Dynamics of Resonances

GSI, 18.05.200

Motivations

Thermal Equilibrium π-N-Δ vectormesons Di-leptons

Towards dynamics Conserving Φ-functional

Gradient approximation

Quantum Kinetic Equation

Summary

Dynamics of Resonances in Strongly Interacting Matter (Resonance transport)

J. Knoll¹, F. Riek¹, Yu.B. Ivanov^{1,2}, D. Voskresensky^{1,3}

¹GSI ²Kurchatov Inst. (Moscow)

³Moscow Ins. for Physics and Engineering

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Outline

Dynamics of Resonances

GSI, 18.05.2005

Motivations

Thermal Equilibrium π -N- Δ vectormesons Di-leptons

Towards dynamics Conserving Φ-functional

Gradient approximation

Quantum Kinetic Equation

Summary

Motivations

Thermal Equilibrium

- The π -N- Δ system
- Vector mesons coupled to pions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Di-lepton yields

Towards dynamics

- Conserving Approximations
- Φ-functional method

- Gradient approximation
- 5
 - Quantum Kinetic Equation
 - 5 Summary

Towards transport of broad resonances

Dynamics of Resonances

GSI, 18.05.2005

Motivations

Thermal Equilibrium π-N-Δ vectormesons Di-leptons

Towards dynamics Conserving Φ-functional

Gradient approximation

Quantum Kinetic Equation

Summary

Description of high energy nuclear collisions

- typical thermodynamics properties: densities $\gg 2\rho_0$ (nucl. saturation) $T \in [50 - 150]$ MeV
- typical resonance width (Δ -res., ρ -meson): $\Gamma \ge 100 \text{ MeV}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

- typical collision rates: $\geq 1/2$ fm/c $\sim \Gamma \geq 100$ MeV
- ⇒ On-shell concepts questionable!

Towards transport of Particles and Resonance

Dynamics of Resonances

GSI, 18.05.2005

Motivations

Thermal Equilibrium π-Ν-Δ vectormesons Di-leptons

Towards dynamics Conserving Φ-functional

Gradient approximation

Quantum Kinetic Equation

Summary

Boltzmann Ühling Uhlenbeck Eq.:

Off-Shell Propagation?:

+ loss term

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

- which equation(s)?
- is the knowledge of *F* sufficient? \implies Spectral Fct.: $A(\vec{x}, t; \vec{p}, \omega)$

Towards transport of Particles and Resonance

Dynamics of Resonances

GSI, 18.05.2005

Motivations

Thermal Equilibrium π-N-Δ vectormesons Di-leptons

Towards dynamics Conserving Φ-functional

Gradient approximation

Quantum Kinetic Equation

Summary

Boltzmann Ühling Uhlenbeck Eq.:

Off-Shell Propagation?:

+ loss term

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- which equation(s)?
- is the knowledge of F sufficient?
 - \implies Spectral Fct.: $A(\vec{x}, t; \vec{p}, \omega)$

Pion modes in nuclear matter

Nucl. Phys. A 740(2004)287 with Felix Riek

with Felix Riek

◆□ > ◆□ > ◆注 > ◆注 > 「注 」

Dynamics of Resonances

Thermal Equilibriun π-Ν-Δ vectormesons Di-leptons

Towards dynamics Conserving Φ-functional

Gradient ap proximation

Quantum Kinetic Equation

Summary

Pion modes in nuclear matter

Nucl. Phys. A 740(2004)287 with Felix Riek

・ロン ・四 と ・ ヨン ・ ヨン

with Felix Riek

Dynamics of Resonances

Thermal Equilibriur π-Ν-Δ vectormesons Di-leptons

Towards dynamics Conserving Φ-functional

Gradient approximation

Quantum Kinetic Equation

Summary

• Migdal's short-range repulsions

Pion spectral-function

Nucl. Phys. A 740(2004)287 with Felix Riek

・ロット (雪) ・ (日) ・ (日)

