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The e�e
ts of the propagation of parti
les whi
hhave a �nite life time and an a

ording width in theirmass spe
trum are dis
ussed in the 
ontext of trans-port des
riptions. In the �rst part the 
oupling ofsoft photon modes to a sour
e of 
harged parti
lesis studied in a 
lassi
al model whi
h 
an be solved
ompletely in analyti
al terms. The solution 
orre-sponds to a re-summation of 
ertain �eld theory di-agrams. The se
ond part addresses the derivation oftransport equations whi
h also a

ount for the damp-ing width of the parti
les. The �-derivable methodof Baym is used to derive a self-
onsistent and 
on-serving s
heme. For this s
heme a 
onserved energy-momentum tensor 
an be 
onstru
ted. Furthermore,a kineti
 entropy 
an be derived whi
h besides thestandard quasi-parti
le part also in
ludes 
ontribu-tions from 
u
tuation.

I. INTRODUCTIONWith the aim to des
ribe the 
ollision of twonu
lei at intermediate or even high energies one is
onfronted with the fa
t that the dynami
s hasto in
lude parti
les like the delta or rho-mesonresonan
es with life-times of less than 2 fm/
or equivalently with damping widths above 100MeV. The 
ollision rates dedu
ed from presentlyused transport 
odes are 
omparable in magni-tude, whereas typi
al mean kineti
 energies asgiven by the temperature range between 70 to150 MeV depending on beam energy. Thus, thedamping width of most of the 
onstituents in thesystem 
an no longer be treated as a perturba-tion.As a 
onsequen
e the mass spe
trum of theparti
les in the dense matter is no longer a sharpdelta fun
tion but rather a
quires a width due to
ollisions and de
ays. The 
orresponding quan-tum propagators G (Green's fun
tions) are no
1Talk presented by J. K. on the 4th Thermal FieldTheory Workshop, Regensburg, Aug. 10 - 15, 1998

longer the ones as in the standard text books for�xed mass, but rather have to be folded over aspe
tral fun
tion A(�; ~p), whi
h takes a Lorentzshape A(�; ~p) � �=((���(~P ))2+(�=2)2) of width�=2 in simple approximations. One thus 
omesto a pi
ture whi
h uni�es resonan
es whi
h havealready a width in va
uum due to de
ay modeswith the "states" of parti
les in dense matter,whi
h obtain a width due to 
ollisions (
olli-sional broadening). The theoreti
al 
on
epts fora proper many body des
ription in terms of a realtime non equilibrium �eld theory have alreadybeen devised by S
hwinger, Kadano�, Baym andKeldysh [1℄ in the early sixties. First inves-tigations of the quantum e�e
ts on the Boltz-mann 
ollision term were given Danielewi
z [2℄,the prin
ipal 
on
eptual problems on the level ofquantum �eld theory were investigated by Lands-mann [3℄, while appli
ations whi
h seriously in-
lude the �nite width of the parti
les in transportdes
riptions were 
arried out only in re
ent times,e.g. [2,4{10℄. For resonan
es, e.g. the delta reso-nan
e, it was natural to 
onsider broad mass dis-tributions and ad ho
 re
ipes have been inventedto in
lude this in transport simulation models.However, many of these re
ipes are not 
orre
tas they violate some basi
 prin
iple like detailedbalan
e [4℄, and the des
ription of resonan
es indense matter has to be improved [9℄.In this talk the 
onsequen
es of the propa-gation of parti
les with short life times is re-addressed and dis
ussed. In the �rst part agenuine soft mode problem is studied: the 
ou-pling of a 
oherent 
lassi
al �eld, the Maxwell�eld, to the sto
hasti
 Brownian motion of a
harged parti
le. The rate of photons due toBremsstrahlung, given by the 
lassi
al 
urrent-
urrent 
orrelation fun
tion, 
an be obtained in
losed analyti
al terms and dis
ussed as a fun
-tion of the ma
ros
opi
 transport properties, thefri
tion and di�usion 
oeÆ
ient of the Brown-ian parti
le. The result 
orresponds to a partialre-summation of photon self energy diagrams inthe real-time formulation of �eld theory. In these
ond part of this talk a s
heme is presented,
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how to 
ome to a self-
onsistent, 
onserving andthermodynami
ally 
onsistent transport des
rip-tion of parti
les with �nite mass width withinthe real-time formulation of non-equilibrium �eldtheory. The derivation is based on and general-izes the �-fun
tional method of Baym [11℄. The�rst-order gradient approximation provides a setof 
oupled equations of time-irreversible gener-alized kineti
 equations for the slowly varyingspa
e-time part of the phase-spa
e distributionsand retarded equations, whi
h provides the fastmi
ro-s
ale dynami
s represented by the four-momentum part of the distributions. Fun
tionalmethods permit to derive a 
onserved energy-momentum tensor whi
h also in
ludes 
orre
tionsarising from 
u
tuations besides the standardquasi-parti
le terms. Memory e�e
ts [12℄ appear-ing in 
ollision term diagrams of higher orderare dis
ussed. The variational properties of �-fun
tional permit to derive a generalized expres-sion for the non-equilibrium kineti
 entropy 
ow,whi
h in
ludes 
orre
tions from 
u
tuations andmemory e�e
ts. In spe
ial 
ases we demonstratethat the entropy 
an only in
rease with time (H-theorem).
II. PRELIMINARIESThe standard text-book transition rate interms of Fermi's golden rule, e.g. for the photonradiation from some initial state jii with o

upa-tion ni to �nal states jfi

W = Pif ni(1� nf ) ������ 6if 6-
������ 2�(1 + n!) Æ(Ei � Ef � !~q) (1)with o

upation n! for the photon, is limited tothe 
on
ept of asymptoti
 states. It is thereforeinappropriate for problems whi
h deal with par-ti
les of �nite life time. One rather has to goto the \
losed" diagram pi
ture, where the samerate emerges as

