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The e�ets of the propagation of partiles whihhave a �nite life time and an aording width in theirmass spetrum are disussed in the ontext of trans-port desriptions. In the �rst part the oupling ofsoft photon modes to a soure of harged partilesis studied in a lassial model whih an be solvedompletely in analytial terms. The solution orre-sponds to a re-summation of ertain �eld theory di-agrams. The seond part addresses the derivation oftransport equations whih also aount for the damp-ing width of the partiles. The �-derivable methodof Baym is used to derive a self-onsistent and on-serving sheme. For this sheme a onserved energy-momentum tensor an be onstruted. Furthermore,a kineti entropy an be derived whih besides thestandard quasi-partile part also inludes ontribu-tions from utuation.

I. INTRODUCTIONWith the aim to desribe the ollision of twonulei at intermediate or even high energies one isonfronted with the fat that the dynamis hasto inlude partiles like the delta or rho-mesonresonanes with life-times of less than 2 fm/or equivalently with damping widths above 100MeV. The ollision rates dedued from presentlyused transport odes are omparable in magni-tude, whereas typial mean kineti energies asgiven by the temperature range between 70 to150 MeV depending on beam energy. Thus, thedamping width of most of the onstituents in thesystem an no longer be treated as a perturba-tion.As a onsequene the mass spetrum of thepartiles in the dense matter is no longer a sharpdelta funtion but rather aquires a width due toollisions and deays. The orresponding quan-tum propagators G (Green's funtions) are no
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longer the ones as in the standard text books for�xed mass, but rather have to be folded over aspetral funtion A(�; ~p), whih takes a Lorentzshape A(�; ~p) � �=((���(~P ))2+(�=2)2) of width�=2 in simple approximations. One thus omesto a piture whih uni�es resonanes whih havealready a width in vauum due to deay modeswith the "states" of partiles in dense matter,whih obtain a width due to ollisions (olli-sional broadening). The theoretial onepts fora proper many body desription in terms of a realtime non equilibrium �eld theory have alreadybeen devised by Shwinger, Kadano�, Baym andKeldysh [1℄ in the early sixties. First inves-tigations of the quantum e�ets on the Boltz-mann ollision term were given Danielewiz [2℄,the prinipal oneptual problems on the level ofquantum �eld theory were investigated by Lands-mann [3℄, while appliations whih seriously in-lude the �nite width of the partiles in transportdesriptions were arried out only in reent times,e.g. [2,4{10℄. For resonanes, e.g. the delta reso-nane, it was natural to onsider broad mass dis-tributions and ad ho reipes have been inventedto inlude this in transport simulation models.However, many of these reipes are not orretas they violate some basi priniple like detailedbalane [4℄, and the desription of resonanes indense matter has to be improved [9℄.In this talk the onsequenes of the propa-gation of partiles with short life times is re-addressed and disussed. In the �rst part agenuine soft mode problem is studied: the ou-pling of a oherent lassial �eld, the Maxwell�eld, to the stohasti Brownian motion of aharged partile. The rate of photons due toBremsstrahlung, given by the lassial urrent-urrent orrelation funtion, an be obtained inlosed analytial terms and disussed as a fun-tion of the marosopi transport properties, thefrition and di�usion oeÆient of the Brown-ian partile. The result orresponds to a partialre-summation of photon self energy diagrams inthe real-time formulation of �eld theory. In theseond part of this talk a sheme is presented,
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how to ome to a self-onsistent, onserving andthermodynamially onsistent transport desrip-tion of partiles with �nite mass width withinthe real-time formulation of non-equilibrium �eldtheory. The derivation is based on and general-izes the �-funtional method of Baym [11℄. The�rst-order gradient approximation provides a setof oupled equations of time-irreversible gener-alized kineti equations for the slowly varyingspae-time part of the phase-spae distributionsand retarded equations, whih provides the fastmiro-sale dynamis represented by the four-momentum part of the distributions. Funtionalmethods permit to derive a onserved energy-momentum tensor whih also inludes orretionsarising from utuations besides the standardquasi-partile terms. Memory e�ets [12℄ appear-ing in ollision term diagrams of higher orderare disussed. The variational properties of �-funtional permit to derive a generalized expres-sion for the non-equilibrium kineti entropy ow,whih inludes orretions from utuations andmemory e�ets. In speial ases we demonstratethat the entropy an only inrease with time (H-theorem).
II. PRELIMINARIESThe standard text-book transition rate interms of Fermi's golden rule, e.g. for the photonradiation from some initial state jii with oupa-tion ni to �nal states jfi

W = Pif ni(1� nf ) ������ 6if 6-
������ 2�(1 + n!) Æ(Ei � Ef � !~q) (1)with oupation n! for the photon, is limited tothe onept of asymptoti states. It is thereforeinappropriate for problems whih deal with par-tiles of �nite life time. One rather has to goto the \losed" diagram piture, where the samerate emerges as

