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Analytical formulae are presented which provide quantitative estimates for the suppression of the
anticipated back-to-back particle–antiparticle correlations in high energy nuclear collisions due to
the finite duration of the transition dynamics. They show that it is unlikely to observ the effect.
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I. INTRODUCTION

In 1996 Asakawa and Csörgő [1] suggested that back-
to-back particle–antiparticle correlations should be ob-
servable in high-energy nuclear collisions, see also earlier
considerations in Refs. [2, 3]. Based on a sudden transi-
tion assumption huge effects were predicted for this phe-
nomenon. About a further dozen applications followed.
In a subsequent paper together with Gyulassy [4] it was
shown that the finite duration τ of the transition re-
duces the effect. In that paper, however, the authors
used a discontinuous and therefore unrealistic transition
profile that led to large ultraviolet Fourier components
and thus to a very moderate reduction of the effect of
order 1/((2ωτ)2 + 1). Here 2ω is the energy required to
produce the pair. In this short note it will be shown that
with a smooth transition profile the suppression is rather
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FIG. 1: Optical ray pictures in space-time. Left: the standard
reflection-transmission situation, where a wave traverses from
one medium (yellow) to another one (e.g. vacuum) at a spa-
tial interface. Right: the sudden transition in time from the
medium to the vacuum; here the frequency ω is discontinuous,
creating a second component with negative ω which has the
interpretation of an antiparticle with opposite momentum.
The (blue) dashed line separates the media, the arrow sense
distinguishes between particle and antiparticle. By means of
Lorentz transformations the concept can directly be general-
ized to hyper-planes and even to curved hyper-surfaces.
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exponential, ∼ e−4ωτ , deferring to observe the effect for
realistic transition durations.

II. THE SUDDEN PICTURE

The main assumption of the original approach [1] is
the sudden change from the in-medium situation to that
in vacuum. The authors used the Bogolioubov-Valatin
(BV) transformation to describe the effect, a picture
that may not be so intuitive for many of us. Indeed
the effect is nothing else than a standard “reflection–
transmission” problem at the interface of two media, a
well known problem in physics, in particular in optics.
Thus, transcribing our wisdom from the spatial situa-
tion, like a wave traversing from one medium to another
one at a sharp interface (see Fig. 1 left) to the here con-
sidered sudden transition in time (Fig. 1 right), precisely
recovers the results presented in [1, 4]. The common
boundary condition is that one has one incoming wave
and two time-forward propagating outgoing wave com-
ponents. As in Refs. [1, 4] we restrict the discussion
to (charged) relativistic bosons described by the Klein-
Gordon (KG) equation. For the sudden case the wave
functions with positive and negative energies prior and
post to the sudden transition can then be written as (us-
ing units with ~=c=1)

Ψ±
med(x) =

1√
2Ωk

e∓iΩkt+ikx for t < 0 , (1)

Ψ±
vac(x) =

1√
2ωk

(
cke∓iωkt+ikx + ske±iωkt+ikx

)
.(2)

Here Ωk and ωk are the single-particle energies at mo-
mentum k in the two media. Continuity of Ψ(x) and of
∂Ψ(i)/∂t at transition time t = 0 determines the coeffi-
cients on the vacuum side to

ck = 1
2

(√
ωk

Ωk
+

√
Ωk

ωk

)
= cosh[rk] , (3)

sk = 1
2

(√
ωk

Ωk
−

√
Ωk

ωk

)
= sinh[rk] , (4)

with rk = 1
2 ln ωk

Ωk
, (5)

while due to the spatial homogeneity the spatial momen-
tum k remains unchanged. Within the standard rela-
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tivistic quantum field theory (RQFT) interpretation of
the negative energy components as antiparticles with op-
posite spatial momenta, cf. Fig. 1 right frame, this result
identically reproduces that given in Refs. [1, 4] within
the BV picture. In particular the ratio of the antiparti-
cle over particle component on the vacuum side

A =
∣∣∣∣sk

ck

∣∣∣∣ =
∣∣∣∣Ωk − ωk

Ωk + ωk

∣∣∣∣ (6)

is the analog of the well known reflection coefficient for
a wave traversing from one medium to another (Fig. 1
left)