W = ��
�
�

�
- (1 + n!)Æ(! � !~q) (2)

with now two types of verti
es � and + for thetime-ordered and the anti-time ordered part ofthe square of the amplitude. Together with theline sense and the � and + marks at the verti
esa unique 
orresponden
e is provided between theoriented + ��! and � +�! propagator lines and the

initial and �nal states. Thus su
h propagatorlines de�ne the densities of o

upied states orthose of available states, respe
tively. There-fore all standard diagrammati
 rules 
an be usedagain. One simply has to extend those rules tothe two types of verti
es with marks � and +and the 
orresponding 4 propagators, the usualtime-ordered propagator � ��! between two � ver-ti
es, the anti-time-ordered one + +�! between two+ verti
es and the mixed + ��! or � +�! ones as den-sities of o

upied and available states. For detailsI refer to the textbook of Lifshitz and Pitaevski[13℄. The advantage of the formulation in termsof \
orrelation" diagrams, whi
h no longer referto amplitudes but dire
tly relate to physi
al ob-servables, like rates, is that now one is no longerrestri
ted to the 
on
ept of asymptoti
 states.Rather all internal lines, also the ones whi
h orig-inally 
orrespond to the \in" or \out" states arenow treated on equal footing. Therefore now one
an deal with \states" whi
h have a broad massspe
trum and whi
h therefore appropriately a
-
ount for the damping of the parti
les. The 
or-responding Wigner densities + ��! or � +�! are thenno longer on-shell Æ-fun
tions in energy (on-massshell) but rather a
quire a width in terms of thespe
tral fun
tion, e.g. for non-relativisti
 parti-
lesiG�+ = � + � = �f(p)A(p)iG+� = + � � = (1� f(p))A(p) (3)
A(p) = �(p)��+ �F � �0~p � Re �R(p)�2 + (�(p)=2)2 :Here f(p) is the phase-spa
e o

upation at four-momentum p = (�; ~p), A is the spe
tral fun
tionwith the damping width �(p) and in-medium on-shell energy �0~p �Re �R(p) and � is the 
hemi
alpotential. In general all quantities depend onboth, energy � and momentum ~p.
t0 t-	� �1t+x

t�y rr
FIG. 1. Closed real-time 
ontour with two exter-nal points x; y on the 
ontour.The non-equilibrium theory 
an entirely be for-mulated on one spe
ial time 
ontour, the so 
alled
losed time path [1℄, �g. 1, with the time argu-ment running from some initial time t0 to in�n-ity and ba
k with external points pla
ed on this
ontour, e.g., for the four di�erent 
omponentsof Green's fun
tions or self energies. The spe
ial2



�+ or +� 
omponents of the self energies de�nethe gain and loss terms in transport problems,
.f. eq. (2).
III. BREMSSTRAHLUNG FROMCLASSICAL SOURCESFor a 
lari�
ation of the infra-red problem we�rst dis
uss two simple examples of soft modesin hard matter. These are examples in 
lassi-
al ele
trodynami
s, whi
h both 
an be solvedanalyti
ally to a 
ertain extent: there the hardmatter is des
ribed either by a di�usion pro
essor by a random walk problem, respe
tively [10℄.As the sour
e parti
les move non-relativisti
allythese 
ases do not su�er from standard patholo-gies en
ountered in the hard thermal loop (HTL)problem of QCD, namely the 
ollinear singular-ities, where ~v~q � 1 and from diverging Bose-fa
tors. The advantage of these examples is thatdamping 
an be fully in
luded without violating
urrent 
onserving and gauge invariants in the
ase of Abelian �elds. The 
losed form resultsobtained 
orrespond to a partial re-summationof 
ertain planar diagrams, whi
h just survivein the 
lassi
al limit. The problem is relatedto the Landau{Pommeran
huk{Migdal e�e
t ofBremsstrahlung in high energy s
attering [14℄.

