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1 Introduction

The importance of coherence time effects on the production and absorption of field
quanta from the motion of source particles in non-equilibrium dense matter has first
been discussed by Landau, Pomeranchuk, Migdal (I.LPM) [1,2] (and many others
later) in the context of bremsstrahlung from ultra relativistic electrons undergoing
multiple rescatterings on Coulomb centers. The first successful measurements of the
corresponding suppression of bremsstrahlung have been carried out at the Stanford
Linear Accelerator Center very recently [3]. With this paper? we like to supplement
some quite intuitive and also formal considerations, which illustrate the nature of
production and absorption processes in a dense matter environment. The subject is
of quite general nature and applies to many physical problems, where either a source
couples weakly to a wave field or for the proper determination of local gain and loss
terms in quantum transport. Fxamples are the production of photon, or di-lepton
from a piece of dense nuclear matter or hadron gas formed in high energy nuclear
collisions, the gluon or parton radiation and absorption in QCD transport and its
practical implementation in parton kinetic models (such problems are discussed,
e.g. in [5,6]), the neutrino and axion radiation from supernovas and neutron-star
matter (see [7 10]), soft phenomena in quantum cosmological gravity (see [11]),
many condensed matter phenomena, as particle transport in metals and semicon-
ductors, radiation in plasma etc. (see [12,13]), and also the decoherence problem in
the electro-weak baryogenesis during the early universe (see [14,15]). To be specific,
however, we take the example of electrodynamics, considering photon production
from a piece of nuclear matter as the source, but when appropriate comment on
other cases. Since throughout the paper we discuss the corresponding proper self
energy of the produced particle, all considerations also apply to gain and loss terms
of other particles in non-equilibrium dynamics.

In the context of high-energy nucleus nucleus collisions [6] for example, it became
quite apparent over the last years, that a justification of QCID transport (e.g. in terms
of a parton kinetic picture) calls for a proper understanding of all soft processes.
Well known is the Rutherford singularity in scattering cross-sections of interactions
mediated by the exchange of zero mass quanta (photons/ gluons). In dense matter
the exchanged quantum acquires a finite real mass due to Debey-screening. Singu-
larities are also encountered in absorption or radiation processes (bremsstrahlung).
Induced by free scattering the rates diverge at vanishing four-momentum ¢ of the
radiated quantum, due to the infinite time scales used in the quasi-free approxima-
tion. In dense matter, however, due to the finite free propagation time 7.,n between
successive collisions the source particles aquire a damping and these rates become
regular. In particle physics context, most of the papers on the LPM effect discuss
the bremsstrahlung of some fast charged particle, such as hadron, quark or gluon,
which traverses a dense hadron gas or quark gluon plasma, e.g. see refs. [16.,5], where
the role of the matter is reduced to infinitely massive scatterers. In reality all the
particles in dense matter which couple to the radiated field should be treated on

2 a brief report of these results is given in [4]



equal footing. Fffects of the finite mean free propagation time on photon and gluon
radiation have been considered e.g. in refs. [16,18 20,5].

While the problem can be quite simply and intuitively formulated and solved in the
classical limit, where a classical source couples to a wave field, e.g. classical charge
particles couple to a Maxwell field, considerable conceptual difficulties arise for the
very same problem, if the source is described as a quantum many-body system.
In fact common standard techniques, like perturbation theory or the quasi-particle
approximation (QPA) have serious limitations to describe the production and/or
absorption rates over the whole range of energies and momenta, as they completely
fail in the soft limit.