R =
∣∣∣∣K − k

K + k

∣∣∣∣ , (7)

where K and k denote the moduli of the spatial mo-
menta in the two media. In the spatial case solely k⊥ is
discontinuous (ω and k‖ are continuous). In the sudden
case, however, k is continuous, while the discontinuity in
time causes a discontinuity in ω thereby creating a sec-
ond component with negative ω, i.e. an antiparticle with
opposite spatial momentum k (Fig. 1 right frame). This
mechanism led to the back-to-back particle–antiparticle
correlation picture advocated in Ref. [1]. Besides small
antiparticle components arising form the existing parti-
cles in the medium, the time dependent interaction can
also create genuine particle–antiparticle pairs out of the
vacuum. The latter, which is the bosonic analog to the
Dirac case, where a time-dependent interaction pulse can
lift a particle from the filled Dirac sea to the particle
space1, can formally be included by adding a “+1” to
the boson occupations nk of the antiparticles. After the
transition the one-body density becomes

n1(k) = |ck|2nk + |sk|2(nk + 1) (8)

nk =
1

exp(|Ωk|/T ) + 1
, (9)

while the back-to-back correlation function of particle–
antiparticle pairs over the product of single yields be-
comes [4]

C2(k,−k) =
n2(k,−k)

n1(k)n1(−k)
(10)

= 1 +
|c∗ksknk + c∗−ks−k(n−k + 1)|2

n1(k)n1(−k)
(11)

−→
|sk|�1

1 + |sk|2
∣∣∣∣ 2nk + 1
nk + |sk|2(nk + 1)

∣∣∣∣2. (12)

Due to the sudden pair creation processes this back-to-
back correlation ratio can attain huge values, once the

1 In the Dirac case also spatial transitions (Fig. 1 left) lead to
spontaneous pair production, known as Klein paradox [5], once
the vector potential changes by more than twice the rest mass.

statistical occupations nk fall below |sk|2. The subse-
quent considerations will show that this effect is an arti-
fact resulting from the sudden limit.

III. THE CONTINUOUS TRANSITION CASE

Compared to the BV transformation considered in [1,
4] the wave dynamical picture used here can easily be
generalized to the continuous transition case by solving
the time dependent Klein-Gordon equation (suppressing
in the following the dependence on spatial momentum k)

∂2
t Ψ(t) + Ω2(t)Ψ(t) = 0 (13)

for a smoothly time-dependent dispersion relation

Ω2(t) = ω2 + ΠR(t) =ω2 + ΠR(−∞)F (t). (14)

Here negative times refer to the situation in the medium
where ΠR denotes the time-dependent retarded polariza-
tion function2, while the vacuum case is attained for large
positive times. Thereby F (t), cf. Fig. 2 below, will later
be used to parameterize the transition profile.

Besides direct numerical solutions of (13), there are
approximate analytical methods to obtain the reflection
coefficient. These concern the single reflection limit as
well as refined semi-classical methods.

A. Single reflection approximation

A simple generalisation of the sudden limit towards a
contineous treatment is provided by the single reflection
approximation (SR). In this scheme the continuous func-
tion F (t) is approximated by a sequence of steps each
providing a reflected wave component according to (6).
In the continuum limit the coherent sum of these partial
reflections leads to

ASR =
∫ ∞

−∞
dt

Ω̇(t)
2Ω(t)

exp
(
−2i

∫ t

0

dt′ Ω(t′)
)

(15)

≈
∫ ∞

−∞
dt Ψ∗

f (t)Ω̇(t)Ψi(t). (16)

Thereby the appropriate phase coherence is approxi-
mately provided by describing the unreflected wave com-
ponents of particles (i) and their antiparticle partners (f)
in the semi-classical (WKB) limit as

Ψi(t) = Ψ∗
f (t) ≈ exp(−i

∫ t

0
dt′Ω(t′))/

√
2Ω(t). (17)

2 In general the polarization function Π can also be non-local in
time and thus be energy dependent in the semi-classical interpre-
tation. Then the mapping from the medium to the vacuum case
will involve corresponding “z”-factors, z = 1/(1−∂Re ΠR/∂ω2),
as e.g. shown in Kadanoff-Baym final-state interaction picture
[6]. For the example cases discussed here we will discard such
generalization and stick to time local cases.
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Since Ω̇ is peaked and limited to a narrow range in t, the
antiparticle amplitude A is essentially given by the time
Fourier transformed of Ω̇(t), i.e.