W = ��
�
�

�
- (1 + n!)Æ(! � !~q) (2)

with now two types of verties � and + for thetime-ordered and the anti-time ordered part ofthe square of the amplitude. Together with theline sense and the � and + marks at the vertiesa unique orrespondene is provided between theoriented + ��! and � +�! propagator lines and the

initial and �nal states. Thus suh propagatorlines de�ne the densities of oupied states orthose of available states, respetively. There-fore all standard diagrammati rules an be usedagain. One simply has to extend those rules tothe two types of verties with marks � and +and the orresponding 4 propagators, the usualtime-ordered propagator � ��! between two � ver-ties, the anti-time-ordered one + +�! between two+ verties and the mixed + ��! or � +�! ones as den-sities of oupied and available states. For detailsI refer to the textbook of Lifshitz and Pitaevski[13℄. The advantage of the formulation in termsof \orrelation" diagrams, whih no longer referto amplitudes but diretly relate to physial ob-servables, like rates, is that now one is no longerrestrited to the onept of asymptoti states.Rather all internal lines, also the ones whih orig-inally orrespond to the \in" or \out" states arenow treated on equal footing. Therefore now onean deal with \states" whih have a broad massspetrum and whih therefore appropriately a-ount for the damping of the partiles. The or-responding Wigner densities + ��! or � +�! are thenno longer on-shell Æ-funtions in energy (on-massshell) but rather aquire a width in terms of thespetral funtion, e.g. for non-relativisti parti-lesiG�+ = � + � = �f(p)A(p)iG+� = + � � = (1� f(p))A(p) (3)
A(p) = �(p)��+ �F � �0~p � Re �R(p)�2 + (�(p)=2)2 :Here f(p) is the phase-spae oupation at four-momentum p = (�; ~p), A is the spetral funtionwith the damping width �(p) and in-medium on-shell energy �0~p �Re �R(p) and � is the hemialpotential. In general all quantities depend onboth, energy � and momentum ~p.
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FIG. 1. Closed real-time ontour with two exter-nal points x; y on the ontour.The non-equilibrium theory an entirely be for-mulated on one speial time ontour, the so alledlosed time path [1℄, �g. 1, with the time argu-ment running from some initial time t0 to in�n-ity and bak with external points plaed on thisontour, e.g., for the four di�erent omponentsof Green's funtions or self energies. The speial2



�+ or +� omponents of the self energies de�nethe gain and loss terms in transport problems,.f. eq. (2).
III. BREMSSTRAHLUNG FROMCLASSICAL SOURCESFor a lari�ation of the infra-red problem we�rst disuss two simple examples of soft modesin hard matter. These are examples in lassi-al eletrodynamis, whih both an be solvedanalytially to a ertain extent: there the hardmatter is desribed either by a di�usion proessor by a random walk problem, respetively [10℄.As the soure partiles move non-relativistiallythese ases do not su�er from standard patholo-gies enountered in the hard thermal loop (HTL)problem of QCD, namely the ollinear singular-ities, where ~v~q � 1 and from diverging Bose-fators. The advantage of these examples is thatdamping an be fully inluded without violatingurrent onserving and gauge invariants in thease of Abelian �elds. The losed form resultsobtained orrespond to a partial re-summationof ertain planar diagrams, whih just survivein the lassial limit. The problem is relatedto the Landau{Pommeranhuk{Migdal e�et ofBremsstrahlung in high energy sattering [14℄.

FIG. 2. Current-urrent orrelation funtion inunits of e2 < v2 > as a funtion of time (in unitsof 1=�x) for di�erent values of the photon momen-tum q2 = 3k2�2x=< v2 > with k = 0; 1; 2; 3.The di�usion proess is assumed to be de-sribed by a Fokker-Plank equation for the prob-ability distribution f of position ~x and veloity~v ��tf(~x;~v; t)= �D�2x �2�~v2 + �x ��~v~v � ~v ��~x� f(~x;~v; t): (4)

Likewise utuations evolve in time by this equa-tion and this way determine the orrelations.The two marosopi parameters are the spatialdi�usion oeÆient D and a frition onstant �xwhih determines the relaxation rates of veloi-ties (frition due to ollisions with the medium).In the equilibrium limit (t!1) the distributionattains a Maxwell-Boltzmann veloity distribu-tion where T = m 
~v2� =3 = mD�x. The orrela-tion funtion an be obtained in losed form andone an disuss the resulting time orrelations ofthe urrent at di�erent �xed values of the photonmomentum ~q, �g. 2 (details are given in ref. [10℄).For the transverse part of the orrelation tensorthis orrelation deays exponentially as � e��x�at ~q = 0, and its width further dereases with in-reasing momentum q = j~qj. Besides trivial kine-matial fators, the in-medium prodution rateis given by the time Fourier transform � ! !.