FIG. 2. Current-
urrent 
orrelation fun
tion inunits of e2 < v2 > as a fun
tion of time (in unitsof 1=�x) for di�erent values of the photon momen-tum q2 = 3k2�2x=< v2 > with k = 0; 1; 2; 3.The di�usion pro
ess is assumed to be de-s
ribed by a Fokker-Plan
k equation for the prob-ability distribution f of position ~x and velo
ity~v ��tf(~x;~v; t)= �D�2x �2�~v2 + �x ��~v~v � ~v ��~x� f(~x;~v; t): (4)

Likewise 
u
tuations evolve in time by this equa-tion and this way determine the 
orrelations.The two ma
ros
opi
 parameters are the spatialdi�usion 
oeÆ
ient D and a fri
tion 
onstant �xwhi
h determines the relaxation rates of velo
i-ties (fri
tion due to 
ollisions with the medium).In the equilibrium limit (t!1) the distributionattains a Maxwell-Boltzmann velo
ity distribu-tion where T = m 
~v2� =3 = mD�x. The 
orrela-tion fun
tion 
an be obtained in 
losed form andone 
an dis
uss the resulting time 
orrelations ofthe 
urrent at di�erent �xed values of the photonmomentum ~q, �g. 2 (details are given in ref. [10℄).For the transverse part of the 
orrelation tensorthis 
orrelation de
ays exponentially as � e��x�at ~q = 0, and its width further de
reases with in-
reasing momentum q = j~qj. Besides trivial kine-mati
al fa
tors, the in-medium produ
tion rateis given by the time Fourier transform � ! !.

FIG. 3. Rate of real photons d2N=(d!dt) inunits of 4�e2 
~v2� =3 for a non-relativisti
 sour
e for�x =50,100,150 MeV; for 
omparison the IQF results(dashed lines) are also shown.Fig. 3 displays the 
orresponding total pro-du
tion rates d2N=(d!dt) of on-shell photons(number per time and energy; whi
h is dimen-sionless) in units of 4�e2 
~v2� =3. One sees thatthe hard part of the spe
trum behaves as ex-pe
ted, namely, like in the IQF approximationthe rate grows proportional to �x and this wayproportional to the mi
ros
opi
 
ollision rate �(
.f. below). However independent of �x therate saturates at a value of � 1=2 in these unitsaround ! � �x, and the soft part shows the in-verse behavior. That is, with in
reasing 
olli-sion rate the produ
tion rate is more and moresuppressed! This is in line with the pi
ture thatsu
h photons 
annot resolve the individual 
olli-sions any more. Sin
e the soft part of the spe
-trum behaves like !=�x, it shows a genuine non-perturbative feature whi
h 
annot be obtained
3



by any power series in �x. For 
omparison: thedashed lines show the 
orresponding IQF yields,whi
h agree with the 
orre
t rate for the hardpart while they 
ompletely fail and diverge to-wards the soft end of the spe
trum. For non-relativisti
 sour
es 
~v2� � 1 one 
an ignore theadditional q-dependen
e (dipole approximation;
.f. �g. 2) and the entire spe
trum is determinedby one ma
ros
opi
 s
ale, the relaxation rate �x.This s
ale provides a quen
hing fa
torC0(!) = !2!2 + �2x : (5)by whi
h the IQF results have to be 
orre
ted inorder to a

ount for the �nite 
ollision time ef-fe
ts in dense matter.In the mi
ros
opi
 Langevin pi
ture one 
on-siders a 
lassi
al pro
ess, where hard s
atteringso

ur at random with a 
onstant mean 
ollisionrate �. These s
atterings 
onse
utively 
hangethe velo
ity of a point 
harge from ~vm to ~vm+1to ~vm+2, : : : (in the following subs
ripts m and nrefer to the 
ollision sequen
e). In between s
at-terings the 
harge moves freely. For su
h a mul-tiple 
ollision pro
ess some expli
it results 
anbe given, sin
e the 
orrelated probability to �ndthe 
harge at time t1 and t2 at two di�erent seg-ments with n s
atterings in between follows fromthe iterative folding of the exponential de
ay lawwith de
ay time 1=�. Therefore the spa
e inte-grated 
urrent-
urrent 
orrelation fun
tion takesa simple Poisson formi����+ / Z d3x1d3x2
j�(~x1; t� �2 )j�(~x2; t+ �2 )�= e2 hv�(0)v�(�)i= e2e�j�� j 1Xn=0 j�� jnn! 
v�mv�m+n�m (6)
with v = (1; ~v). This result represents a genuinemultiple 
ollision des
ription of the 
orrelationfun
tion. Here h: : :im denotes the average overthe dis
rete 
ollision sequen
e fmg. This form,whi
h one writes down intuitively, dire
tly in-
ludes what one 
alls damping in the 
orrespond-ing quantum 
ase. Fourier transformed it deter-mines the spe
trum in 
ompletely regular terms(void of any infra-red singularities) where ea
hterm des
ribes the interferen
e of the photon be-ing emitted at a 
ertain time or n 
ollisions later.In spe
ial 
ases where velo
ity 
u
tuations aredegraded by a 
onstant fra
tion � in ea
h 
ol-lision, su
h that h~vm � ~vm+nim = �n h~vm � ~vmim,one 
an re-sum the whole series in (6) and thusre
over the relaxation result with 2�x 
~v2� =

