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Analytical formulae are presented which provide quantitative estimates for the suppression of the
anticipated back-to-back particle–antiparticle correlations in high energy nuclear collisions, both,
due to the finite duration of the transition dynamics and due to the continuous freeze-out. They
show that it is unlikely to observe the effect.
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I. INTRODUCTION

In 1996 Asakawa and Csörgő [1] suggested that back-
to-back particle–antiparticle correlations should be ob-
servable in high-energy nuclear collisions, see also ear-
lier considerations in Refs. [2, 3]. Based on a sudden
transition assumption huge effects were predicted for this
phenomenon. In a subsequent paper together with Gyu-
lassy [4] it was shown that the finite duration τ of the
transition reduces the effect. In that paper, however,
the authors used a discontinuous and therefore unrealis-
tic transition profile that led to large ultraviolet Fourier
components and thus to a very moderate reduction of
the effect of order 1/((2ωτ)2 + 1). Here 2ω is the energy
required to produce the pair. About a further dozen ap-
plications based on this unrealistic assumptions followed,
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FIG. 1: Optical ray pictures in space-time. Left: the standard
reflection-transmission situation, where a wave traverses from
one medium (yellow) to another one (e.g. vacuum) at a spa-
tial interface. Right: the sudden transition in time from the
medium to the vacuum; here the frequency ω is discontinuous,
creating a second component with negative ω which has the
interpretation of an antiparticle with opposite momentum.
The (blue) dashed line separates the media, the arrow sense
distinguishes between particle and antiparticle. By means of
Lorentz transformations the concept can directly be general-
ized to hyper-planes and even to curved hyper-surfaces.

∗e-mail:j.knoll@gsi.de

cf. e.g. Ref. [5] and earlier references therein.
In this note the continuous and smooth transition case

will be reinvestigated by analytical means, estimating the
pair-creation rate due to the in-medium changes of the
particles masses induced by a time dependent mean field
and also due to the suppression caused by the freeze-out
process. Thereby analytical constraints resulting from
the underlying equations of motion play an important
role. This leads to a suppression factor, which is at least
of exponential form ∼ e−4ωτ or even steeper, where τ is
corresponding transition duration.

II. THE SUDDEN PICTURE

The main assumption of the original approach [1] is
the sudden change from the in-medium situation to that
in vacuum. The authors used the Bogolioubov-Valatin
(BV) transformation to describe the effect, a picture
that may not be so intuitive for many of us. Indeed
the effect is nothing else than a standard “reflection–
transmission” problem at the interface of two media, a
well known problem in physics, in particular in optics.
Thus, transcribing our wisdom from the spatial situa-
tion, like a wave traversing from one medium to another
one at a sharp interface (see Fig. 1 left) to the here con-
sidered sudden transition in time (Fig. 1 right), precisely
recovers the results presented in [1, 4]. The common
boundary condition is, that one has one incoming wave
and two time-forward propagating outgoing wave com-
ponents. As in Refs. [1, 4] we restrict the discussion
to (charged) relativistic bosons described by the Klein-
Gordon (KG) equation. For the sudden case the wave
functions with positive and negative energies prior and
post to the sudden transition can then be written as (us-
ing units with ~=c=1)

Ψ±med(x) =
1√
2Ωk

e∓iΩkt+ikx for t < 0 , (1)

Ψ±vac(x) =
1√
2ωk

(
cke∓iωkt+ikx + ske±iωkt+ikx

)
.(2)

Here Ωk and ωk are the single-particle energies at mo-
mentum k in the two media. Continuity of Ψ(x) and of
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∂Ψ(i)/∂t at transition time t = 0 determines the coeffi-
cients on the vacuum side to

ck = 1
2

(√
ωk

Ωk
+
√

Ωk

ωk

)
= cosh[rk] , (3)

sk = 1
2

(√
ωk

Ωk
−
√

Ωk

ωk

)
= sinh[rk] , (4)

with rk = 1
2 ln ωk

Ωk
, (5)

while due to the spatial homogeneity the spatial momen-
tum k remains unchanged. Within the standard rela-
tivistic quantum field theory (RQFT) interpretation of
the negative energy components as antiparticles with op-
posite spatial momenta, cf. Fig. 1 right frame, this result
identically reproduces that given in Refs. [1, 4] within
the BV picture. In particular the ratio of the antiparti-
cle over particle component on the vacuum side

A =
∣∣∣∣skck
∣∣∣∣ =

∣∣∣∣Ωk − ωk

Ωk + ωk

∣∣∣∣ (6)

is the analog of the well known reflection coefficient for
a wave traversing from one medium to another (Fig. 1
left)