FIG. 3. Rate of real photons d2N=(d!dt) inunits of 4�e2 
~v2� =3 for a non-relativisti soure for�x =50,100,150 MeV; for omparison the IQF results(dashed lines) are also shown.Fig. 3 displays the orresponding total pro-dution rates d2N=(d!dt) of on-shell photons(number per time and energy; whih is dimen-sionless) in units of 4�e2 
~v2� =3. One sees thatthe hard part of the spetrum behaves as ex-peted, namely, like in the IQF approximationthe rate grows proportional to �x and this wayproportional to the mirosopi ollision rate �(.f. below). However independent of �x therate saturates at a value of � 1=2 in these unitsaround ! � �x, and the soft part shows the in-verse behavior. That is, with inreasing olli-sion rate the prodution rate is more and moresuppressed! This is in line with the piture thatsuh photons annot resolve the individual olli-sions any more. Sine the soft part of the spe-trum behaves like !=�x, it shows a genuine non-perturbative feature whih annot be obtained
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by any power series in �x. For omparison: thedashed lines show the orresponding IQF yields,whih agree with the orret rate for the hardpart while they ompletely fail and diverge to-wards the soft end of the spetrum. For non-relativisti soures 
~v2� � 1 one an ignore theadditional q-dependene (dipole approximation;.f. �g. 2) and the entire spetrum is determinedby one marosopi sale, the relaxation rate �x.This sale provides a quenhing fatorC0(!) = !2!2 + �2x : (5)by whih the IQF results have to be orreted inorder to aount for the �nite ollision time ef-fets in dense matter.In the mirosopi Langevin piture one on-siders a lassial proess, where hard satteringsour at random with a onstant mean ollisionrate �. These satterings onseutively hangethe veloity of a point harge from ~vm to ~vm+1to ~vm+2, : : : (in the following subsripts m and nrefer to the ollision sequene). In between sat-terings the harge moves freely. For suh a mul-tiple ollision proess some expliit results anbe given, sine the orrelated probability to �ndthe harge at time t1 and t2 at two di�erent seg-ments with n satterings in between follows fromthe iterative folding of the exponential deay lawwith deay time 1=�. Therefore the spae inte-grated urrent-urrent orrelation funtion takesa simple Poisson formi����+ / Z d3x1d3x2
j�(~x1; t� �2 )j�(~x2; t+ �2 )�= e2 hv�(0)v�(�)i= e2e�j�� j 1Xn=0 j�� jnn! 
v�mv�m+n�m (6)
with v = (1; ~v). This result represents a genuinemultiple ollision desription of the orrelationfuntion. Here h: : :im denotes the average overthe disrete ollision sequene fmg. This form,whih one writes down intuitively, diretly in-ludes what one alls damping in the orrespond-ing quantum ase. Fourier transformed it deter-mines the spetrum in ompletely regular terms(void of any infra-red singularities) where eahterm desribes the interferene of the photon be-ing emitted at a ertain time or n ollisions later.In speial ases where veloity utuations aredegraded by a onstant fration � in eah ol-lision, suh that h~vm � ~vm+nim = �n h~vm � ~vmim,one an re-sum the whole series in (6) and thusreover the relaxation result with 2�x 
~v2� =

� 
(~vm � ~vm+1)2� at least for ~q = 0 and the or-responding quenhing fator (5).This lari�es that the di�usion result repre-sents a re-summation of the Langevin multipleollision piture and altogether only marosopisales are relevant for the form of the spe-trum and not the details of the mirosopi ol-lisions. Note also that the lassial results, bothfor the di�usion equation (.f. �g. 2) and forthe Langevin proess ful�ll the lassial version(�h! 0) of the sum rules disussed in refs. [15,10℄.
IV. RADIATION ON THE QUANTUMLEVELWe have seen that on the lassial level theproblem of radiation from dense matter an besolved quite naturally and ompletely at leastfor simple examples, and �gs. 2 and 3 displaythe main physis. They show, that the dampingof the partiles due to sattering is an importantfeature, whih in partiular has to be inludedright from the onset. This does not only assureresults whih no longer diverge, but also providesa systemati and onvergent sheme. On thequantum level suh problems requires tehniquesbeyond the standard repertoire of perturbationtheory or the quasi-partile approximation.The prodution or absorptionrates are given by photon selfenergy diagrams of the typeto the right with an in{ and

�� �����CCC���CCC���CCC���CCC���CCCoutgoing photon line (dashed). The hathed looparea denotes all strong interations of the soure.The latter give rise to a whole series of diagrams.As mentioned, for the partiles of the soure, e.g.the nuleons, one has to re-sum Dyson's equationwith the orresponding full omplex self energyin order to determine the full Green's funtionsin dense matter. One one has these Green'sfuntions together with the interation vertiesat hand one ould in priniple alulate the re-quired diagrams. However both, the omputa-tional e�ort to alulate a single diagram and thenumber of diagrams, are inreasing dramatiallywith the loop order of the diagrams, suh thatin pratie only lowest order loop diagrams anbe onsidered in the full quantum ase. In er-tain limits some diagrams drop out. We ouldshow that in the lassial limit of the quantumdesription, whih in this ase implies the hierar-hy !; j~qj;� � T � m together with low phase-spae oupations for the soure, i.e. f(x; p)� 1,only the following set of diagrams survive
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�� ��s s + �� ��s s�� �� +�� ��s s�� ���� ��: : : �� �� + : : :
: : :