Starting from a quantum many-body formulation in terms of Green’s functions most
derivations of transport descriptions employ two essential approximation steps: i) a
gradient expansion and ii) the QPA. For simplicity we concentrate on the defects
of the QPA in this paper. In the QPA, which is a consistent approximation scheme
for low temperature Fermi liquids (Landau - Migdal, see [21,22]), all particles in
the medium are treated on-shell with a well determined energy-momentum relation
(dispersion relation) which follows from the real part of the retarded self energy
of the particle. To be specific in this notion, we use the term "on-shell”, when the
particle follows a sharp energy-momentum relation. Thus the quasi-particle poles of
the retarded Green’s function lie just infinitesimally below the causality cut along
the real axis in energy. The corresponding approximation scheme in terms of these
on-shell states, which have infinite life time, is called quasi-particle approximation
(QPA). Due to interactions in dense matter the damping of the quasi-particles may
become important, the corresponding "quasi-particle” poles of the retarded prop-
agators move into the unphysical sheet below the real axis. As a consequence the
mass spectrum of the particles is no longer a sharp delta function but rather ac-
quires a width ', and one talks about "off-shell” propagation. In that case one has
to leave the standard description in terms of stable single particle states and em-
ploy quantum propagators (Green’s functions) with continuous mass distributions.
Landsmann [23] has coined the notion of "non-shell particles” in this connection.
One thus comes to a picture which unifies resonances which have already a width
in vacuum due to decay modes with the "states” of particles in dense matter, which
obtain a width due to collisions (collisional broadening).

The theoretical concepts for a proper many body description in terms of a real time
non equilibrium field theory have already been devised by Schwinger, Kadanoff,
Baym and Keldysh [24 26] in the early 60°°*. First investigations of the quantum
effects on the Boltzmann collision term were given by Danielewicz [27], the princi-
ple conceptual problems on the level of quantum field theory were investigated by
Landsmann [23], while applications which seriously include the finite width of the
particles in transport descriptions were carried out only in recent times, e.g. [12,27

37]. For resonances, e.g. the delta resonance in nuclear matter, it was natural to
consider broad mass distributions and ad hoc recipes have been invented to include
this in transport simulation models. However, many of these recipes are not correct



as they violate some basic principle like detailed balance [34], and the description of
resonances in dense matter has to be improved. The present study also gives some
hints on how to generalize the transport picture towards the inclusion of off-shell
propagations in dense matter [29,32,33].

In this paper we illustrate the practical implications of such non-equilibrium concepts
at the example of particle production from the dense matter dynamics. Thus all
source particles never reach an asymptotic state and naturally have a continuous
mass spectrum. In sect. 2 we derive the basic formulas for the rate of bremsstrahlung.
The classical and general quantum mechanical expressions, the latter in terms of
non equilibrium Green’s functions and self energies, are derived for the case of non

equilibrium dynamics. In sect. 3 we concentrate on the description of radiation from
classical sources. We start with the bremsstrahlung from a classical diffusion process,
and subsequently derive the photon spectrum for a classical random walk (Langevin)
process in terms of a completely regular multiple collision expansion. The low energy
behavior is discussed and pocket correction formulas for the in matter radiation
cross sections are suggested in terms of standard transport coefficients. Also finite
size corrections are obtained. Then in sect. 4 we use the non equilibrium Green’s
function formalism, see [24 27,38.31], and formulate diagrammatic resummations
where all quantities are expressed through physically meaningful terms. We show
how infra-red convergent results can be obtained through the account of the finite
damping width and discuss the QPA (sect. 4.5) and quasi classical (QC) (sect. 5)
limits from the corresponding infinite series of diagrams. In sect. 6 the lowest order
loop diagrams for the production rate from a piece of equilibrium dense matter are
analyzed in the quantum case, both at high and low temperatures. Conclusions and
perspectives are given in sect. 7. Some formal details are deferred to the Appendix.

We use rational units i = ¢ = 1. Whenever the behavior of some quantity is discussed
in the classical limit (h — 0), h will be given explicitly.

2 Basic Formulas for the Rate of Bremsstrahlung

If the source system couples only perturbatively (to lowest order in €?) to the elec-
tromagnetic field, the production or absorption rate of photons can be formulated
using standard text book concepts in terms of Fermi’s golden rule. The correspond-
ing transition amplitude is given by the electromagnetic current operator between
the initial and final states of the source. For dense matter problems it is more ad-
vantage to use a more general concept, where the local production and absorption
rates are expressed through the current-current correlation function?

3 For the description of coordinates and momenta we use the following conventions: num-
bers 1, 2, etc. abbreviate space-time points 2y = (#,21), etc.; for two-point functions
coordinate means are 2 = (21 + x2)/2 = (1, x), relative coordinates: £ = 2y — 29 = (7,&);
the corresponding four vector Wigner coordinates are (2;¢) = (t,x;w, q) for the photon
and (z;k) = (1, z;¢, k) for the particles of the source. Whenever advantage or necessary



<j”T(2)j“(])> for production, and <j”(2)jm(])> for absorption. (1)

Although j(x) = j(=,%) is a hermitian operator we distinguish between j and ;5T
in order to designate the photon creation and annihilation vertex, respectively. The
bracket (...) denotes a quantum ensemble average over the source; quantum states
and operators are taken in the Heisenberg picture.