R =
∣∣∣∣K − kK + k

∣∣∣∣ . (7)

Here K and k denote the moduli of the spatial momenta
in the two media. In the spatial case solely k⊥ is dis-
continuous (ω and k‖ are continuous). In the sudden
case, however, k is continuous, while the discontinuity in
time causes a discontinuity in ω thereby creating a sec-
ond component with negative ω, i.e. an antiparticle with
opposite spatial momentum k (Fig. 1 right frame). This
mechanism led to the back-to-back particle–antiparticle
correlation picture advocated in Ref. [1]. Besides small
antiparticle components arising form the existing parti-
cles in the medium, the time dependent interaction can
also create genuine particle–antiparticle pairs out of the
vacuum. The latter, which is the bosonic analog to the
Dirac case, where a time-dependent interaction pulse can
lift a particle from the filled Dirac sea to the particle
space1, can formally be included by adding a “+1” to
the boson occupations nk of the antiparticles. After the
transition the one-body density becomes

n1(k) = |ck|2nk + |sk|2(nk + 1) (8)

nk =
1

exp(|Ωk|/T ) + 1
, (9)

while the back-to-back correlation function of particle–
antiparticle pairs over the product of single yields be-

1 In the Dirac case also spatial transitions (Fig. 1 left) lead to
spontaneous pair production, known as Klein paradox [6], once
the vector potential changes by more than twice the rest mass.

comes [4]

C2(k,−k) =
n2(k,−k)

n1(k)n1(−k)
(10)

= 1 +
|c∗ksknk + c∗−ks−k(n−k + 1)|2

n1(k)n1(−k)
(11)

−→
|sk|�1

1 + |sk|2
∣∣∣∣ 2nk + 1
nk + |sk|2(nk + 1)

∣∣∣∣2, (12)

provided the single particle yields obey the thermal dis-
tributions (9). Due to the sudden pair creation processes
this back-to-back correlation ratio can attain huge values,
once the statistical occupations nk ∼ e−Ωk/T fall below
|sk|2 ∼ 1/Ω2

k. The subsequent considerations will show
that this effect is an artifact resulting from the sudden
limit.

III. THE CONTINUOUS TRANSITION CASE

Compared to the BV transformation considered in [1,
4] the wave dynamical picture used here can easily be
generalized to the continuous transition case by solving
the time dependent Klein-Gordon equation (suppressing
in the following the dependence on spatial momentum k)(

∂2
t + Γ(t)∂t + ω2 −Π(t)

)
Ψ(t) = 0. (13)

Here the scalar mean field2

ΠR(t) = ΠR(−∞)F (t). (14)

and Γ(t) describe the local in-medium mass change and
the damping of the particles, respectively. The latter
is responsible for the continuous freeze-out [7–9] of the
created pair. In the later discussion negative times re-
fer to the situation in the medium, while the vacuum
case is attained for large positive times. Thereby F (t),
cf. Fig. 2 below, will later be used to parameterize the
transition profile. Since the here discussed observables
are sensitive to time Fourier components, it is of utmost
importance that the dynamical variables obey the analyt-
icity constraints from the underlying theory. The latter
provides equations of motion which from very general
grounds are always given by partial differential equa-
tions in space-time. Thus all dynamical variables and
their space-time derivatives (up to infinite order) have to
be continuous. This constraint directly discards models
where one switches from one analytic behavior to another
one, as in the sudden limit or in case one switches from
a constant behavior to an exponential decay as used in

2 The picture can easily be generalized to also include vector po-
tentials. In general the polarization functions Π can also be non-
local in time and thus be energy dependent in the semi-classical
interpretation. For the example cases discussed here we will dis-
card such generalizations and stick to time local scalar cases.
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Ref. [4]. On the other hand it allows to use methods
of complex function theory. In this sense Π(t) and Γ(t)
have to be analytic functions in t which are real for real
times t.

Besides direct numerical solutions of the KG Eq.
(13), there are approximate analytical methods to obtain
quantitative results for the reflection coefficient. These
concern the single reflection limit as well as refined semi-
classical methods. In particular these methods permit to
capture the final state absorption effect induced by the
damping term in (13) through a time dependent escape
probability [7–9]

P(t) ≈ exp[−
∫∞
t
dt′ Γ(t′)]. (15)

It essentially suppresses the observation of the pairs cre-
ated in the high density zone and therefore appropriately
describes the continuous freeze-out dynamics [7, 8].

