displayed in Figs. 2 and 3, where the di�erentialmass spe
trum 
an be observed by di-lepton spe
tra, within a self-
onsistentnon-equiblibrium approa
h, one has to treat the di�erential mass informationdynami
ally, i.e. by means of Eq. (20) avoiding any kind of quasi-parti
le re-du
tions and work with the full quantum four phase-spa
e kineti
 Eq. (21). Inthe following we dis
uss the properties of this set of quantum kineti
 equations.12



5 �-derivable approximationsThe pre
eding 
onsiderations have shown that one needs a transport s
hemeadapted to broad resonan
es. Besides the 
onservation laws it should 
omplywith requirements of unitarity and detailed balan
e. A pra
ti
al suggestion hasbeen given in ref. 7 in terms of 
ross-se
tions. However, this pi
ture is tied tothe 
on
ept of asymptoti
 states and therefore not well suited for the general
ase, in parti
ular, if more than one 
hannel feeds into a broad resonan
e.Therefore, we suggest to revive the so-
alled �-derivable s
heme, originallyproposed by Baym 14 on the basis of the generating fun
tional, or partitionsum, given by Luttinger and Ward 33, and later reformulated in terms of path-integrals 34. The auxiliary fun
tional � is given by two-parti
le irredu
ibleva
uum diagrams. It solely depends on fully re-summed, i.e. self-
onsistentlygenerated propagators G(x; y). The 
onsisten
y is provided by the fa
t that �is the generating fun
tional for the re-summed self-energy �(x; y) via fun
tionalvariation of � with respe
t to any propagator G(y; x), i.e.�i�(x; y) = �Æi�=ÆiG(y; x); (23)while in 
omponents i; k 2 f�+g it reads�i�ik(x; y) = � Æi�ÆiGki(y; x) ) �i�ik(X; p) = � Æi�ÆiGki(X; p) ; (24)An extension to in
lude 
lassi
al �elds or 
ondensates into the s
heme is pre-sented in ref. 15 In graphi
al terms, the variation (23) with respe
t to G isrealized by opening a propagator line in all diagrams of �. The resulting setof thus opened diagrams must then be that of proper skeleton diagrams of �in terms of full propagators, i.e. void of any self-energy insertions. As a 
on-sequen
e, the �-diagrams have to be two-parti
le irredu
ible, i.e. they 
annotbe de
omposed into two pie
es by 
utting two propagator lines.The key property is that trun
ating the auxiliary fun
tional � to a limitedsubset of diagrams leads to a self-
onsistent, i.e 
losed, approximation s
heme.Thereby the approximate forms of � de�ne e�e
tive theories, where �(appr.)serves as a generating fun
tional for the approximate self-energies �(appr.)(x; y)through relation (23), whi
h then enter as driving terms for the Dyson's equa-tions of the di�erent spe
ies in the system. As Baym 14 has shown, su
h a�-derivable approximation is 
onserving as related to global symmetries of theoriginal theory. We expli
itly 
ite the forms of the 
onserved Noether 
urrentand of the energy{momentum tensor, 
f. ref. 15,j�(X) = e2 Z d4p(2�)4 v� �F (X; p)� eF (X; p)� ; (25)13



���(X) = 12 Z d4p(2�)4 v�p� �F (X; p)� eF (X; p)�+ g�� �E int � Epot� ; (26)where E int(X) = D� bL int(X)E = � Æ�Æ�(X) �����=1is the density of intera
tion energy (�(X) lo
ally s
ales the 
oupling strength ofverti
es, 
f. ref. 15) and the density of potential energy Epot takes the followingsimple form within the �rst-order gradient approximationEpot(X) = 12 Z d4p(2�)4 hRe�R �F � eF�+ReGR (�in � �out)i :The �rst term of Epot 
omplies with quasi-parti
le expe
tations, namely meanpotential times density, the se
ond term displays the role of 
u
tuations I =�in � �out in the potential energy density. This 
u
tuation term pre
iselyarises form the Poisson bra
ket term in the kineti
 Eq. (21) whi
h indu
es aba
k-
ow. It restores the Noether expressions (25) and (26) as being indeedthe exa
tly 
onserved quantities. In this 
ompensation we see the essentialrole of the 
u
tuation term in the quantum four-phase-spa
e kineti
 equation.Dropping or approximating this term would spoil the 
onservation laws. Beforethe gradient expansion, quantities (25) and (26) are exa
t integrals of equationsof motion. While after the gradient expansion, they 
omply with the quantumfour-phase-spa
e kineti
 equation (21) up to the �rst-order gradient terms.At the same time the �-derivable s
heme provides thermodynami
al 
on-sisten
y. The latter automati
ally implies 
orre
t detailed balan
e relationsbetween the various transport pro
esses. For multi
omponent systems it leadsto a a
tio = rea
tio prin
iple. This implies that the properties of one spe
iesare not 
hanged by the intera
tion with other spe
ies without a�e
ting theproperties of the latter ones, too. Some thermodynami
 examples have been
onsidered re
ently, e.g., for the intera
ting �N� system 12 and for a relativis-ti
 QED plasma 35.6 Collision TermTo further dis
uss the transport treatment we need an expli
it form of the
ollision term (16), whi
h is provided from the � fun
tional in the �+ matrixnotation via the variation rules (24) asC(X; p) = Æi�Æ eF (X; p) eF (X; p)� Æi�ÆF (X; p)F (X; p): (27)14