With reference to the description of non equilibrium systems, where it is advantage
to use real-time non equilibrium field theory concepts, such as the Schwinger -
Kadanoff - Baym - Keldysh technique [24 27] we introduce the following notions

A (34(2)51(1)) = =T (12), Ax (5U2)D)) = T ) (2)

which relate the correlation functions to the proper self energies IT"T and 11T~ of
the photon, which are responsible for gain and loss (c.f. sect. 4.3). Throughout this
paper we use the {—, +} notation, defined in detail in sect. 4 in the convention of

ref. [38], chapt. 10.

In this formulation the production term for the phase space occupation n.(x,q,?)
(Wigner density) of on-shell photons per space time volume d*z = d*z dt, and per
energy momentum w — q volume, d*q = dwd®q, with polarization n = {n,} is given

by

d*n. (2, q,1) = —inn, 11 (259) (1 + 0,y (2, ¢,1)) §(w” — wg)d adlq, (3)

where wq 1s the photon on-shell energy, and

ST () =am [ (1 (- €/2)7" (e 4+ €/2) (4)

denotes the space-time Wigner transformation of the auto correlation function (2).
This local gain term is the on-shell version of a general quantum transport con-
cept (Kadanoff-Baym equation [25], c.f. (46), sect. 4). Tt likewise applies for virtual
photons (e.g. dilepton production), replacing the on-shell é-function in (3) by the
corresponding off-shell photon spectral function.

The above expressions are the space and time-dependent version of the more familiar
golden rule for quantum transitions between exact stationary eigenstates. Note that
by definition, c.f. (4), —in,m, 11" is a real quantity; if integrated over phase-space

we shall swap from one to another or even to some mixed representation, just changing the
corresponding arguments of the functions; for space -, or space-time independent systems
we drop the argument @ or z, respectively; e.g.: Tlio = T[(1;2) < T(2;¢) — (w,q) <
11(7, q); the latter two in space-time homogeneous systems. For simplicity the polarization
indices u and v or 7 and k for the spatial part of the tensor structure of IT*” will not always
be given in later equations.



volumes AxAgq large compared to h it becomes positive and serves as a production
rate.

Such a formalism has been applied in many cases employing the QPA for the equi-
librium Green’s functions, c.f. refs. [41,10]. However, the general formalism allows
to go beyond this limit and to account for the finite damping width of the source
particles due to their finite mean free path, which is the main topic of this paper.

Therefore the current-current correlation function is the central quantity of interest.
In graphical form it is determined by the proper self energy diagram of the photon

ATt = -f@‘-- (5)

which sums all one-photon irreducible self energy diagrams®. The dashed lines relate
to the photon, while the interior area (—ill) symbolically denotes the exact inclusion
of all strong interactions among the source particles.

2.1 Analytical properties and constraints

The self energies for gain and loss obey some analytical relations that follow right

from the definitions (2,4), like
ST () = (i)
which implies that —in,n, [1#"(x; ¢) is real. Production and absorption parts obey
¥ (23 q) = T (25 —q).
Integration over w projects onto equal time properties. Of particular help for the

discussion of soft processes [18,19] are the following energy weighted dipole (¢ = 0)
sum-rules (e.g. [39])

) am (JU(1)TH(L) ) for n =2
Cfdw o :

_3 %wn 2]_[ +(w7 q— 0’ t7 213)qu = Aqn — —27i <[D7(f)7 ']k(f)]> for n =1
xa A (DODHH)  for =0

which are valid also in the general non-equilibrium case. Here 7,k € {1,2,3} de-
note the spatial components. The r.h. expressions are given by the space integrated

4 To order €? naturally all diagrams are one-photon irreducible; however for the appli-
cation to the production of particles with a larger coupling constant, e.g. for gluons with
coupling constant ¢, also diagrams to higher order in g are relevant and one then has to
discard diagrams which are one gluon line reducible.