A. Single reflection approximation

A simple generalization of the sudden limit towards a
continuous treatment is provided by the single reflection
approximation (SR). In this scheme the continuous func-
tion F (t) is approximated by a sequence of steps each
providing a reflected wave component according to (6).
In the continuum limit the coherent sum of these partial
reflections leads to

ASR =
∫ ∞
−∞

dt
Ω̇(t)
2Ω(t)

P(t) exp[−2i
∫ t

0
dt′Ω(t′)] (16)

=
∫ ∞
−∞

dt Ψ∗f (t)Ω̇(t)Ψi(t) with (17)

Ψi(t) = Ψ∗f (t) ≈

√
P(t)
2Ω(t)

. exp(−i
∫ t

0
dt′Ω(t′)) (18)

Ω(t) =
√
ω2 −Π(t) (19)

and P(t) from (15). The appropriate phase coherence
in (16) is approximately provided by describing the un-
reflected wave components of particles (i) and their an-
tiparticle partners (f) in the semi-classical (WKB) limit
(18).

Since Ω̇P(t) is peaked and limited to a narrow range in
t, the antiparticle amplitude A is essentially given by the
time Fourier transformed of Ω̇(t)P(t). Here we go one
approximation step further and assume that P(t) varies
smoothly across the range where Ω̇(t) peaks3. Then

|sk|2 ≈ |ASR|2 ≈
∣∣∣∣Ω− ωΩ + ω

∣∣∣∣2 |g(2ω̄)|2 (P(t̄ ))2 with (20)

g(ω) =
∫
dt e−iωtf(t), f(t) = −dF (t)

dt
, (21)

3 Short freeze-out durations could enhance the high Fourier com-
ponents in (19).

with abbreviations Ω = Ω(−∞) and ω = Ω(+∞). There-
by t̄ has to be chosen around the maximum of f(t) with
ω̄ = Ω(t̄ ). Thus, compared to the sudden result (6)
the suppression of the antiparticle amplitude is caused
by two factors: the escape probability P(t̄ ) taken at the
peak of the pair production times the Fourier transforma-
tion of the mean-field transition profile g(2ω̄). The latter
prescription was already used in Ref. [4]. As multiple
reflections at the different steps are suppressed, this ap-
proximation solely recovers terms linear in ∆Ω = Ω− ω.

It is educative to inspect some analytically solvable
examples. As such they may not be too realistic for
discussed nuclear collision dynamics, however they help
clarifying the qualitative behavior of g(ω). In particular
case (c), for which the KG equation is exactly solvable,
provides quantitative insight into the validity regimes of
the here discussed approximations.

F (t) f(t) g(ω)

(a) 1
2 −

1
π arctan πt

2τ
2τ

π2t2+4τ2 e−|2ωτ/π|

(b) 1
2 −

1
π arctan

(
sinh πt2τ

)
1

2τ cosh(πt/(2τ))
1

cosh(ωτ)

(c) 1
exp(2t/τ)+1

1
2τ cosh2(t/τ)

πωτ
2 sinh(πωτ/2)

(22)
For all three cases given in Table (22) and plotted in Fig.
2, F (t) monotonically falls4 from 1 to 0 with a maximum
time derivative at t = 0 of f(0) = −Ḟ (0) = 1/(2τ),
cf. Fig. 2. Then during the time span τ , the value of
F (t) will drop from 3/4 to about 1/4. These functions
are similar to each other close to t = 0 but significantly
deviate in their asymptotic behavior. While for large
times t case (a) falls as an inverse power law in t, case
(b) and (c) drop exponential. The standard Gaussian
case for f(t) trivially leads to the by far steeper Gaussian
suppression in ω as already discussed in Refs. [2, 3].

FIG. 2: (Color online) F (t) for the three example cases of
table (22), (a) red dashed, (b) blue dotted, (c) black full line.

4 I exclude oscillatory behavior of F (t) as it could arise e.g. from
the dynamics of disoriented chiral condensates, cf. [10]. Such
oscillations can augment the effect at matching frequencies.
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For short transitions durations τ → 0, one verifies the
sudden result (6), since then g(2ω)→ 1. For large ω̄τ all
three cases indeed lead to exponential suppression factors

|g(2ω̄)|2 −→
ω̄τ�1

C e−4αω̄τ (23)

with C = (1, 4, (4πω̄τ)2) and α = (2/π, 1, π/2) for the
cases (a) to (c) of (22). Thereby the asymptotic expo-
nential behavior is directly determined by the imaginary
part of the nearest complex pole position of F (t) through
residue techniques. Similarly, branch-cut techniques can
be used in the case of close complex branch points.