� 
(~vm � ~vm+1)2� at least for ~q = 0 and the 
or-responding quen
hing fa
tor (5).This 
lari�es that the di�usion result repre-sents a re-summation of the Langevin multiple
ollision pi
ture and altogether only ma
ros
opi
s
ales are relevant for the form of the spe
-trum and not the details of the mi
ros
opi
 
ol-lisions. Note also that the 
lassi
al results, bothfor the di�usion equation (
.f. �g. 2) and forthe Langevin pro
ess ful�ll the 
lassi
al version(�h! 0) of the sum rules dis
ussed in refs. [15,10℄.
IV. RADIATION ON THE QUANTUMLEVELWe have seen that on the 
lassi
al level theproblem of radiation from dense matter 
an besolved quite naturally and 
ompletely at leastfor simple examples, and �gs. 2 and 3 displaythe main physi
s. They show, that the dampingof the parti
les due to s
attering is an importantfeature, whi
h in parti
ular has to be in
ludedright from the onset. This does not only assureresults whi
h no longer diverge, but also providesa systemati
 and 
onvergent s
heme. On thequantum level su
h problems requires te
hniquesbeyond the standard repertoire of perturbationtheory or the quasi-parti
le approximation.The produ
tion or absorptionrates are given by photon selfenergy diagrams of the typeto the right with an in{ and

�� �����CCC���CCC���CCC���CCC���CCCoutgoing photon line (dashed). The hat
hed looparea denotes all strong intera
tions of the sour
e.The latter give rise to a whole series of diagrams.As mentioned, for the parti
les of the sour
e, e.g.the nu
leons, one has to re-sum Dyson's equationwith the 
orresponding full 
omplex self energyin order to determine the full Green's fun
tionsin dense matter. On
e one has these Green'sfun
tions together with the intera
tion verti
esat hand one 
ould in prin
iple 
al
ulate the re-quired diagrams. However both, the 
omputa-tional e�ort to 
al
ulate a single diagram and thenumber of diagrams, are in
reasing dramati
allywith the loop order of the diagrams, su
h thatin pra
ti
e only lowest order loop diagrams 
anbe 
onsidered in the full quantum 
ase. In 
er-tain limits some diagrams drop out. We 
ouldshow that in the 
lassi
al limit of the quantumdes
ription, whi
h in this 
ase implies the hierar-
hy !; j~qj;� � T � m together with low phase-spa
e o

upations for the sour
e, i.e. f(x; p)� 1,only the following set of diagrams survive
4



�� ��s s + �� ��s s�� �� +�� ��s s�� ���� ��: : : �� �� + : : :
: : :

(7)In these \Langevin" diagrams the bold lines de-note the full nu
leon Green's fun
tions whi
h alsoin
lude the damping width, the bla
k blo
ks rep-resent the e�e
tive nu
leon-nu
leon intera
tion inmatter, and the full dots the 
oupling vertex tothe photon. Ea
h of these diagrams with n inter-a
tion loop insertions just 
orresponds to the nthterm in the 
lassi
al Langevin result (6). Thusthe 
lassi
al multiple 
ollision example providesa quite intuitive pi
ture about su
h diagrams.Thereby the diagram of order n des
ribes theinterferen
e of the amplitude where the photonis "emitted" at some time and that where it is"emitted" n 
ollisions later. Further details aregiven in [10℄.
V. �-DERIVABLE APPROXIMATIONSFollowing Luttinger, Ward [16℄, and the re-formulation by Cornwall, Ja
kiw and Tomboulis[17℄ using path-integral methods for equilibrium
ase, the generating fun
tional �f�;Gg for theequations of motions, both, for the 
lassi
al �elds� =< b� > and Dyson's equation for the propaga-tors G, 
an be expressed in terms of an auxiliaryfun
tional �, where � is solely given in terms offull, i.e. re-summed, propagators G and full 
las-si
al �elds �. Following [18℄ it 
an be generalizedto the real time 
ase with the diagrammati
 rep-resentationi� f�;Gg = i�0 �G0	+ I dxL0f�; ���g

+Xn� 1n� �� ���i� �� ���i�
�� ���i�
. . . . . .
� �
� �| {z }� ln �1��G0 � ��

��� ���i�� �
� �| {z }��G� �

+Xn� 1n� ��
��


2| {z }+ i� f�;Gg
: (8)

Here upper signs relate to fermion quanti-ties, whereas lower signs, to boson quantities.Thereby n� 
ounts the number of self-energy�-insertions in the ring diagrams, while for the
losed diagram of � the value n� 
ounts the num-ber of verti
es building up the fun
tional �. Dueto this fa
tor su
h a set of diagrams is not resum-able in the standard diagrammati
 sense. The �0solely depends on the unperturbed propagatorG0 (thin line) and, hen
e, is treated as a 
on-stant with respe
t to the fun
tional variationsin G(x; y) and �(x). The diagrams 
ontribut-ing to � are given in terms of full propagators G(thi
k lines) and 
lassi
al �elds �. As a 
onse-quen
e, these �-diagrams have to be two-parti
leirredu
ible (label 
2), i.e. they 
annot be de
om-posed into two pie
es by 
utting two propagatorlines. The latter property mat
hes diagrammati
rules for the re-summed self-energy �(x; y) andthe sour
e 
urrent J(x) of the 
lassi
al �eld equa-tions, whi
h results from fun
tional variation of� with respe
t to any propagator G(y; x), i.e.�i� = �Æi�=ÆiG; iJ = Æi�=Æ�: (9)It dire
tly follows from the stationarity 
onditionof � (8) with respe
t to variations of G and � onthe 
ontourÆ� f�;Gg =ÆG = 0; Æ� f�;Gg =Æ� = 0; (10)whi
h indeed provides the Dyson equation withself-energy 
onsistent with respe
t to the �-fun
tional and the 
lassi
al �eld equation. Ingraphi
al terms, the variation (9) with respe
t toG is realized by opening a propagator line in alldiagrams of �. The resulting set of thus openeddiagrams must then be that of proper skeletondiagrams of � in terms of full propagators, i.e.void of any self-energy insertions.In order to arrive at a 
losed and 
onsistents
heme we 
onsider the so-
alled �-derivable ap-proximation, �rst introdu
ed by Baym [11℄ basedon ref. [19℄ within linear response to external per-turbation of equilibrated systems. They used the
orresponding imaginary time formulation. A �-derivable approximation is 
onstru
ted by 
on-�ning the in�nite set of diagrams for � to ei-ther only a few of them or some sub-series ofthem. Note that � itself is 
onstru
ted in termsof \full" Green's fun
tions and 
lassi
al �elds,where \full" now takes the sense of solving self-
onsistently the Dyson and Classi
al �eld equa-tion with the driving terms � and J derived fromthis � through relation (9). It means that evenrestri
ting ourselves to a single diagram in �, infa
t, we deal with a whole sub-series of perturba-tion theory diagrams, and \full" takes the senseof the sum of this whole sub-series. Thus, a �-derivable approximation o�ers a natural way of5