(7)In these \Langevin" diagrams the bold lines de-note the full nuleon Green's funtions whih alsoinlude the damping width, the blak bloks rep-resent the e�etive nuleon-nuleon interation inmatter, and the full dots the oupling vertex tothe photon. Eah of these diagrams with n inter-ation loop insertions just orresponds to the nthterm in the lassial Langevin result (6). Thusthe lassial multiple ollision example providesa quite intuitive piture about suh diagrams.Thereby the diagram of order n desribes theinterferene of the amplitude where the photonis "emitted" at some time and that where it is"emitted" n ollisions later. Further details aregiven in [10℄.
V. �-DERIVABLE APPROXIMATIONSFollowing Luttinger, Ward [16℄, and the re-formulation by Cornwall, Jakiw and Tomboulis[17℄ using path-integral methods for equilibriumase, the generating funtional �f�;Gg for theequations of motions, both, for the lassial �elds� =< b� > and Dyson's equation for the propaga-tors G, an be expressed in terms of an auxiliaryfuntional �, where � is solely given in terms offull, i.e. re-summed, propagators G and full las-sial �elds �. Following [18℄ it an be generalizedto the real time ase with the diagrammati rep-resentationi� f�;Gg = i�0 �G0	+ I dxL0f�; ���g

+Xn� 1n� �� ���i� �� ���i�
�� ���i�
. . . . . .
� �
� �| {z }� ln �1��G0 � ��

��� ���i�� �
� �| {z }��G� �

+Xn� 1n� ��
��

2| {z }+ i� f�;Gg
: (8)

Here upper signs relate to fermion quanti-ties, whereas lower signs, to boson quantities.Thereby n� ounts the number of self-energy�-insertions in the ring diagrams, while for thelosed diagram of � the value n� ounts the num-ber of verties building up the funtional �. Dueto this fator suh a set of diagrams is not resum-able in the standard diagrammati sense. The �0solely depends on the unperturbed propagatorG0 (thin line) and, hene, is treated as a on-stant with respet to the funtional variationsin G(x; y) and �(x). The diagrams ontribut-ing to � are given in terms of full propagators G(thik lines) and lassial �elds �. As a onse-quene, these �-diagrams have to be two-partileirreduible (label 2), i.e. they annot be deom-posed into two piees by utting two propagatorlines. The latter property mathes diagrammatirules for the re-summed self-energy �(x; y) andthe soure urrent J(x) of the lassial �eld equa-tions, whih results from funtional variation of� with respet to any propagator G(y; x), i.e.�i� = �Æi�=ÆiG; iJ = Æi�=Æ�: (9)It diretly follows from the stationarity onditionof � (8) with respet to variations of G and � onthe ontourÆ� f�;Gg =ÆG = 0; Æ� f�;Gg =Æ� = 0; (10)whih indeed provides the Dyson equation withself-energy onsistent with respet to the �-funtional and the lassial �eld equation. Ingraphial terms, the variation (9) with respet toG is realized by opening a propagator line in alldiagrams of �. The resulting set of thus openeddiagrams must then be that of proper skeletondiagrams of � in terms of full propagators, i.e.void of any self-energy insertions.In order to arrive at a losed and onsistentsheme we onsider the so-alled �-derivable ap-proximation, �rst introdued by Baym [11℄ basedon ref. [19℄ within linear response to external per-turbation of equilibrated systems. They used theorresponding imaginary time formulation. A �-derivable approximation is onstruted by on-�ning the in�nite set of diagrams for � to ei-ther only a few of them or some sub-series ofthem. Note that � itself is onstruted in termsof \full" Green's funtions and lassial �elds,where \full" now takes the sense of solving self-onsistently the Dyson and Classial �eld equa-tion with the driving terms � and J derived fromthis � through relation (9). It means that evenrestriting ourselves to a single diagram in �, infat, we deal with a whole sub-series of perturba-tion theory diagrams, and \full" takes the senseof the sum of this whole sub-series. Thus, a �-derivable approximation o�ers a natural way of5