currents and dipole moments

() = [daiay D)= [dare) (7

While the n = 2 sum-rule directly follows from definition (4) and applies to any
current even non conserving, the other two use current conservation and partial
integrations, known as Siegert’s theorem (c.f. [40]), and therefore also require that
the system has a finite space extension. (If there are no long range correlations, the
n = 2 and n = 1 relations can also be used for infinite matter, if properly taken
per volume). For non-relativistic currents the commutator in the n = 1 (Thomas
- Reiche - Kuhn) sum-rule just becomes the sum of square charges in the system
i[Di(t), J¥(t)] = - €2, where v labels the constituents.

For systems in thermal equilibrium production and absorption follow the detailed

balance relation (Kubo - Martin - Schwinger [17])

(g 2) = T+ (g5 )e /" (8)

where T is the temperature. They allow to write the l.h.s. of the sum-rules as half-
sided integrals, e.g. integrating only the production rate

7d
i /_ww”*zﬂ**_(w,q = O;t,m) (] + (*])new/T) d*r = S (Q)
J 2r

These rules have been used to estimate the validity of the quasi-free scattering
prescription in kinetic models [18,19]. In the classical limit, where hiw — 0 (c.f. sect.
3. below) the Lh.s. of the n = 1 and n = 2 sum-rules coincide in equilibrium, apart
from a factor 7'/2, and the ensuing identity 25, = T'S; is a disguised form of the
classical equal partition theorem.

A further consistency check for diagrammatic elements which determine the self
energy can be given in terms of Ward identities in the case of conserved currents.
Since the space-integral of j° gives the conserved total charge 7 of the system, one
may also use that the space integrated density-density correlator is constant in time,
ie.

/d3m1d3m2ﬂ007+(];2) = /d‘qr{:ﬂm’**’(ﬂq = 0;t,2) = 477 = const., (10)

which applies even in non-equilibrium cases. For isolated systems the motion of the
center of mass leads to no radiation. Therefore one normally introduces effective
charges for the different kind of particles of the source in the standard manner such
that the total effective charge vanishes Z.¢; = 0.



3 Radiation from Classical Sources

In this section we discuss two examples which treat the source as a classical system
coupled to a Maxwell field. This limit just amounts to evaluate the current-current
correlator on the classical level *. We discuss the radiation caused by a single charged
particle (the source), which stochastically moves in neutral dense matter. The motion
of the source is described (a) by mesoscopic transport (diffusion process) and ()
by a microscopic Langevin process. Since these examples represent the QC limits of
the corresponding quantum field theory cases, we carry on the discussion in terms
of the photon self energy TT-T.

3.1 Diffusion Process

The motion of a non-relativistic source particle is assumed to be described by a
time dependent phase-space distribution f(a,v,t) in space and velocity with con-
vective current density j(@,t) = e [d*v v f(x,v,1). For standard dissipative media
in equilibrium the velocity autocorrelation function (integrated over space) decays
exponentially in time

<7)7:(7')7)k(0)> = % <v2> §keTalrl, (11)

[y

where T',. is the relaxation rate which is supposed to be approximately constant on
the relaxation time scale 1/1",. Tt relates to the spatial diffusion coefficient D via
Finstein’s relation

17 1,
D= §/d7 (0(7)0(0)) = g (v?) . (12)

Compared to the infra red divergent quasi free result oc 1/w? (c.f. eq. (28) below)
this form of the correlation renders the photon self energy

21, , 2Dbr%

— 1]_[;]_‘—((.()7 q = 0) = 47T€2p() <7)7:7)k> ﬁ = 4re pom(s ' (]3)

regular at four momentum ¢ = 0. It is determined by mesoscopic transport proper-
ties, namely by the diffusion coefficient 1) and relaxation rate I',; pg is the spatial
density of the charged particles.

® One has to realize that a classical photon carries no energy in the quantum sense, i.e.
hw — 0 and the energy is given by the electromagnetic fields.



Both f(x,v,t) and the autocorrelation function can bhe obtained in closed form, if
the time evolution of f, and the propagation of fluctuations 6 f are governed by a
standard (non-relativistic) diffusion process (Fokker Planck equation)

0 0? 0 0
pre (e, v,1) = (Driw+rma—vvva—m) flx, v, ). (14)

In the equilibrium limit (! — oo) the distribution attains a Maxwell-Boltzmann
form

e ()=m/T (15)

v? ] m?