Here we assumed � be transformed into the Wigner representation and all�iG�+ and iG+� to be repla
ed by the Wigner-densities F and eF . Thus,the stru
ture of the 
ollision term 
an be inferred from the stru
ture of thediagrams 
ontributing to the fun
tional �. To this end, in 
lose analogy to the
onsideration of ref. 13, we dis
uss various de
ompositions of the �-fun
tional,from whi
h the in- and out-rates are derived. For the sake of physi
al trans-paren
y, we 
on�ne our treatment to the lo
al 
ase, where in the Wigner repre-sentation all the Green fun
tions are taken at the same spa
e-time 
oordinateX and all non-lo
alities, i.e. derivative 
orre
tions, are disregarded. Deriva-tive 
orre
tions give rise to memory e�e
ts in the 
ollision term, whi
h will beanalyzed separately for the spe
i�
 
ase of the triangle diagram.Consider a given 
losed diagram of �, at this level spe
i�ed by a 
ertainnumber n� of verti
es and a 
ertain 
ontra
tion pattern. This �xes the topol-ogy of su
h a 
ontour diagram. It leads to 2n� di�erent diagrams in the �+notation from the summation over all �+ signs atta
hed to ea
h vertex. Any�+ notation diagram of �, whi
h 
ontains verti
es of either sign, 
an be de-
omposed into two pie
es in su
h a way that ea
h of the two sub-pie
es 
ontainsverti
es of only one type of signbi��� = ��� ���---��� = �� ���F1::: eF 01:::����� (28)) Z d4p1(2�)4 � � � d4p01(2�)4 � � � (2�)4Æ4 Xi pi �Xi p0i!V ��F1::: eF 01:::V�with F1 � � �Fm eF 01 � � � eF 0~m linking the two amplitudes. The V �� (X ; p1; :::p01; :::)and V�(X ; p1; :::p01; :::) amplitudes represent multi-point vertex fun
tions ofonly one sign for the verti
es, i.e. they are either entirely time ordered (�verti
es) or entirely anti-time ordered (+ verti
es). Here we used the fa
t thatadjoint expressions are 
omplex 
onjugate to ea
h other. Ea
h su
h vertexfun
tion is determined by normal Feynman diagram rules. Applying the matrixvariation rules (27), we �nd that the 
onsidered � diagram gives the following
ontribution to the lo
al part of the 
ollision term (16)C lo
(X; p)) 12 Z d4p1(2�)4 � � � d4p01(2�)4 � � �R"Xi Æ4(pi � p)�Xi Æ4(p0i � p)#bTo 
onstru
t the de
omposition, just deform a given mixed-vertex diagram of � in su
h away that all + and � verti
es are pla
ed left and respe
tively right from a verti
al divisionline and then 
ut along this line. 15