introdu
ing 
losed, i.e. 
onsistent approximations
hemes based on summation of diagrammati
sub-series. In order to preserve the original sym-metry of the exa
t � we postulate that the set ofdiagrams de�ning the �-derivable approximation
omplies with all su
h symmetries. As a 
onse-quen
e, approximate forms of �(appr.) de�ne ef-fe
tive theories, where �(appr.) serves as a gen-erating fun
tional for approximate self-energies�(appr.)(x; y) and sour
e 
urrents J(x) throughrelation (9), whi
h then enter as driving terms forthe Dyson equations. The propagators solvingthis set of Dyson equations are still 
alled \full"in the sense of the �(appr.)-derivable s
heme. Be-low, we omit the supers
ript \appr.".
VI. GENERALIZED KINETIC EQUATIONA. Gradient Expansion S
hemeFor slightly inhomogeneous and slowly evolv-ing systems, the degrees of freedom 
an be subdi-vided into rapid and slow ones. Any kineti
 ap-proximation is essentially based on this assump-tion. Then for any two-point fun
tion F (x; y),one separates the variable � = (t1 � t2; ~r1 � ~r2),whi
h relates to rapid and short-ranged mi
ro-s
opi
 pro
esses, and the variable X = 12 (t1 +t2; ~r1 + ~r2), whi
h refers to slow and long-ranged
olle
tive motions. The Wigner transformation,i.e. the Fourier transformation in four-spa
e dif-feren
e � = x�y to four-momentum p of the 
on-tour de
omposed 
omponents of F ij ,i; j 2 f�+gF ij(X; p) = Z d�eip�F ij (X + �=2; X � �=2)(11)leads to a (
o-variant) four phase-spa
e formula-tion of two-point fun
tions. The Wigner trans-formation of Dyson's equation (10) in f�+g no-tation is straight forward. For details and the ex-tensions to in
lude the 
oupling to 
lassi
al �eldequations we refer to ref. [18℄.Standard transport des
riptions usually in-volve two approximation steps: (i) the gradientexpansion for the slow degrees of freedom, as wellas (ii) the quasi-parti
le approximation for rapidones. We intend to avoid the latter approxima-tion and will solely deal with the gradient approx-imation for slow 
olle
tive motions by perform-ing the gradient expansion of the 
oupled Dysonequations. This step indeed preserves all the in-varian
es of the � fun
tional in a �-derivable ap-proximation.

B. Generalized Kineti
 Equation in Physi
alNotationIt is helpful to avoid all the imaginary fa
torsinherent in the standard Green's fun
tion formu-lation and 
hange to quantities whi
h are real andin the homogeneous limit positive and thereforehave a straight physi
al interpretation mu
h likefor the Boltzmann equation. We de�neF (X; p) = A(X; p)f(X; p) = i(�)G�+(X; p);eF (X; p) = A(X; p)[1� f(X; p)℄ = iG+�(X; p) (12)for the generalized Wigner fun
tions F and eFand the 
orresponding four phase spa
e distri-bution fun
tions f(X; p) and Fermi/Bose fa
tors[1� f(X; p)℄. HereA(X; p) � �2Im GR(X; p) = eF � F (13)is the spe
tral fun
tion. A

ording to retardedrelations between Green's fun
tions Gij , only twoof these real fun
tions are required for a 
ompletedes
ription of the system's evolution.The redu
ed gain and loss rates and totalwidth of the 
ollision integral are�in(X; p) = i(�)��+(X; p);�out(X; p) = i�+�(X; p): (14)They determine the damping width�(X; p) � �2Im �R(X; p)= �out(X; p)� �in(X; p); (15)where GR and �R are the retarded propagatorand self-energy, respe
tively. The opposite 
om-binationsI(X; p) = �in(X; p)� �out(X; p); (16)determines the 
u
tuations.In terms of the new notation (12) - (15) and inthe �rst gradient approximation the generalizedkineti
 equation for F takes the formDF (X; p)�B = C(X; p) (17)with the di�erential drift operator (for simpli
ityin non-relativisti
 kinemati
s)D = �v� � �Re �R�p� � ��X + �Re �R�X� ��p� (18)with v� = (1; ~p=m). Further C(X; p) andB(X; p) are the 
ollision and a 
u
tuation term,respe
tivelyC(X; p) = �in(X; p) eF (X; p)� �out(X; p)F (X; p)B = ��in;Re GR	 : (19)6