introduing losed, i.e. onsistent approximationshemes based on summation of diagrammatisub-series. In order to preserve the original sym-metry of the exat � we postulate that the set ofdiagrams de�ning the �-derivable approximationomplies with all suh symmetries. As a onse-quene, approximate forms of �(appr.) de�ne ef-fetive theories, where �(appr.) serves as a gen-erating funtional for approximate self-energies�(appr.)(x; y) and soure urrents J(x) throughrelation (9), whih then enter as driving terms forthe Dyson equations. The propagators solvingthis set of Dyson equations are still alled \full"in the sense of the �(appr.)-derivable sheme. Be-low, we omit the supersript \appr.".
VI. GENERALIZED KINETIC EQUATIONA. Gradient Expansion ShemeFor slightly inhomogeneous and slowly evolv-ing systems, the degrees of freedom an be subdi-vided into rapid and slow ones. Any kineti ap-proximation is essentially based on this assump-tion. Then for any two-point funtion F (x; y),one separates the variable � = (t1 � t2; ~r1 � ~r2),whih relates to rapid and short-ranged miro-sopi proesses, and the variable X = 12 (t1 +t2; ~r1 + ~r2), whih refers to slow and long-rangedolletive motions. The Wigner transformation,i.e. the Fourier transformation in four-spae dif-ferene � = x�y to four-momentum p of the on-tour deomposed omponents of F ij ,i; j 2 f�+gF ij(X; p) = Z d�eip�F ij (X + �=2; X � �=2)(11)leads to a (o-variant) four phase-spae formula-tion of two-point funtions. The Wigner trans-formation of Dyson's equation (10) in f�+g no-tation is straight forward. For details and the ex-tensions to inlude the oupling to lassial �eldequations we refer to ref. [18℄.Standard transport desriptions usually in-volve two approximation steps: (i) the gradientexpansion for the slow degrees of freedom, as wellas (ii) the quasi-partile approximation for rapidones. We intend to avoid the latter approxima-tion and will solely deal with the gradient approx-imation for slow olletive motions by perform-ing the gradient expansion of the oupled Dysonequations. This step indeed preserves all the in-varianes of the � funtional in a �-derivable ap-proximation.

B. Generalized Kineti Equation in PhysialNotationIt is helpful to avoid all the imaginary fatorsinherent in the standard Green's funtion formu-lation and hange to quantities whih are real andin the homogeneous limit positive and thereforehave a straight physial interpretation muh likefor the Boltzmann equation. We de�neF (X; p) = A(X; p)f(X; p) = i(�)G�+(X; p);eF (X; p) = A(X; p)[1� f(X; p)℄ = iG+�(X; p) (12)for the generalized Wigner funtions F and eFand the orresponding four phase spae distri-bution funtions f(X; p) and Fermi/Bose fators[1� f(X; p)℄. HereA(X; p) � �2Im GR(X; p) = eF � F (13)is the spetral funtion. Aording to retardedrelations between Green's funtions Gij , only twoof these real funtions are required for a ompletedesription of the system's evolution.The redued gain and loss rates and totalwidth of the ollision integral are�in(X; p) = i(�)��+(X; p);�out(X; p) = i�+�(X; p): (14)They determine the damping width�(X; p) � �2Im �R(X; p)= �out(X; p)� �in(X; p); (15)where GR and �R are the retarded propagatorand self-energy, respetively. The opposite om-binationsI(X; p) = �in(X; p)� �out(X; p); (16)determines the utuations.In terms of the new notation (12) - (15) and inthe �rst gradient approximation the generalizedkineti equation for F takes the formDF (X; p)�B = C(X; p) (17)with the di�erential drift operator (for simpliityin non-relativisti kinematis)D = �v� � �Re �R�p� � ��X + �Re �R�X� ��p� (18)with v� = (1; ~p=m). Further C(X; p) andB(X; p) are the ollision and a utuation term,respetivelyC(X; p) = �in(X; p) eF (X; p)� �out(X; p)F (X; p)B = ��in;Re GR	 : (19)6



We need still one more equation, whih anbe provided by the retarded Dyson equation. Interms of the new notation it takes the simple formDGR(X; p) + i2 ��; GR	 = 0; (20)�M(X; p) + i2�(X; p)�GR(X; p) = 1; (21)with the "mass" funtionM(X; p) = p0 � 12m~p2 � Re �R(X; p); (22)whih relates to the drift operator via Df =fM; fg for any four phase-spae funtion f . Sub-set (20) - (21) is solved by [20℄GR = 1M(X; p) + i�(X; p)=2 (23)
) 8>><>>: A(X; p) = �(X; p)M2(X; p) + �2(X; p)=4 ;Re GR(X; p) = M(X; p)M2(X; p) + �2(X; p)=4 :The spetral funtion satis�es the sum{ruleZ 1�1 dp02� A(X; p) = 1; (24)whih follows from the anonial equal-time(anti) ommutation relations for (fermioni)bosoni �eld operators.We now provide a physial interpretation ofvarious terms in the generalized kineti equa-tion (17). The drift term DF on the l.h.s. ofeq. (17) is the usual kineti drift term inlud-ing the orretions from the self-onsistent �eldRe �R into the onvetive transfer of real andalso virtual partiles. In the ollision-less aseC = B = 0, i.e. DF = 0 (Vlasov equation), thequasi-linear �rst order di�erential operator D de-�nes harateristi urves. They are the standardlassial paths in the Vlasov ase. Thereby thefour-phase-spae probability F (X; p) is onservedalong these paths. The formulation in terms of aPoisson braket in four dimensions implies a gen-eralized Liouville theorem. In the ollisional aseboth, the ollision term C and the utuationterm B hange the phase-spae probabilities ofthe "generalized" partiles during their propaga-tion along the "generalized" lassial paths givenby D. We use the term "generalized" in order toemphasize that partiles are no longer bound totheir mass-shell, M = 0, during propagation dueto the ollision term, i.e. due deay, reation orsattering proesses.The r.h.s. of eq. (17) spei�es the ollisionterm C in terms of gain and loss terms, whih also