The cases where the polarization function is smoothly
switched on and off, i.e where F (t) takes the form of a
bell shape, can simply be retrieved by replacing F (t) by
Fbell(t) = 2τf(t) with f(t) from table (22). The corre-
sponding “pulse” has a maximum of 1 and a time integral
of 2τ . The suppression factor (23) for the pair produc-
tion then will simply attain an additional pre-exponential
factor of (4ω̄τ)2.

B. Complex semi-classical method (CWKB)

An alternative method to access the reflected wave
component is provided by the complex WKB method [11].
In that case the “reflected” wave component results from
the analytic continuation of the “unreflected” WKB wave
Ψi, cf. Eq. (18), around the nearest complex valued turn-
ing point t0 where Ω2(t0) = ω2 − Π(t0) = 0. Again for
simplicity and clarity the damping part will be treated
perturbatively. Then the reflection coefficients R or A
are given by [11]

ACWKB = P(t̄ ) exp[−2|Im S(t0)|], (24)

where t̄ ≈ Re t0 and

Im S(t0) = Im
∫ t

t0

dt′
√

Ω2(t′), (for real t) (25)

=
∫ Re t0

t0

dt′
√
ω2 −Π(t′) (26)

is the mean-field action integral from the nearest complex
turning point t0 to some time t on the real axis. Since the
action integral along the real axis does not contribute to
Im S, one can simply choose the integration contour just
parallel to the imaginary axis starting from t0 till the real
axis, cf. Eq. (26). Assuming that along this contour the
integrand can essentially be approximated by its value on
the real axis till close to the turning point t0 one obtains
a rough estimate

Im S(t0) ≈ −Ω(Re t0) Im t0 . (27)

For the three analytic cases of table (22) one verifies that
the complex turning points are located close to the pole
positions of F (t) with values for Im t0 = ατ with α =

2/π, 1 and π/2, respectively for the cases (a) to (c) in
(22). Thus, the pair creation rate then becomes

|sk|2 ≈ |ACWKB|2 ≈ (P(t̄ ))2 e−4αω̄τ (28)

in agreement with the leading exponential terms of the
single reflection approximation given in (23).

The CWKB method is capable to provide some general
boundary on the high ω behavior of the pair creation rate.
Namely, evaluating the derivative of the action integral
(26) with respect to ω one obtains∣∣∣∣ω d

dω
Im S(t0)

∣∣∣∣ ≥ |Im S(t0)| . (29)

This implies that Im S can even grow faster than propor-
tional to ω. Thus, the exponential form (28) represents
an upper bound for the pair creation rate

|sk|2 ≈ |ACWKB|2 < (P(t̄ ))2 e−4ᾱω̄τ (30)

with appropriately chosen ᾱ of order 1. This naturally in-
cludes Gaussian and other forms that decay more steeply
than exponential. For the above proof, relation (29) is
rigorous if Re Π(t) > 0 along the integration path in (26),
while it is expected also to hold if Re Π(t) is negative
for real t, since the main contribution to Im dS(t0)/dω
comes from the region close to the turning point t0, where
Π(t) ≈ ω2 is positive. The latter statement is supported
by Eq. (20), which shows the pair creation rate essen-
tially to be independent of the sign of Π(t).

C. The exact Fermi function case

The Fermi-function case (22c) is particularly interest-
ing, since the corresponding KG equation (13) can be
solved in closed form, providing the exact result [12]

A2
Fermi =

∣∣∣∣ sinh(π(Ω− ω)τ/2)
sinh(π(Ω + ω)τ/2)

∣∣∣∣2 (31)

for the zero damping case Γ(t) = 0. It generalizes the
sudden result (6) to the continuous Fermi-function case
(22c) and further confirms the limiting cases of the single-
reflection approximation (20) and the CWKB result (28)
within their validity ranges. Also the corresponding ac-
tion integral (26) and thus its imaginary part can be ob-
tained in closed form

SFermi(t0, t) = Ωτ artanh
Ω(t)

Ω
− ωτ artanh

Ω(t)
ω

(32)

|Im SFermi(t0, t)| =
π

2
Min(Ω, ω) τ (for real t), (33)

the imaginary part resulting from that artanh function
with argument larger than 1. The corresponding CWKB
amplitude (24) then becomes

|ACWKB
Fermi |

2 = exp [−2π Min(Ω, ω) τ ] , (34)

in full agreement with the semi-classical limit (ωτ � 1,
∆Ωτ � 1) of the exact Fermi-function result (31).
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IV. DURATION TIME ESTIMATES