- . —3/2 -
.feq(mvv) - PO.feq(v) = Po (QWDFT) P [ QDFT (277')3

where T'=m (v?) /3 = m DT, and p are the equilibrium temperature and chemical
potential and ¢(v) is the energy of the particle.

At 7 = 0 we consider an initial fluctuation §f(x,v,7 = 0) = 6*(2)§* (v — vo).
Its propagation in the equilibrated matter is also governed by the Fokker Planck
equation (14). By a Gaussian ansatz for the Fourier transform of this fluctuation
5.]E(q7y,7') = [d*xd% f(x,v,7)exp[—ige + iyv] the time-dependence can be ob-
tained in closed form as

5-f(q7yv7_> = exp [*A +iBy — Cyz] ,  where

DU, . 2
C = - (] — efzr”) , B= voe 1T igh (] — efr”) , (16)
A=iq ]dT'B(T') _De 2r, 7 — e T g4 3] 9 vo (7 1)
) or, L ‘ ‘ r, \ ‘
This fluctuation ¢ f is the conditional probability which determines the time-depen-
dence of the current autocorrelation function. With four vectors {v*} = {1,v}
and {B*} = {1, B} one can express the full correlation tensor in the mixed 7,¢q

representation as

ST (rg) = dm [ deee (@, 7) (0, 0))

= 4me’pq /dgvfeq(’v)v“l?”e*%‘ = 4xe’pg <7)“B”€7A>

€q

(Palr] 4 e - 1)} (17)

{<7)M7)y>eq e Telrl . D2grgr (efmlrl _ ])2} for u,ve{1,2,3}

X ig" D (e*rm“'—])sign(ﬂ for pu=0,rve{l,23}

I

D 2
—47762p0exp{ q

1 for p=v=20



with A and B as a function of 7, ¢ and vqg = v from (16). Here the ensemble
average (.. .>eq over the equilibrium distribution f., keeps only even moments of v
with (v?) = 3DT,.. The result complies exactly with current conservation, i.e. one

verifies Gy IT% + i 1TF = 0.

For transverse photons terms proportional to ¢*¢” drop. The corresponding spatial
part of the tensor is shown in fig. 1, right part. This correlation function decays

“T=7 at g = 0, and its width further decreases with increasing

exponentially as ~ ¢
momentum ¢ = |g| due to the increase in spatial resolution. The left part shows
the corresponding density-density correlation (¢ = v = 0), which decays only for

non-zero momentum, due to charge conservation.

Density corr. function 12 Current corr. function
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Fig. 1: Density-density and current-current correlation functions, fﬂTS]O “*(r,q) and
4“111 7+(7'7q)7 normalized to the values at 7 = 0 as a function of time 7 (in units of
1/T,.) for different values of the photon momentum ¢? = 3kT2 /< v? > with k = 0,1,2,3.

The remaining time Fourier transformation gives the w, g-dependence of the pho-
ton self-energy. It can be expressed in terms of the incomplete gamma function.

Straightforward expansion in powers {(qu/rm)e*rmhl}n leads to

— il Y (w, q) =47’ py <7)i7)k>eq exp [D qz/rm]

xi] —Dqg*\" 2(n+ 1), 42D q?
To ) ((n+ 1)+ Dg?)’ +u?

(18)

for transverse photons. Since the correlation functions are properly determined from
the time structure of the source, they comply with the n =2 (and n = 1) sum-rule
constraints.