- broad π spectral function
 - 2 components: pion & particle-hole branches

Pion spectral-function

Nucl. Phys. A 740(2004)287 with Felix Riek

- broad π spectral function
- 2 components: pion & particle-hole branches

Pion spectral-function

Nucl. Phys. A 740(2004)287 with Felix Riek

- broad π spectral function
- 2 components: pion & particle-hole branches

Nucl. Phys. A 740(2004)287 with Felix Riek

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Dynamics of Resonances

GSI, 18.05.200

Motivations

Thermal Equilibrium π-N-Δ vectormesons Di-leptons

Towards dynamics Conserving Φ-functional

Gradient approximation

Quantum Kinetic Equation

Summary

freezing the in-medium pion cloud of the π -N- Δ system

Vector mesons coupled to pions

Nucl. Phys. A 740(2004)287 with Felix Riek

- vectormesons

- neglecting real parts of self-energy
- broadening of both vector meson spectral functions
 - (日) 3

Vector mesons coupled to pions

Nucl. Phys. A 740(2004)287 with Felix Riek

GSI, 18.05.2005

Motivations

Thermal Equilibrium π-N-Δ vectormesons Di-leptons

Towards dynamics Conserving Φ-functional

Gradient approximation

Quantum Kinetic Equation

Summary

Di-leptons from vector mesons

Nucl. Phys. A 740(2004)287 with Felix Riek

Di-leptons from vector mesons

Nucl. Phys. A 740(2004)287 with Felix Riek

Di-leptons from vector mesons

Nucl. Phys. A 740(2004)287 with Felix Riek

Conserving approximations

Dynamics of Resonances

GSI, 18.05.2005

Motivations

Thermal Equilibrium π-N-Δ vectormesons Di-leptons

Towards dynamics Conserving

Gradient approximation

Quantum Kinetic Equation

Summary

How to come to a

closed, consistent scheme?

respecting conservation laws avoiding double counting keeping the causality structure the retarded relations and detailed balance

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Conserving approximations

Dynamics of Resonances

GSI, 18.05.2005

Motivations

Thermal Equilibrium π -N- Δ vectormesons Di-leptons

Towards dynamics Conserving

Gradient approximation

Quantum Kinetic Equation

Summary

• Perturbation Theory fails:

- secular behavior at long times
- higher order diagramms plagued by singularities Cure by cut-offs or appropriate resummations

Partial resummation schemes:

 Simplest: mean (classical) field and Dyson (Kadanoff-Baym) Eqs.

Φ-derivable method	(2PI)
--------------------	-------

Luttinger-Ward '61 Baym 62' Cornwall-Jackiw-Tomboulis '74

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

for classical fields and two-point functions (Green fcts)

Conserving approximations

Dynamics of Resonances

GSI, 18.05.2005

Motivations

Thermal Equilibrium π-N-Δ vectormesons Di-leptons

Towards dynamics Conserving Φ-functional

Gradient ap proximation

Quantum Kinetic Equation

Summary

General aim: equation of motion for

 \Rightarrow Classical Fields ϕ_{α} (one-point fcts.)

 \Rightarrow Propagators G_{α} (two-point fcts.)

which are: self consistent conserving (Charge, Energy, Momentum, Symmetries, ...) Thermodyn. consistent

$$\begin{array}{l} \left(\partial^{\mu}\partial_{\mu}+\textit{m}^{2}\right)\pmb{\phi}_{\alpha}=\textit{J}_{\alpha} & (\text{CI. Field Eq}) \\ \textit{v}^{\mu}\partial_{\mu}\textit{G}_{\alpha}=\textit{G}_{\alpha}\odot\boldsymbol{\Sigma}_{\alpha}-\boldsymbol{\Sigma}_{\alpha}\odot\textit{G}_{\alpha} & (\text{K.B. Eq}) \end{array}$$

Diagrammatic generating functional $\Phi(\phi_{\alpha}, G_{\alpha})$ with

$$egin{aligned} J_lpha(m{x}) = rac{\delta\Phi}{\delta\phi_lpha(m{x})}; & \Sigma_lpha(m{x},m{y}) = \mprac{\delta\Phi}{\delta G_lpha(y,m{x})} \end{aligned}$$

♦: connected two-particle irred. closed diagrams
 ⇒ Conserving & Thermodyn. Consistent Apprx.