an aount for multi-partile proesses. Sine Finludes a fator A, C further deviates from thestandard Boltzmann-type form in as muh thatit is multiplied by the spetral funtion A, whihaounts for the �nite width of the partiles.The additional Poisson-braket termB = ��in;Re GR	 = M2 � �2=4(M2 + �2=4)2 D �in+ M�(M2 + �2=4)2 f�in;�g (25)is speial. It ontains genuine ontributions fromthe �nite mass width of the partiles and de-sribes the response of the surrounding matterdue to utuations. This an be seen from theonservation laws disussed below. In partiu-lar the �rst term in (25) gives rise to a bak-owomponent of the surrounding matter. It restoresthe Noether urrents as the onserved ones fromthe intuitively expeted sum of onvetive ur-rents arising from the onvetive D eF terms in(17). The seond term of (25) gives no ontribu-tion in the quasi-partile limit of small dampingwidth limit and represents a spei� o� mass-shell response, .f. [21,22℄.
C. Conservations of the Current andEnergy{MomentumSpeial ombinations of the transport equa-tions (17) and the orresponding one for eFweighted with e and p� , and integrated overmomentum give rise to the harge and energy{momentum onservation laws, respetively, withthe Noether harge urrent and Noether energy{momentum tensor de�ned by the following ex-pressionsj�(X) = e2Tr Z d4p(2�)4 v� �F (X; p)� eF (X; p)� ;���(X) = 12Tr Z d4p(2�)4 v�p� �F (X; p)� eF (X; p)�+g�� �E int(X)� Epot(X)� : (26)HereE int(X) = D� bL int(X)E = Æ�Æ�(x) �����=1 (27)is the interation energy density, whih in termsof � is given by a funtional variation withrespet to a spae-time dependent ouplingstrength of bL int ! �(x) bL int, .f. ref. [18℄. Thepotential energy density Epot takes the formEpot = 12Tr Z d4p(2�)4 hRe �R �F � eF�+Re GRIi (28)
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where I = �in � �out. Whereas the �rstterm omplies with quasi-partile expetations,namely mean potential times density, the se-ond term displays the role of utuations I =�in � �out in the potential energy density. Sinein many ases interation and potential energyare proportional to eah other, the same state-ment applies to the interation energy, too. Thisutuation term preisely arises form the B-termin the kineti eq. (17), disussed around eq. (25).It restores that the Noether expressions (26) areindeed the onserved quantities. In this ompen-sation we see the essential role of the utuationterm in the generalized kineti equation. Drop-ping or approximating this term would spoil theonservation laws. Indeed, both expressions in(26) omply exatly with the generalized kinetiequation (17), i.e. they are exat integrals of thegeneralized kineti equations of motion. As usualthe existene of suh onservation laws requireertain invarianes whih lead to ertain onsis-teny relations. In ref. [18,22℄ it has been shownthat these are met if all the self-energies are �-derivable.In the �eld theoretial ase there are ontri-butions in (26), desribing modi�ations of thevauum-polarization in matter. These terms aregenerally ultra-violet divergent, and hene, haveto be properly renormalized on the vauum level.Alongside the spetral sum-rule (24) gets modi-�ed by wave-funtion renormalization.
D. Multiproess Deomposition of�-Derivable Collision TermTo be spei� we onsider a system of fermionsinterating via a two-body potential V = V0Æ(x�y), and, for the sake of simpliity, disregardits spin struture, by reduing spin and anti-symmetrization e�ets to a degeneray fator d.To derive the deomposition of a �-derivable ol-lision term, we employ the same rules as de-sribed in ref. [22℄.In the �rst example we onsider the generatingfuntional � to be approximated by the followingtwo diagrams
i� = 12 r

-
� + 14 r r--�� ; (29)

the dashed line illustrating the deomposition. Inthe f�+g matrix notation of the Green's fun-tions one an easily see that one-point diagramsdo not ontribute to the ollision term, while de-omposing the seond one along the dashed lineleads to a purely loal result

C(2) = d2 Z d4p1(2�)4 d4p2(2�)4 d4p3(2�)4 ��� q���wR ���2 (30)�Æ4 (p+ p1 � p2 � p3)�F2F3 eF eF1 � eF2 eF3FF1� ;where the brief notation Fi = F (X; pi) et. isused. This ollision integral has preisely theform of the binary ollision term of Boltzmann{Uehling{Uhlenbek (BUU), exept for the fatthat the distribution funtions are not on-strained by the mass shell. The binary transitionrate R(2)2 = V 20 = ��� q���wR ���2 (31)is non-negative in this ase.The piture beomes more ompliated, if �involves diagrams of higher orders. For instane,let us add the following three point diagram to�, whih is next in a series of ring diagrams, i.e.i� = i ��(1) +�(2) +�(3)�
= r-� + 12 r r--�� + 13 r r

r
�� ^- ℄�

 