There are two limiting cases where simpler analytical forms can be obtained: i)
at small momentum transfers where eq. (18) can be expanded in powers of ¢ and
rewritten as to provide a propagator type form and ii) for large momentum transfers
where from the exp{...} part in (17) a short time Gaussian behavior emerges. Thus,
for small momentum transfers one finds

10



21,

lim {*iﬂj’(w? q )} = 47762/)0 <7)777)k>

el T
~ dme’p <7)7:7)k> 2T for w<T (19)
o) T o g |

which generalizes the relaxation result (11,13) to finite g. On the other hand for
large momenta one realizes that

lim [—iﬂj’(ﬂq )] —47e?pq <7)’77)k>€q exp {—qurﬂz/Q] , and therefore

Dg?>T,
. o w?
. s — 4 o 2 ik N
Dl;r;rm [—ﬂTd (w,q )] = 4me”po <7) v >eq D e, exp{ 57 qQFT} (20)
m?T

— e’ <7)”7)k>
eq

23t P (51l =) /T

where obviously the essential contributions come from velocities which satisfy the
Cherenkov condition |v| & w/|q|. This limit is independent of the relaxation rate I,
and coincides with the quantum one-loop diagram result in the corresponding large
lg| limit, as we shall see in sect. 6.

Although the above expressions give the exact solution of the mathematical problem
posed in this section, its physical interpretation has to be done with some care for the
following reason. The equilibrium source distribution contains velocity components
that exceed the speed of light. Therefore for the physical result mistakes of the order
of exp[—3/(2(v?))] = exp[—m/(2T)] are expected. This restricts the application to
non-relativistic sources and for large g to space-like photons, where |g| > w.

For systems with given fixed mean-square velocity (v?) = const. the exact classical
on-shell rate (3) at |g| = w evidently scales as a function of w/T",.. Tt properly vanishes
at w = 0 and at infinity. It is important to note that the rate has an upper bound
of = =
collision-rate independent. For simplicity we quote the closed form obtained in the

e?po (v?), and indeed attains its maximum value around w ~ T',, which is

non-relativistic limit (19), which coincides with the dipole limit. There

I'/w forw>T,
— %62/}0 <7)2> 15 f()r w = FT (2])

w/l,  forw <k T,.

d’n, 4 2 2 w/Ts
Prdwdt - 3nC o (") 1+ (w/T,)?

One realizes that the ultra-violet part of the spectrum w > T',. behaves as intuitively
expected, fig. 2: the rate grows proportional to the relaxation rate, until it saturates
around w = T',.. For the soft part w < T',., however, the rate becomes inversely
proportional to the collision rate! The higher the collision rate the more suppressed
the spectrum. In order to illustrate the non-perturbative character of this soft be-
havior supposes I',, oc ¢?, where g is the strong coupling constant of the source

11



system. One sees that indeed the low-w part with Tl oc e?w /T, o e*w/g* represents
a genuine non-perturbative result in ¢, while the large w-part, where 1T o e%¢?/w, is

well described perturbatively.
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first terms n = 0, 1,2, 3 of the Langevin re-

source for T';, =50,100,150 MeV; for com-
parison the TQP results (dashed lines) are

sult, eq. (22) and the total sum (X) for the
case that

I /T = <(”m — Um+1 )2> /(2 <v2>) =1/3.

also shown.

3.2 Microscopic Langevin Process

For a later comparison with quantum diagrams in sect. 4 we should look into the
corresponding microscopic picture of classical propagation. There one can consider a
classical random process (Langevin process), where hard scatterings occur at random
with a constant mean collision rate I'. These scatterings consecutively change the
velocity of a point charge from v, t0 v,,41 to v, 12, . .. (in the following subscripts m,
n, and [ refer to the collision sequence, while superscripts 7, k € {1,2,3} specify the
spatial components of vectors and the self-energy tensor). In between scatterings the
point charge moves freely. For such a multiple collision process some explicit results
can be given. They all refer to the case of vanishing photon momentum ¢ = 0 (dipole
approximation) and therefore apply to non-relativistic sources where (v?) q? < T2
or to dilepton production, for example, since only the time structure is well known
in this case, while the space structure would require an integration of the random
classical paths.

For such a Langevin process the modulus of the autocorrelation function takes a
simple Poissonian form (fig. 3)

— il (7,9 = 0) =47e?pg <7)’:(7')7)k(0)>
|T'r|”

— dre?pye 117! > — <7);'7)Z'+”'>m, : (22)
n=0

n!