We need still one more equation, whi
h 
anbe provided by the retarded Dyson equation. Interms of the new notation it takes the simple formDGR(X; p) + i2 ��; GR	 = 0; (20)�M(X; p) + i2�(X; p)�GR(X; p) = 1; (21)with the "mass" fun
tionM(X; p) = p0 � 12m~p2 � Re �R(X; p); (22)whi
h relates to the drift operator via Df =fM; fg for any four phase-spa
e fun
tion f . Sub-set (20) - (21) is solved by [20℄GR = 1M(X; p) + i�(X; p)=2 (23)
) 8>><>>: A(X; p) = �(X; p)M2(X; p) + �2(X; p)=4 ;Re GR(X; p) = M(X; p)M2(X; p) + �2(X; p)=4 :The spe
tral fun
tion satis�es the sum{ruleZ 1�1 dp02� A(X; p) = 1; (24)whi
h follows from the 
anoni
al equal-time(anti) 
ommutation relations for (fermioni
)bosoni
 �eld operators.We now provide a physi
al interpretation ofvarious terms in the generalized kineti
 equa-tion (17). The drift term DF on the l.h.s. ofeq. (17) is the usual kineti
 drift term in
lud-ing the 
orre
tions from the self-
onsistent �eldRe �R into the 
onve
tive transfer of real andalso virtual parti
les. In the 
ollision-less 
aseC = B = 0, i.e. DF = 0 (Vlasov equation), thequasi-linear �rst order di�erential operator D de-�nes 
hara
teristi
 
urves. They are the standard
lassi
al paths in the Vlasov 
ase. Thereby thefour-phase-spa
e probability F (X; p) is 
onservedalong these paths. The formulation in terms of aPoisson bra
ket in four dimensions implies a gen-eralized Liouville theorem. In the 
ollisional 
aseboth, the 
ollision term C and the 
u
tuationterm B 
hange the phase-spa
e probabilities ofthe "generalized" parti
les during their propaga-tion along the "generalized" 
lassi
al paths givenby D. We use the term "generalized" in order toemphasize that parti
les are no longer bound totheir mass-shell, M = 0, during propagation dueto the 
ollision term, i.e. due de
ay, 
reation ors
attering pro
esses.The r.h.s. of eq. (17) spe
i�es the 
ollisionterm C in terms of gain and loss terms, whi
h also


an a

ount for multi-parti
le pro
esses. Sin
e Fin
ludes a fa
tor A, C further deviates from thestandard Boltzmann-type form in as mu
h thatit is multiplied by the spe
tral fun
tion A, whi
ha

ounts for the �nite width of the parti
les.The additional Poisson-bra
ket termB = ��in;Re GR	 = M2 � �2=4(M2 + �2=4)2 D �in+ M�(M2 + �2=4)2 f�in;�g (25)is spe
ial. It 
ontains genuine 
ontributions fromthe �nite mass width of the parti
les and de-s
ribes the response of the surrounding matterdue to 
u
tuations. This 
an be seen from the
onservation laws dis
ussed below. In parti
u-lar the �rst term in (25) gives rise to a ba
k-
ow
omponent of the surrounding matter. It restoresthe Noether 
urrents as the 
onserved ones fromthe intuitively expe
ted sum of 
onve
tive 
ur-rents arising from the 
onve
tive D eF terms in(17). The se
ond term of (25) gives no 
ontribu-tion in the quasi-parti
le limit of small dampingwidth limit and represents a spe
i�
 o� mass-shell response, 
.f. [21,22℄.
C. Conservations of the Current andEnergy{MomentumSpe
ial 
ombinations of the transport equa-tions (17) and the 
orresponding one for eFweighted with e and p� , and integrated overmomentum give rise to the 
harge and energy{momentum 
onservation laws, respe
tively, withthe Noether 
harge 
urrent and Noether energy{momentum tensor de�ned by the following ex-pressionsj�(X) = e2Tr Z d4p(2�)4 v� �F (X; p)� eF (X; p)� ;���(X) = 12Tr Z d4p(2�)4 v�p� �F (X; p)� eF (X; p)�+g�� �E int(X)� Epot(X)� : (26)HereE int(X) = D� bL int(X)E = Æ�Æ�(x) �����=1 (27)is the intera
tion energy density, whi
h in termsof � is given by a fun
tional variation withrespe
t to a spa
e-time dependent 
ouplingstrength of bL int ! �(x) bL int, 
.f. ref. [18℄. Thepotential energy density Epot takes the formEpot = 12Tr Z d4p(2�)4 hRe �R �F � eF�+Re GRIi (28)
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where I = �in � �out. Whereas the �rstterm 
omplies with quasi-parti
le expe
tations,namely mean potential times density, the se
-ond term displays the role of 
u
tuations I =�in � �out in the potential energy density. Sin
ein many 
ases intera
tion and potential energyare proportional to ea
h other, the same state-ment applies to the intera
tion energy, too. This
u
tuation term pre
isely arises form the B-termin the kineti
 eq. (17), dis
ussed around eq. (25).It restores that the Noether expressions (26) areindeed the 
onserved quantities. In this 
ompen-sation we see the essential role of the 
u
tuationterm in the generalized kineti
 equation. Drop-ping or approximating this term would spoil the
onservation laws. Indeed, both expressions in(26) 
omply exa
tly with the generalized kineti
equation (17), i.e. they are exa
t integrals of thegeneralized kineti
 equations of motion. As usualthe existen
e of su
h 
onservation laws require
ertain invarian
es whi
h lead to 
ertain 
onsis-ten
y relations. In ref. [18,22℄ it has been shownthat these are met if all the self-energies are �-derivable.In the �eld theoreti
al 
ase there are 
ontri-butions in (26), des
ribing modi�
ations of theva
uum-polarization in matter. These terms aregenerally ultra-violet divergent, and hen
e, haveto be properly renormalized on the va
uum level.Alongside the spe
tral sum-rule (24) gets modi-�ed by wave-fun
tion renormalization.
D. Multipro
ess De
omposition of�-Derivable Collision TermTo be spe
i�
 we 
onsider a system of fermionsintera
ting via a two-body potential V = V0Æ(x�y), and, for the sake of simpli
ity, disregardits spin stru
ture, by redu
ing spin and anti-symmetrization e�e
ts to a degenera
y fa
tor d.To derive the de
omposition of a �-derivable 
ol-lision term, we employ the same rules as de-s
ribed in ref. [22℄.In the �rst example we 
onsider the generatingfun
tional � to be approximated by the followingtwo diagrams
i� = 12 r