 

 (32)

where one possible deomposition is illustratedby the dashed line. The orresponding self-energy beomes�i� = �i ��(1) +�(2) +�(3)� =
r--- + r r-�-- - + r r

r� ^℄�-- - (33)Now the ollision term ontains a non-loal partdue to the last diagram. The loal part an easilybe derived in the formC lo(2) + C lo(3) = d2 Z d4p1(2�)4 d4p2(2�)4 d4p3(2�)4
�0������ q���wR + qq�

�6?----
�����2 � ����� qq�

�6?----
�����21A (34)

�Æ4 (p+ p1 � p2 � p3)�F2F3 eF eF1 � eF2 eF3FF1� ;where all the verties in the o�-shell satteringamplitudes are of the same sign, say " � " forde�niteness, i.e., there are no "+�" and "�+"Green's funtions left. The quantity C lo(2) + C lo(3)is again of the Boltzmann form
R(2)2 +R(3)2 = ����� q���wR + qq�

�6?----
�����2 � ����� qq�

�6?----
�����2 ;
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the sub-label 2 denoting that 2 pairs of partile-hole lines are a�eted by the deomposition ut.It an be shown that under normal irumstanesalso this rate oeÆient is positive.
E. Kineti EntropyIgnoring higher order gradients the generalizedkineti equation (17) provides us with the follow-ing relation��s�(x) =Xa Z d4p(2�)4 ln eFaFaCa(x; p); (35)

where the quantitys� =Xa s�a =Xa Z d4p(2�)4"�v� � �Re �Ra�p� � � eFa ln eFaAa � Fa ln FaAa!� Re GRa  ���aout�p� ln eFaAa � ��ain�p� ln FaAa!# ; (36)
obtained from the l.h.s. of the kineti equation isinterpreted as the Markovian part of the entropyow. Here we have introdued a summation overa denoting the di�erent partile speies and in-trinsi quantum numbers for a multi-omponentsystem. The interesting aspet is that for spe-ial loal ollision terms Ca as the ones disussedabove the r.h.s. of (35) an be shown to benon-negative and therefore gives rise to an H-theorem. Again the funtional properties of �have been used. The positivity of r.h.s. of (35 isexatly given for �-funtionals with two internalpoints for whih in the equilibrium limit the zeroomponent of the non-equilibrium entropy ow(36) agrees with the orresponding equilibriumentropy. Memory orretions as ontained in �-funtionals with more than two points give riseto extra gradient terms whih ontribute to theentropy ow. For details we refer to our forth-oming paper [22℄.

VII. CONCLUSIONIn the �rst part of this talk the problem of softmodes in hard dense matter is disussed underirumstanes whih an be treated ompletelyin analytial terms. The hard modes are de-sribed by a Fokker-Plank equation. They ou-ple to a lassial Maxwell �eld for the soft modes,.f. Fig. 4. For this Abelian ase the result isonserving and ompletely gauge invariant even

though the damping of the soure partiles isfully inluded. The frition oeÆient (losely re-lated to the damping) determines the sale thatseparates soft from hard modes. This lassialsheme is seen to re-sum a ertain set of planardiagrams in the quantum ase, whih do survivein the lassial limit. Suh onepts are quite ageneral. In reent times they have been appliedto the hard thermal loop (HTL) re-summation[23℄ in terms of lassial transport [24,25℄. Inthe non-abelian QCD ase, however, in order topreserve gauge invariane, the transport part islimited to the ollision-less Vlasov equation, i.e.negleting the damping of the soure partiles.A historial hard-loop re-summation sheme isthe Fermi-liquid problem, where soft RPA-modesare treated by the oupling to the fermions inthe Fermi-sea, the latter representing the hardmodes, .f. Fig. 4.
QED: Maxwell Fields ( Fokker PlankEq.
QCD: Cl. Yang-MillsFields () Vlasov Eq.no Coll.-term
FermiLiquids: RPA-modes () Fermi-sea;EF

FIG. 4. Hard Loop Re-SummationIn pratial terms we have seen that the spe-trum of soft partiles resulting from ollisionsin dense matter an no longer appropriately bedesribed by the quasi-partile approximation,sine it leads to divergent results in the soft limit.Rather the �nite time between suessive olli-sions and the ensuing relaxation rates �x in densematter lead to a onsiderable quenhing of theprodution rate, e.g. at small photon energies.This an be ompiled in the simple quenhingfator (5). Fig. 3 summarizes the main behavior,whih also is relevant in a quantum treatment ofthe soure.In the seond part a sheme is presentedthat leads to self-onsistent onserving transportequations. There we essentially followed ideassuggested by Kadano� and Baym in partiular.The entral quantity is a funtional � whih gen-erates the driving terms for the lassial �eld andtransport equations. It an be trunated at any9