|sk| ≈ |ASR| ≈
∣∣∣∣Ω− ω

Ω + ω

∣∣∣∣ |g(2ω̄)| with (18)

g(ω) =
∫

dt e−iωtf(t), f(t) = −dF (t)
dt

. (19)

with abbreviations Ω = Ω(−∞) and ω = Ω(+∞). There-
by ω̄ = Ω(t̄) is chosen around the maximum of Ω̇.
As multiple reflections at the different steps are sup-
pressed, the approximation solely recovers terms linear
in ∆Ω = Ω − ω. Compared to the sudden result (6) the
suppression of the antiparticle amplitude caused by the
finite duration of the transition is then given by g(2ω̄).
This was also the approximation scheme used in Ref. [4]
where, however, a completely unrealistic form for f(t)
was considered, namely f(t) = Θ(t) exp[−t/τ ]/τ . This
form contains a sharp jump which leads to unrealisti-
cally high Fourier components for large ω, and thus only
to a very moderate suppression of the effect! More re-
alistic forms for Ω(t) generally will lead to exponential
suppression factors, as e.g. for the following analytically
solvable cases

F (t) f(t) g(ω)

(a) 1
2 −

1
π arctan πt

2τ
2τ

π2t2+4τ2 e−|2ωτ/π|

(b) 1
2 −

1
π arctan

(
sinh πt

2τ

)
1

2τ cosh(πt/(2τ))
1

cosh(ωτ)

(c) 1
exp(2t/τ)+1

1
2τ cosh2(t/τ)

πωτ
2 sinh(πωτ/2)

(20)
In order to assure comparable results all functions are
chosen such that F (t) monotonically falls from 1 to 0
with a maximum time derivative at t = 0 of f(0) =
−Ḟ (0) = 1/(2τ), cf. Fig. 2. Then τ is approximately the
“half time” for the change in Ω2(t). For short transitions
times τ → 0, one verifies the sudden result (6) since then
g(2ω) → 1. For large ω̄τ all three cases indeed lead to
exponential suppression factors

|g(2ω̄)|2 −→
ω̄τ�1

C e−4αω̄τ (21)

FIG. 2: (Color online) F (t) for the three example cases of
table (20), (a) red dashed, (b) blue dotted, (c) black full line.

with C = (1, 4, (4πω̄τ)2) and α = (2/π, 1, π/2) for the
cases (a) to (c) of (20). Thereby the asymptotic expo-
nential behavior is directly determined by the imaginary
part of the nearest complex pole position of F (t).

The physical case where the polarization function is
switched on and off, i.e where F (t) takes the form of
a bell shape can simply be retrieved by replacing F (t)
by its time derivative Fbell(t) = 2τf(t) with f(t) from
table (20). The corresponding “pulse” has a maximum
of 1 and a time integral of 2τ . The suppression factor
(21) for the pair production then will simply attain an
additional pre-exponential factor of (4ω̄τ)2.

B. Complex semi-classical method (CWKB)

An alternative method to access the reflected wave
component is provided by the complex WKB method [7].
In that case the “reflected” wave component results from
the analytic continuation of the “unreflected” WKB wave
Ψi, cf. Eq. (17), around the nearest complex valued turn-
ing point t0 where Ω2(t0) = 0. Then the reflection coef-
ficients R or A are given by [7]

ACWKB = exp[−2|Im S(t0, t)|] (for real t), (22)

where

S(t0, t) =
∫ t

t0

dt′
√

Ω2(t′), (23)

is the action integral from the nearest complex turning
point t0 to some time t on the real axis. Since the action
integral along the real axis does not contribute to Im S,
a rough estimate can simply be obtained by choosing the
integration contour starting from t0 just parallel to the
imaginary axis till the real axis. Assuming that along this
contour the integrand can essentially be approximated by
its value on the real axis one obtains the estimate

Im S(t0) ≈ Ω(Re t0) Im t0 . (24)

For the three analytic cases of table (20) one verifies that
the complex turning points are located close to the pole
positions of F (t) with values for Im t0 = ατ with α =
2/π, 1 and π/2, respectively for the cases (a) to (c) in
(20). Thus the pair creation rate then becomes

|sk|2 ≈ |ACWKB|2 ≈ e−4αω̄τ (25)

in agreement with the leading exponential terms of the
single reflection approximation given in (21).