-
� + 14 r r--�� ; (29)

the dashed line illustrating the de
omposition. Inthe f�+g matrix notation of the Green's fun
-tions one 
an easily see that one-point diagramsdo not 
ontribute to the 
ollision term, while de-
omposing the se
ond one along the dashed lineleads to a purely lo
al result

C(2) = d2 Z d4p1(2�)4 d4p2(2�)4 d4p3(2�)4 ��� q���wR ���2 (30)�Æ4 (p+ p1 � p2 � p3)�F2F3 eF eF1 � eF2 eF3FF1� ;where the brief notation Fi = F (X; pi) et
. isused. This 
ollision integral has pre
isely theform of the binary 
ollision term of Boltzmann{Uehling{Uhlenbe
k (BUU), ex
ept for the fa
tthat the distribution fun
tions are not 
on-strained by the mass shell. The binary transitionrate R(2)2 = V 20 = ��� q���wR ���2 (31)is non-negative in this 
ase.The pi
ture be
omes more 
ompli
ated, if �involves diagrams of higher orders. For instan
e,let us add the following three point diagram to�, whi
h is next in a series of ring diagrams, i.e.i� = i ��(1) +�(2) +�(3)�
= r-� + 12 r r--�� + 13 r r

r
�� ^- ℄�

 

 

 (32)

where one possible de
omposition is illustratedby the dashed line. The 
orresponding self-energy be
omes�i� = �i ��(1) +�(2) +�(3)� =
r--- + r r-�-- - + r r

r� ^℄�-- - (33)Now the 
ollision term 
ontains a non-lo
al partdue to the last diagram. The lo
al part 
an easilybe derived in the formC lo
(2) + C lo
(3) = d2 Z d4p1(2�)4 d4p2(2�)4 d4p3(2�)4
�0������ q���wR + qq�

�6?----
�����2 � ����� qq�

�6?----
�����21A (34)

�Æ4 (p+ p1 � p2 � p3)�F2F3 eF eF1 � eF2 eF3FF1� ;where all the verti
es in the o�-shell s
atteringamplitudes are of the same sign, say " � " forde�niteness, i.e., there are no "+�" and "�+"Green's fun
tions left. The quantity C lo
(2) + C lo
(3)is again of the Boltzmann form
R(2)2 +R(3)2 = ����� q���wR + qq�

�6?----
�����2 � ����� qq�

�6?----
�����2 ;
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the sub-label 2 denoting that 2 pairs of parti
le-hole lines are a�e
ted by the de
omposition 
ut.It 
an be shown that under normal 
ir
umstan
esalso this rate 
oeÆ
ient is positive.
E. Kineti
 EntropyIgnoring higher order gradients the generalizedkineti
 equation (17) provides us with the follow-ing relation��s�(x) =Xa Z d4p(2�)4 ln eFaFaCa(x; p); (35)

where the quantitys� =Xa s�a =Xa Z d4p(2�)4"�v� � �Re �Ra�p� � � eFa ln eFaAa � Fa ln FaAa!� Re GRa  ���aout�p� ln eFaAa � ��ain�p� ln FaAa!# ; (36)
obtained from the l.h.s. of the kineti
 equation isinterpreted as the Markovian part of the entropy
ow. Here we have introdu
ed a summation overa denoting the di�erent parti
le spe
ies and in-trinsi
 quantum numbers for a multi-
omponentsystem. The interesting aspe
t is that for spe-
ial lo
al 
ollision terms Ca as the ones dis
ussedabove the r.h.s. of (35) 
an be shown to benon-negative and therefore gives rise to an H-theorem. Again the fun
tional properties of �have been used. The positivity of r.h.s. of (35 isexa
tly given for �-fun
tionals with two internalpoints for whi
h in the equilibrium limit the zero
omponent of the non-equilibrium entropy 
ow(36) agrees with the 
orresponding equilibriumentropy. Memory 
orre
tions as 
ontained in �-fun
tionals with more than two points give riseto extra gradient terms whi
h 
ontribute to theentropy 
ow. For details we refer to our forth-
oming paper [22℄.