Invariances of $\Phi \Rightarrow$ Conservation laws

Conserved Noether current:

Dynamics of Resonances

 Φ -functional

$v^{\mu} = \begin{cases} 2 p^{\mu} & \text{rel.} \\ (1, \frac{\vec{p}}{m}) & \text{non-rel.} \end{cases}$ $J^{\mu}(X) = e \int \frac{\mathrm{d}^{4}p}{(2\pi)^{4}} v^{\mu} \underbrace{f(X,p)A(X,p)}_{= 0} = 0$ F(X,p)

Space-time invariance: $x \rightarrow x + \xi$: E-M-tensor

$$\Theta^{\mu\nu}(X) = \int \frac{d^4p}{(2\pi)^4} v^{\mu} p^{\nu} F(X,p) + g^{\mu\nu} \left(\mathcal{E}^{int}(X) - \mathcal{E}^{pot}(X) \right)$$

$$\Theta^{00}(X): \text{ single particle energies}$$

$$\mathcal{E}^{int}(x) = -\langle \mathcal{L}(x) \rangle = \frac{\delta\Phi}{\delta\lambda(x)} \text{ Interaction Energy Density}$$

$$\mathcal{E}^{pot}(x) = \frac{1}{2} \left\langle \frac{\partial \mathcal{L}}{\partial\phi(x)} \phi(x) \right\rangle \text{ Single Particle} \text{ Potential Energy Density}$$

$$= \int \frac{d^4p}{(2\pi)^4} \left[\text{Re } \Sigma^R(X,p) F(X,p) + \text{Re } G^R(X,p) \Gamma^{in}(X,p) \right]$$

The interacting *N*- Δ - π - ρ - ω system

Dynamics of Resonances

GSI, 18.05.200

Motivations

Thermal Equilibrium π-N-Δ vectormesons Di-leptons

Towards dynamics Conserving Φ-functional

Gradient ap proximation

Quantum Kinetic Equation

Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Towards transport dynamics

Dynamics of Resonances

GSI, 18.05.200

Motivations

Thermal Equilibrium π-N-Δ vectormesons Di-leptons

Towards dynamics Conserving Φ-functional

Gradient approximation

Quantum Kinetic Equation

Summary

How to come to a closed and consistent Transport scheme?

> which is conserving respects detailed balance treats broad spectral widths keeps the causality structure and the retarded relations

Consistent Gradient approximation of K-B Equations in Φ -derivable approximation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Generalized gradient apprx.

Dynamics of Resonances

GSI, 18.05.200

Motivations

Thermal Equilibrium π-N-Δ vectormesons Di-leptons

Towards dynamics Conserving Φ-functional

Gradient approximation

Quantum Kinetic Equation

Summary

Taylor expanded with respect to
$$X = (x_1 + x_2)/2$$

$$G(\frac{x_i + x_j}{2}, p) \approx \underbrace{G(X, p)}_{\text{local}} + \underbrace{\frac{1}{2} \left[(x_i^{\mu} - x_1^{\mu}) + (x_j^{\mu} - x_2^{\mu}) \right] \frac{\partial}{\partial X^{\mu}} G(X, p)}_{\text{gradient terms}}$$

$$\frac{1}{i} \int_{j}^{j} = \frac{1}{2} (\partial_i + \partial_j) G(i, j) \longrightarrow \partial_X G(X, p)$$

$$\frac{1}{i} \int_{j}^{j} = -i (x_i - x_j) \longrightarrow -(2\pi)^4 \frac{\partial}{\partial p} \delta(p)$$

For any two-point function:

Gradient Diagram Rules

Dynamics of Resonances

GSI, 18.05.2005

Motivations

Thermal Equilibrium π-N-Δ vectormesons Di-leptons

Towards dynamics Conserving Φ-functional

Gradient approximation

Quantum Kinetic Equation

Summary

Addition rule:

Convolution rule:

 $= \{A(X,p),B(X,p)\}$

 $+A(X, p)\Diamond [B(X, p)] + \Diamond [A(X, p)]B(X, P)$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Gradient expanded K-B Eqs.

Dynamics of Resonances

GSI, 18.05.200

Motivations

Thermal Equilibrium π-N-Δ vectormesons Di-leptons

Towards dynamics Conserving Φ-functional

Gradient ap proximation

Quantum Kinetic Equation

Summary

$$\mathbf{v}^{\mu}\partial_{\mu}\mathbf{F}(\mathbf{X},\mathbf{p}) = (1+\frac{\mathrm{i}}{2}\Diamond)\left\{\mathbf{C}^{-+}_{(\mathrm{loc})}(\mathbf{X},\mathbf{p})
ight\}$$

local (non-gradient) right side: Collision term \rightarrow detailed balance!