C. The exact Fermi function case

The Fermi-function case (20c) is particularly interest-
ing, since the corresponding KG equation (13) can be
solved in closed form, providing the exact result [8]

A2
Fermi =

∣∣∣∣ sinh(π(Ω− ω)τ/2)
sinh(π(Ω + ω)τ/2)

∣∣∣∣2 . (26)
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It generalizes the sudden result (6) to the continuous
Fermi-function case (20c) and further confirms the limit-
ing cases of the single-reflection approximation (18) and
the CWKB result (25) within their validity ranges. Also
the corresponding action integral (23) and thus its imag-
inary part can be obtained in closed form

SFermi(t0, t) = Ωτ artanh
Ω(t)
Ω
− ωτ artanh

Ω(t)
ω

(27)

|Im SFermi(t0, t)| =
π

2
Min(Ω, ω) τ (for real t), (28)

the imaginary part resulting from that artanh function
with argument larger than 1. The corresponding CWKB
amplitude (22) then becomes

|ACWKB
Fermi |

2 = exp [−2π Min(Ω, ω) τ ] , (29)

in full compliance with the semi-classical limit (ωτ � 1,
∆Ωτ � 1) of the exact Fermi-function result (26).

IV. SUMMARY AND CONCLUDING
REMARKS

For nuclear collisions with a freeze-out temperature T
and a correspondingly smooth time dependence of the
polarization function Π, the back-to-back correlation (12)
can then be estimated to

|c2(k,−k)− 1| ≈ O(|sk|2/n2
k) ≈ e−Ωk(4ατ−2/T ), (30)

valid for |sk|2 � nk � 1. Thus, the original effect
advocated in Refs. [1, 4] of unlimitedly large correla-
tions with increasing Ωk resulting in the sudden case
(τ = 0) turns into the opposite behavior, once the du-
ration time τ exceeds the inverse temperature 1/T . Al-
ready for charged pion pairs (π+π−) with Ωk ≈ 300 MeV
the correlation (30) falls below the 10−5 level for tran-
sition times τ beyond 3 fm/c, at typical freeze-out tem-
peratures of T ≈ 140 MeV. Since optical potentials are
generally proportional to the density, the characteristic
transition-time scale is rather given by the expansion-
time scale [9–11] in nuclear collisions. Its full-width-half-
maximum values generally lie beyond 4 fm/c, leading to

even larger suppression factors. Thus, the pair creation
process due to the time variation of the mean field be-
comes unmeasurably small in nuclear collisions.

The discussed particle–antiparticle correlation effect
rests on a coherent single-particle picture. Among oth-
ers it largely ignores collisional effects that are known to
dominate the nuclear collision dynamics. Thus, in in-
dividual events the one-body field will depart from the
ensemble mean due to fluctuations caused by stochastic
processes. Such microscopic processes can involve much
shorter time scales which, however, are also ultra vio-
let restricted by the frequencies accessible in the system.
For thermal systems this limit is given by the inverse tem-
perature scale, i.e. τ > 1/T , limiting the “thermal” pro-
duction of hard probes, such as the particle–antiparticle
pairs. Such stochastic processes generally add incoher-
ently to the two-particle yield. Therefore they can ap-
propriately be included in transport codes by simulating
the corresponding microscopic collision processes. The
resulting pair correlations, however, are no longer strictly
back-to-back, as they are influenced by thermal motion.

The question, whether a process can be treated in the
sudden limit or not, depends on its intrinsic quantum
time scale resulting from the uncertainty principle to
τQ ≈ 1/∆E, where ∆E is the energy transfer. Driven
by a certain field, the dynamics is “sudden”, if the
typical time duration τ , during which the field changes,
is short compared to τQ: then the wave functions stay
“inert” across the transition thereby creating several
components in the eigenstates of the “new” Hamiltonian.
In the opposite limit τ � τQ the quantum states change
and adjust adiabatically. As shown here for the pair
creation case, where ∆E = 2Ωk, the creation of states
involving an energy transfer ∆E � 1/τ then becomes
exponentially suppressed.
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