desired loop order and still provides equationswhih ful�ll onservation laws. We expliitly on-struted the energy momentum tensor for this �-derivable method. The gradient approximationprovided equations of lassial type for the phase-spae distribution funtions in four dimensions.At no plae the quasi-partile approximation wasneessary. Alongside from the �-derivable prop-erties a kineti entropy ould be derived, whihin some ases leads to an H-theorem.In summary the method has the following ad-vantages:| provides a self-onsistent & onservingtransport sheme;| allows to inlude lassial �elds (softmodes);| inludes all QM e�ets that are aountedfor in the orresponding equilibrium treat-ment;| has no limitation to small widths;| inludes delay-time, drag & bak ow, andmemory e�ets.There are two limitations: �rst, the derivationis limited to slow spae-time variations of themarosopi quantities; seondly, loal symme-tries, like gauge invariane, may be violated bysuh re-summation shemes. The latter problemis inherent to all approahes, based on trunatedself-onsistent dynamial equations.Our onsiderations are of partiular impor-tane for the theoretial desription of nuleus-nuleus ollisions at intermediate to relativistienergies. The kinematial feature are suh thatdamping e�ets play an essential role, i.e. theenergy unertainty of the partiles is ompara-ble with their mean kineti energy! In partiularthe bulk prodution and absorption rates of allpartiles with masses less than T , if alulated instandard quasi-partile approximation, are seri-ously subjeted to the here disussed e�ets.In summary, the ombined e�ort from manysides to inlude the �nite width of the parti-les in dense matter, may give hope for a uni�edtransport theory whih appropriately desribesboth, the propagation of resonanes and of o�-shell partiles in the dense matter environment.

[1℄ J. Shwinger, J. Math. Phys, 2 (1961) 407; L.P. Kadano� and G. Baym, Quantum Statisti-al Mehanis (Benjamin, 1962); L. M. Keldysh,

ZhETF 47 (1964) 1515; in Engl. translation Sov.Phys. JETP20 (1965) 1018.[2℄ P. Danielewiz, Ann. Phys. (N. Y.) 152 (1984)239[3℄ N. P. Landsmann, Phys. Rev. Lett. 60 (1988)1990; Ann. Phys. 186 (1988) 141.[4℄ P. Danielewiz, G. Bertsh, Nul. Phys. A533(1991) 712.[5℄ W. Botermans and R. Maliet, Phys. Rep. 198(1990) 115.[6℄ M. Herrmann, B. L. Friman, W. N�orenberg,Nul. Phys. A560 (1993) 411.[7℄ P. A. Henning, Phys. Rep. C 253 (1995) 235;Nul. Phys. A 582 (1995) 633.[8℄ E. Quak, P. A. Henning, GSI-95-29; Phys. Rev.Lett. in print; GSI-95-42.[9℄ W. Weinhold, Diploma thesis, GSI 1995.[10℄ J. Knoll and D. N. Voskresensky, Ann. Phys 249(1996) 532;a ondensed aount of this work is published inPhys. Lett. B 351 (1995) 43.[11℄ G. Baym, Phys. Rev. 127 (1962) 1391.[12℄ C. Greiner, K. Wagner, P.G. Reinhard,Phys.Rev. C49 (1994) 1693.[13℄ E. M. Lifshitz and L. P. Pitaevskii, "PhysialKinetis" Nauka, 1979; Pergamon press, 1981.[14℄ L. D. Landau and I. Pomeranhuk, Dokl. Akad.Nauk SSSR 92 (1953) 553, 735; also in Col-leted Papers of Landau, ed. Ter Haar (Gordon& Breah, 1965) papers 75 - 77; A. B. Migdal,Phys. Rev. 103, (1956)1811; Sov. Phys. JETP 5(1957) 527.[15℄ J. Knoll and C. Guet, Nul. Phys. A494 (1989)334;M. Durand and J. Knoll, Nul. Phys. A496(1989) 539;J. Knoll and R. Lenk, Nul. Phys. A 561 (1993)501.[16℄ J. M. Luttinger and J. C. Ward, Phys. Rev. 118(1960) 1417.[17℄ J.M. Cornwall, R. Jakiw and E. Tomboulis,Phys. Rev.[18℄ Yu. B. Ivanov, J. Knoll and D. N. Voskresenski,GSI-preprint-98-34, hep-ph/9807351.[19℄ G. Baym and L.P. Kadano�, Phys. Rev. 124(1961) 287.[20℄ W. Botermans and R. Maliet, Phys. Rep. 198(1990) 115.[21℄ V. Spika and P. Lipavsky, Phys. Rev. Lett. 73(1994) 3439; Phys. Rev. B52 (1995) 14615.[22℄ Yu. B. Ivanov, J. Knoll and D. N. Voskresenski,to be published.[23℄ R. D. Pisarski, Nul. Phys. A 525 (1991) 175; E.Braaten, Nul. Phys. (Pro. Suppl.) B 23 (1991)351.[24℄ J.P. Blaizot and E. Ianu, Nul. Phys. B 390(1993) 589, Phys. Rev. Lett. 70 (1993) 3376.[25℄ R. Jakiw and V.P. Nair, Phys. Rev. D 48(1993) 4991.
10