$$= C_{(loc)}^{-+} = \underbrace{\Gamma_{in}(X, p)\tilde{F}(X, p)}_{qain} - \underbrace{\Gamma_{out}(X, p)F(X, p)}_{loss}$$

$$= \underbrace{\Gamma_{in}(X, p)\tilde{F}(X, p)}_{gain} - \underbrace{\Gamma_{out}(X, p)F(X, p)}_{loss}$$

$$= \underbrace{\Gamma_{in}(X, p)\tilde{F}(X, p)}_{(2\pi)^3} = F(X, p)\frac{d^4p}{(2\pi)^4} = f(X, p)A(X, p)\frac{d^4p}{(2\pi)^4}$$

$$= \underbrace{\Gamma(X, p)}_{A(X, p)} = -2lm \Sigma^R(X, p) = \Gamma_{loss}(X, p) \pm \Gamma_{gain}(X, p)$$

$$= -2lm G^R$$
Retarded eq.
$$= \underbrace{G^R(X, p) = \frac{1}{p^2 - m^2 - \text{Re } \Sigma^R(X, p) + i\Gamma(X, p)/2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

Gradients & conservation laws

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Dynamics of Resonances $v^{\mu}\partial_{\mu}F(X,p)-\{\operatorname{Re}\Sigma^{R},F\}+\{\operatorname{Re}G^{R},\Gamma^{\operatorname{in}}\}-C^{(\operatorname{non-loc})}=C^{(\operatorname{loc})}$ backflow from dragflow group velocity fluctuations, gain & non-local terms from internal gradients in Σ • \Rightarrow conserved Noether currents and E-M-tensor (\rightarrow EoS) $\partial_{\mu}\sum_{a}\int \frac{\mathrm{d}^{4}p}{(2\pi)^{4}}e_{a}v^{\mu}F(\mathbf{X},p)=\partial_{\mu}J^{\mu}(\mathbf{X})=0$ $\Theta^{\mu\nu}(X) = \int \frac{\mathrm{d}^4 p}{(2\pi)^4} v^{\mu} p^{\nu} \boldsymbol{\mathsf{F}}(X, \boldsymbol{p}) + g^{\mu\nu} \left(\mathcal{E}_{\mathrm{int}}^{(\mathrm{loc})}(X) - \mathcal{E}_{\mathrm{pot}}^{(\mathrm{loc})}(X) \right)$ Quantum Kinetic Equation $\mathcal{E}^{\text{pot}}(\mathbf{x}) = \int \frac{\mathrm{d}^{4} \mathbf{p}}{(2\pi)^{4}} \left[\operatorname{Re} \Sigma^{R}(X, \mathbf{p}) F(X, \mathbf{p}) + \operatorname{Re} G^{R}(X, \mathbf{p}) \Gamma^{in}(X, \mathbf{p}) \right]$ Relation to Delay Times (P. Danielewicz) drag flow: forward delay other gradients: scattering delay

Towards Quantum Transport

- Gradient approximation
- Quantum Kinetic Equation
- Summary

- A self-consistent & conserving transport scheme
- Allows to include Classical Fields (Soft Modes)
- Includes all QM Effects that are included in Equilibrium
- No Limitation to small Widths
- Delay-time, Drag & Back Flow, Memory & non-local Effects
- Non-equilibrium Entropy-current & H-Theorem
- Limitation to slow Space-time variations inherent to all transport schemes

Towards Quantum Transport

Dynamics of Resonances

GSI, 18.05.2005

Motivations

Thermal Equilibrium π-N-Δ vectormesons Di-leptons

Towards dynamics Conserving Φ-functional

Gradient approximation

Quantum Kinetic Equation

Summary

 Test-particle simmulation unsettled Problem: backflow; approx. treatment: Botermans-Malfliet used by W. Cassing & S. Leupold
 Problems with Symmetries on Correlator Level

- a) violation of Goldstone modes,
- b) violation of Gauge Invariance Transversality of the polarization tensor (vector bosons)

general cure: next higher vertex eq.: Bethe-Salpeter eq. (generally untractable)

special repair:

Limitations:

 \Rightarrow a) supplement a symmetry restoring term to Φ

Y.B. Ivanov, J.K. & F. Riek, Phys.Rev.D71:105016,2005; hep-ph/0506157

 $\Rightarrow b) use only spatial components of \Pi^{\mu\nu} (short relaxation) and construct a 4-transverse tensor by projection methods H. van Hees & J.K., Nucl. Phys. A683(2001)369$