VII. CONCLUSIONIn the �rst part of this talk the problem of softmodes in hard dense matter is dis
ussed under
ir
umstan
es whi
h 
an be treated 
ompletelyin analyti
al terms. The hard modes are de-s
ribed by a Fokker-Plan
k equation. They 
ou-ple to a 
lassi
al Maxwell �eld for the soft modes,
.f. Fig. 4. For this Abelian 
ase the result is
onserving and 
ompletely gauge invariant even

though the damping of the sour
e parti
les isfully in
luded. The fri
tion 
oeÆ
ient (
losely re-lated to the damping) determines the s
ale thatseparates soft from hard modes. This 
lassi
als
heme is seen to re-sum a 
ertain set of planardiagrams in the quantum 
ase, whi
h do survivein the 
lassi
al limit. Su
h 
on
epts are quite ageneral. In re
ent times they have been appliedto the hard thermal loop (HTL) re-summation[23℄ in terms of 
lassi
al transport [24,25℄. Inthe non-abelian QCD 
ase, however, in order topreserve gauge invarian
e, the transport part islimited to the 
ollision-less Vlasov equation, i.e.negle
ting the damping of the sour
e parti
les.A histori
al hard-loop re-summation s
heme isthe Fermi-liquid problem, where soft RPA-modesare treated by the 
oupling to the fermions inthe Fermi-sea, the latter representing the hardmodes, 
.f. Fig. 4.
QED: Maxwell Fields ( Fokker Plan
kEq.
QCD: Cl. Yang-MillsFields () Vlasov Eq.no Coll.-term
FermiLiquids: RPA-modes () Fermi-sea;EF

FIG. 4. Hard Loop Re-SummationIn pra
ti
al terms we have seen that the spe
-trum of soft parti
les resulting from 
ollisionsin dense matter 
an no longer appropriately bedes
ribed by the quasi-parti
le approximation,sin
e it leads to divergent results in the soft limit.Rather the �nite time between su

essive 
olli-sions and the ensuing relaxation rates �x in densematter lead to a 
onsiderable quen
hing of theprodu
tion rate, e.g. at small photon energies.This 
an be 
ompiled in the simple quen
hingfa
tor (5). Fig. 3 summarizes the main behavior,whi
h also is relevant in a quantum treatment ofthe sour
e.In the se
ond part a s
heme is presentedthat leads to self-
onsistent 
onserving transportequations. There we essentially followed ideassuggested by Kadano� and Baym in parti
ular.The 
entral quantity is a fun
tional � whi
h gen-erates the driving terms for the 
lassi
al �eld andtransport equations. It 
an be trun
ated at any9



desired loop order and still provides equationswhi
h ful�ll 
onservation laws. We expli
itly 
on-stru
ted the energy momentum tensor for this �-derivable method. The gradient approximationprovided equations of 
lassi
al type for the phase-spa
e distribution fun
tions in four dimensions.At no pla
e the quasi-parti
le approximation wasne
essary. Alongside from the �-derivable prop-erties a kineti
 entropy 
ould be derived, whi
hin some 
ases leads to an H-theorem.In summary the method has the following ad-vantages:| provides a self-
onsistent & 
onservingtransport s
heme;| allows to in
lude 
lassi
al �elds (softmodes);| in
ludes all QM e�e
ts that are a

ountedfor in the 
orresponding equilibrium treat-ment;| has no limitation to small widths;| in
ludes delay-time, drag & ba
k 
ow, andmemory e�e
ts.There are two limitations: �rst, the derivationis limited to slow spa
e-time variations of thema
ros
opi
 quantities; se
ondly, lo
al symme-tries, like gauge invarian
e, may be violated bysu
h re-summation s
hemes. The latter problemis inherent to all approa
hes, based on trun
atedself-
onsistent dynami
al equations.Our 
onsiderations are of parti
ular impor-tan
e for the theoreti
al des
ription of nu
leus-nu
leus 
ollisions at intermediate to relativisti
energies. The kinemati
al feature are su
h thatdamping e�e
ts play an essential role, i.e. theenergy un
ertainty of the parti
les is 
ompara-ble with their mean kineti
 energy! In parti
ularthe bulk produ
tion and absorption rates of allparti
les with masses less than T , if 
al
ulated instandard quasi-parti
le approximation, are seri-ously subje
ted to the here dis
ussed e�e
ts.In summary, the 
ombined e�ort from manysides to in
lude the �nite width of the parti-
les in dense matter, may give hope for a uni�edtransport theory whi
h appropriately des
ribesboth, the propagation of resonan
es and of o�-shell parti
les in the dense matter environment.
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