�n eF1:::F 01:::� F1::: eF 01:::o (2�)4Æ4 Xi pi �Xi p0i! : (29)with the partial pro
ess ratesR(X ; p1; :::p01; :::) = X(��)2�Re fV �� (X ; p1; :::p01; :::)V�(X ; p1; :::p01; :::)g : (30)The restri
tion to the real part arises, sin
e with (�j�) also the adjoint (�j�) di-agram 
ontributes to this 
ollision term. However these rates are not ne
essar-ily positive. In this point, the generalized s
heme di�ers from the 
onventionalBoltzmann kineti
s.An important example of approximate � whi
h we extensively use belowis i� = 12 r-� + 14 r r--�� + 16 r rr�� ^- ℄� (31)where logarithmi
 fa
tors due to the spe
ial features of the �-diagrammati
te
hnique are written out expli
itly, 
f. ref. 24. In this example we assume asystem of fermions intera
ting via a two-body potential V = V0Æ(x � y), and,for the sake of simpli
ity, disregard its spin stru
ture. The � fun
tional of Eq.(31) results in the following lo
al 
ollision termC lo
 = d2 Z d4p1(2�)4 d4p2(2�)4 d4p3(2�)4 0������ q���wR + qq��6?---- �����2 � ����� qq��6?---- �����21A�Æ4 (p+ p1 � p2 � p3)�F2F3 eF eF1 � eF2 eF3FF1� ; (32)where d is the spin (and maybe isospin) degenera
y fa
tor. From this exampleone 
an see that the positive de�niteness of transition rate is not evident.The �rst-order gradient 
orre
tions to the lo
al 
ollision term (29) are
alled memory 
orre
tions. Only diagrams of third and higher order in thenumber of verti
es give rise to memory e�e
ts. In parti
ular, only the lastdiagram of Eq. (31) gives rise to the memory 
orre
tion, whi
h is 
al
ulatedin ref. 24.7 EntropyCompared to exa
t des
riptions, whi
h are time reversible, redu
ed des
riptions
hemes in terms of relevant degrees of freedom have a

ess only to some limited16



information and thus normally lead to irreversibility. In the Green's fun
tionformalism presented here the information loss arises from the trun
ation of theexa
t Martin{S
hwinger hierar
hy, where the exa
t one-parti
le Green fun
tion
ouples to the two-parti
le Green fun
tions, 
f. refs. 2;8, whi
h in turn are
oupled to the three-parti
le level, et
. This trun
ation is a
hieved by thestandardWi
k de
omposition, where all observables are expressed through one-parti
le propagators and therefore higher-order 
orrelations are dropped. Thisstep provides the Dyson's equation and the 
orresponding loss of informationis expe
ted to lead to a growth of entropy with time.We start with general manipulations whi
h lead us to de�nition of thekineti
 entropy 
ow. We multiply Eq. (21) by � ln(F=A), Eq. (22) by(�) ln( eF=A), take their sum, integrate it over d4p=(2�)4, and �nally sum theresult over internal degrees of freedom like spin (Tr). Then we arrive at thefollowing relation ��s�lo
(X) = TrZ d4p(2�)4 ln eFaF C(X; p); (33)where the quantitys�lo
 = Tr Z d4p(2�)4 A2�2 ��v� � �Re�R�p� ��M��1 ���p� ��(X; p) (34)(where �(X; p) = �[1 � f ℄ ln[1 � f ℄ � f ln f) obtained from the l.h.s. of thekineti
 equation is interpreted as the lo
al (Markovian) part of the entropy
ow. Indeed, the s0lo
 has proper thermodynami
 and quasiparti
le limits 24.However, to be sure that this is indeed the entropy 
ow we must prove theH-theorem for this quantity.First, let us 
onsider the 
ase, when memory 
orre
tions to the 
ollisionterm are negligible. Then we 
an make use of the form (29) of the lo
al 
ollisionterm. Thus, we arrive at the relationTr Z d4p(2�)4 ln eFF Clo
(X; p)) Tr12 Z d4p1(2�)4 � � � d4p01(2�)4 � � �R�nF1::: eF 01:::� eF1:::F 01:::o ln F1::: eF 01:::eF1:::F 01::: (2�)4Æ4 Xi pi �Xi p0i! : (35)In 
ase all rates R are non-negative, i.e. R � 0, this expression is non-negative,sin
e (x � y) ln(x=y) � 0 for any positive x and y. In parti
ular, R � 0 takespla
e for all �-fun
tionals up to two verti
es. Then the divergen
e of s�lo
 is17