The late phase of nuclear collisions is essentially de-
scribed by a thermal gas of interacting baryons and
mesons that are in the process to decouple and freeze
out, superimposed by a collective flow pattern dominated
by radial flow. In my recent paper on continuous decou-
pling and freeze-out [7, 8] (see also[13]) it was shown
that hadrons decouple during a time span during which
the system’s volume essentially grows by a factor five.
This is the time window during which the here discussed
particle-antiparticle pairs also can escape. For nuclear
collisions with a freeze-out temperature T and a corre-
spondingly smooth time dependence of the polarization
function Π(t) and damping rate Γ(t), the back-to-back
correlation (12) at high particle energies ωk can then be
estimated from the upper bound (30) to

|c2(k,−k)− 1| ≈ |sk|2/n2
k∼

< (P(t̄ ))2 e−ωk(4ατ−2/T ), (35)

valid for |sk|2 � nk � 1. Here t̄ is the time of maximum
mean-field emission, while τ denotes the corresponding
duration. The corresponding pairs result from creation
of “off the vacuum”, i.e. from the “+1” term in the
Bose occupations in (12). The above estimate is rigorous
and quantitative, once the semi-classical conditions are
fulfilled, i.e. once ωτ � 1.

The effect of the mean field: If the mean-field dura-
tion scale τ = τMF would be less than 1/T the effect would
indeed be huge. However, the characteristic times scales
available to the closed dynamics are given by the single
particle energies and thus typically of the order of T . The
averaging procedure that determines the mean field Π es-
sentially wipes out these microscopic time scales and the
mean field is predominately proportional to the (baryon)
density ρ(t) of the system. Then the duration τMF can be
obtained from the collective behavior, which is mainly
inertia controlled. The peak emission is then expected
to occur at densities around half its average maximum
value within the hadronic phase. The time during which
the density drops from 3/2 of its value at peak ρ(tMF)
emission to 1/2 is then given by τMF ≈ 0.5RMF/vradial,
where RMF is the averaged radius of the collision zone
at peak emission. With typical radial flow velocities of
about vradial ≈ 0.5 c and RMF > 5 fm (corresponding to
ρ(tMF) of less than 5 times the nuclear saturation density
in central collisions) one arrives at τ ≈ τMF > 5 fm/c well
in line with experiences from transport simulations.

Freeze-out dynamics: Let me start with some gen-
eral comments about the continuous freeze-out duration
and the option to determine it from experimental data.
The authors of Refs. [1, 4] argued in favor of their sud-
den transition picture with the short freeze-out durations
putatively suggested by the overall success of freeze-out
models. However, none of the measured data can provide
controlled estimates about the duration of the freeze-out,
neither flow nor Hanbury-Brown–Twiss (HBT) investiga-
tions. Radial flow and the special HBT radius Rlong may

be capable to constrain the averaged freeze-out time, but
not its overall duration. Due to energy conservation the
transverse momentum spectra and due to a near isen-
tropic expansion the HBT radii are very robust towards
a change in the freeze-out prescription, both with respect
to the absolute freeze-out time as well as its overall du-
ration. In particular the very short freeze-out durations
of 2 fm/c or less, which were claimed to be deduced from
measured HBT radii at SPS and RHIC, cf. e.g. [14, 15],
are absolutely meaningless [7, 8]. The reason is that the
employed analysis method completely ignores space-time
correlations which are known to develop during the ex-
pansion phase of the reaction essentially due to entropy
conservation5. There are indeed no transport theoret-
ical investigations that ever showed freeze-out duration
anywhere as low as 2 fm/c. Indeed as recently shown
in Refs. [16–19], the developing space-time correlations
cause the special HBT radius Rout to be essentially in-
sensitive to the freeze-out duration5. Despite the long
freeze-out phase with durations up to 10 fm/c found for
pions in the calculations of Refs. [16–18], the value of
Rout agreed well with the experimentally observed value
of Rout ≈ Rside ≈ 6 fm. Thus, for strongly interacting
probes freeze-out durations well above 6 fm/c as mani-
festly found in transport simulations are not at all ruled
out by experimental observations.

Rather the freeze-out and decoupling dynamics is spe-
cific for each individual particle. Weakly interacting par-
ticles can essentially escape freely. With increasing cou-
pling to the medium estimated by Γ(t) ≈ 〈vrelσtotρ(t)〉
the freeze-out window occurs at increasingly later times
with peak brilliance at tfreeze and correspondingly longer
durations τfreeze determined by [7, 8]

Γ̇(tfreeze) = −Γ2(tfreeze) (36)
τfreeze = e/Γ(tfreeze) (37)

(consider e.g. Γ = at−n, then tfreeze = n−1
√
a/n =

τfreezen/e with Γ(tfreeze) = n/tfreeze.). Therefore, for
strongly interaction particle-antiparticle pairs such pions
or K mesons one expects the peak mean-field emission
well before the freeze-out window opens. Thus, one en-
counters the following time and duration ranges

tMF < tfreeze, τ = τMF < τfreeze (38)

with τMF > 5 fm/c at SPS energies and beyond, which are
well in line with experiences from modern hybrid trans-
port codes [16–19]. These estimates perfectly confirm the
validity conditions underlying estimate (35) already for
particle energies ωk just above the pion mass mπ.

5 In this respect the results of a special exact solution of the hydro-
dynamic equations of motion [9, 20] are particularly informative.
They showed that in this special case the HBT radii are com-
pletely insensitive to the freeze-out prescription.
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V. SUMMARY AND CONCLUDING REMARKS

The option to create back-to-back particle-antiparticle
pairs from a time-dependent spatially homogeneous mean
field was reinvestigated by analytical methods. Thereby
it is important that the time-dependence of the both, the
mean field and the damping are given by analytic func-
tion in time t in order to avoid unphysical effects that
lead to large time Fourier components. This excludes
inverse power law behaviors for the energy spectrum of
created pairs at large pair energies, as e.g. used in Ref.
[4]. Rather analytic arguments are given that the spec-
trum is at least of exponential form with a characteristic
energy scale given by the inverse transition duration τ
between the in-medium situation and vacuum.

The above estimates and the experience from kinetic
transport models show that both, the characteristic du-
ration τMF for the mean-field change as well as the con-
tinuous freeze-out duration τfreeze lie well above 4 fm/c
for collision energies at the CERN SP and upwards. Al-
ready for charged pion pairs (π+π−) with ωk ≈ 300 MeV
one has ωτ > 6, clarifying that the validity conditions,
both for the single reflection approximation as well as
for the complex WKB scheme are well fulfilled assuring
them as quantitative tools. Thus, for such pion pairs the
here discussed correlation signal (35) falls already well
below the 10−7 level for the most favorable estimate at
typical freeze-out temperatures of T ≈ 140 MeV. Kaon
or even φ meson pairs would even be much more strongly
suppressed. Thus, the pair creation process solely due to
the time variation of the mean field becomes at least ex-
ponentially suppressed and experiments will have a hard
time to isolate the effect. For strongly interacting probes
the final state escape probability P(t) will further re-
duced the observation of the effect if the main mean-field
production essentially falls into the opaque region of the
medium, where (P(t))2 � 1.

The discussed particle–antiparticle correlation effect
rests on a coherent single-particle picture. Among oth-
ers it largely ignores collisional effects that are known to
dominate the nuclear collision dynamics. Thus, in in-
dividual events the one-body field will depart from the
ensemble mean due to fluctuations caused by stochastic
processes. Such microscopic processes can involve much
shorter time scales which, however, are also ultra vio-
let restricted by the frequencies accessible in the system.
For thermal systems this limit is given by the inverse tem-
perature scale, i.e. τ > 1/T , limiting the “thermal” pro-
duction of hard probes, such as the particle–antiparticle
pairs. Such stochastic processes generally add incoher-
ently to the two-particle yield. Therefore they can ap-
propriately be included in transport codes by simulating
the corresponding microscopic collision processes. The
resulting pair correlations, however, are then no longer
back-to-back, as they are influenced by thermal motion.

The question, whether a process can be treated in the
sudden limit or not, depends on its intrinsic quantum
time scale resulting from the uncertainty principle to
τQ ≈ 1/∆E, where ∆E is the energy transfer. Driven
by a certain field, the dynamics is “sudden”, if the
typical time duration τ , during which the field changes,
is short compared to τQ: then the wave functions stay
“inert” across the transition thereby creating several
components in the eigenstates of the “new” Hamiltonian.
In the opposite limit τ � τQ the quantum states change
and adjust adiabatically. As shown here for the pair
creation case, where ∆E ≈ 2ωk, the creation of states
involving an energy transfer ∆E � 1/τ then becomes at
least exponentially suppressed.
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