non-negative ��s�lo
(X) � 0; (36)whi
h proves the H-theorem in this 
ase with (34) as the nonequilibrium en-tropy 
ow. However, as has been mentioned above, we are unable to show thatR always takes non-negative values for all �-fun
tionals. It means that evenin the lo
al 
ase we 
annot state the H-theorem in general and hen
e 
laimthat Eq. (34) represents the entropy.If memory 
orre
tions are essential, the situation is even more involved.Let us 
onsider this situation again at the example of the � approximationgiven by Eq. (31). We assume that the fermion{fermion potential intera
tion issu
h that the 
orresponding transition rate of the 
orresponding lo
al 
ollisionterm (32) is always non-negative, so that the H-theorem takes pla
e in thelo
al approximation, i.e. when we keep only C lo
. Here we will s
hemati
allydes
ribe 
al
ulations of ref.24 whi
h, to our opinion, illustrate a general strategyfor the derivation of memory 
orre
tion to the entropy, provided theH-theoremholds for the lo
al part.Now Eq. (33) takes the form��s�lo
(X) = TrZ d4p(2�)4 ln eFF C lo
 +Tr Z d4p(2�)4 ln eFF Cmem; (37)where s�lo
 is still the Markovian entropy 
ow de�ned by Eq. (34). Our aimhere is to present the last term on the r.h.s. of Eq. (37) in the form of fullx-derivative Tr Z d4p(2�)4 ln eFF Cmem = ���s�mem(X) + Æ
mem(X) (38)of some fun
tion s�mem(X), whi
h we then interpret as a non-Markovian 
or-re
tion to the entropy 
ow of Eq. (34) plus a 
orre
tion (Æ
mem) whi
h is smallin some sense. Indeed, this term on the r.h.s. of Eq. (38) is linear in X-and p-derivatives. Hen
e, it 
annot be transformed into a sign-de�nite form.The only possibility whi
h is left is to 
onstru
t a full derivative out of it.Detailed 
al
ulations of ref. 24 show that su
h kind of strategy may be realizednear equilibrium for the memory indu
ed by the triangle diagram of Eq.(31).The 
ombined smallness of the Æ
mem, originating from small spa
e{time gra-dients and small deviation from equilibrium, allows us to negle
t this term as
ompared with others in Eq. (37). Thus, we obtain�� (s�lo
 + s�mem) ' TrZ d4p(2�)4 ln eFF C lo
 � 0; (39)18



whi
h is the H-theorem for the non-Markovian kineti
 equation under 
onsid-eration with s�lo
 + s�mem as the proper entropy 
ow. The r.h.s. of Eq. (39) isnon-negative due to our assumption that the 
orresponding transition rate inthe lo
al 
ollision term of Eq. (32) is always non-negative.The expli
it form of s�mem is very 
ompli
ated, see ref.24. In equilibrium atlow temperatures, s0mem � T 3 lnT gives the leading 
orre
tion to the standardFermi-liquid entropy. This is the famous 
orre
tion 36;37 to the spe
i�
 heatof liquid 3He. Sin
e this 
orre
tion is quite 
omparable (numeri
ally) to theleading term in the spe
i�
 heat (� T ), one may 
laim that liquid 3He is aliquid with quite strong memory e�e
ts from the point of view of kineti
s.8 SummaryA number of problems arising in heavy-ion 
ollisions require an expli
it treat-ment of dynami
al evolution of parti
les with �nite mass-width. This wasdemonstrated for the example of Bremsstrahlung from a nu
lear sour
e, wherethe soft part of the spe
trum 
an be reprodu
ed only provided the mass-widthsof nu
leons in the sour
e are taken expli
itly into a

ount. In this 
ase themass-width arises due to 
ollisional broadening of nu
leons. Another exam-ple 
onsidered 
on
erns propagation of broad resonan
es (like �-meson) in themedium. De
ays of �-mesons are an important sour
e of di-leptons radiatedby ex
ited nu
lear matter. As shown, a 
onsistent des
ription of the invariant-mass spe
trum of radiated di-leptons 
an be only a
hieved if one a

ounts forthe in-medium modi�
ation of the �-meson width (more pre
isely, its spe
tralfun
tion).We have argued that the Kadano�{Baym equation within the �rst-ordergradient approximation, slightly modi�ed to make the set of Dyson's equationsexa
tly 
onsistent (rather than up to the se
ond-order gradient terms), providea proper frame for a quantum four-phase-spa
e kineti
 des
ription that appliesalso to systems of unstable parti
les. This quantum four-phase-spa
e kineti
equation proves to be 
harge and energy{momentum 
onserving and thermo-dynami
ally 
onsistent, provided it is based on a �-derivable approximation.The � fun
tional also gives rise to a very natural representation of the 
ollisionterm. Various self-
onsistent approximations are known sin
e long time whi
hdo not expli
itely use the �-derivable 
on
ept like self-
onsistent Born andT-matrix approximations. The advantage the � fun
tional method 
onsists ino�ering a regular way of 
onstru
ting various self-
onsistent approximations.We have also addressed the question whether a 
losed nonequilibrium sys-tem approa
hes the thermodynami
 equilibrium during its evolution. We ob-tained a de�nite expression for a lo
al (Markovian) entropy 
ow and were able19



to expli
itly demonstrate the H-theorem for some of the 
ommon 
hoi
es of �approximations. This expression holds beyond the quasiparti
le pi
ture andthus generalizes the well-known Boltzmann kineti
 entropy. Memory e�e
ts inthe quantum four-phase-spa
e kineti
s were dis
ussed and a general strategyto dedu
e memory 
orre
tions to the entropy was outlined.A
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