12



Here (...) denotes the average over the discrete collision sequence {m}. This form,
which one writes down intuitively, directly includes what one calls damping and
therefore corresponds to a resummation description in the quantum case. The cor-
responding perturbation theory result is obtained through an expansion in powers

of T

L < |I'rm & n ;
. 1]_[C]‘|'(7-7 q= 0) = 47r€2p0 Z | n'| (])k(]) <7)T’n7)fr’1,+l>m , (23)

n=0 o =0

which for dimensional reasons is also a power series in |7| in this case. If the

<7)’: vk > expectation values are replaced by unity in (22) or (23), one obtains

m - m-+n

the 00-component of 1T which becomes constant in time in line with (10).

The time Wigner transform of (22) determines the w-spectrum at vanishing ¢

o . 27 (T +iw)"*'}
— il (w,q = 0) = 4re’py Y <7)m7)fn+n>m Re{ (o2 1 T2)F .

n=0

(24)

This is a genuine multiple collision description for the photon production rate in
completely regular terms due to the (w? + )" form of all denominators. Each term
is regular, since right from the beginning one accounts for the damping of the source
particle because of its finite mean time 1/1" between collisions. The result (24) still
accounts for the coherence of the photon field, now expressed through the correlations
(VU pyn ), arising from the sequence of collisions. Note in particular, that, although
the total expression is positive, the n > () terms can be negative since they describe
the interference of the radiation arising from different propagation segments of the
source particle. Thus, the terms in (24) define partial rates, which later (sect. 5.2)
will be associated with specific self energy diagrams.

As already mentioned, the g-dependence of the self energy cannot be given in closed
form in general apart from the n = 0 term (c.f. with n = 0 term from eq. (24))

o 2T 7);7)2
— 1ﬂd+(w, q)~ 47762/)0 < oo qva + r2> . (25)

m.

It shows the typical Cherenkov enhancement at w = qv. At this level one may be
tempted to associate this (n = 0) term with the relaxation ansatz result (13). This
however is only true if < v,, v, >.,»= 0for n # 0, an approximation recently used
in refs. [16]. In the general case velocity correlations between successive scatterings
exist, and there will be a difference between the microscopic mean collision rate I" and
the mesoscopic relaxation rate I',.. Still, for systems, where the velocity is degraded

by a constant fraction a per collision, such that (v, - v,,1,) = a" (v, -v,,) , one

m m?

can resum the whole series in (24) and thus recover the relaxation result (13) at
g = 0. The macroscopic rate I',, is then determined by the microscopic scattering
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properties through T, = (1 —a)T", or 2 {(v,,)*), T = (v, — vup1)?), T. This clar-
ifies that the diffusion result (18) represents a resummation of the random multiple
collision result.

The following relations show different reformulations and limits of the Langevin
result (24). For instance the invariance of (24) is not directly visible, since absolute
velocities enter. Still the perturbation expression (23) can be rewritten, such that
except for the zero order term, which drops out in the Fourier transform, only
velocity differences appear

—iT t(7,q = 0) = 47e’pg {<7);7)f)’7’> - % <(7);n L (L 7)f)’1+1)>

SRS (" N et 0 b)), | @0

Terms of lowest odd order in |7| determine the asymptotic large w (ultra violet)
behavior of the spectrum

. — drepy (T2, . :

J]_TO [—1ﬂcl+(w7 q-— 0)] = — 0 {? <(”}n — 7)7’n+1)(7)f)’? — 7)f)'7,+1)>m
o] r 2n 2n—3 l Iy 3 . . . .

+ Z (;) Z (*]) / <(7)m — Uy )(7)m+l+1 — ”m+l+2)>m ) (27)
n=2 =0 '

Apart from the mean collision time & 1/T" this is an expansion in powers of (I'/w)?
and therefore represents the perturbation expansion result for the classical source
(T representing the interaction, while 1/w relates to the intermediate propagator).
This perturbation expansion (27) is interesting since it already displays the main
problem: While for w > T the series converges, if higher order correlations cease
sufficiently fast, there is no hope to ever recover the correct result (24) for w < T
This is so, since i) this series is necessarily divergent (it has to recover 1/(w? + T'?)
by a power series in I'), but also it misses the knowledge on the even powers in 7 in
eq. (26) which essentially determine the soft behavior.

The first term in (27) represents the incoherent quasi free production rate which for

> | (25)

It carries the known divergence at the soft point ¢ = 0, c.f. dashed lines in fig.

finite @ at given polarization n reads

nkm - nkm,+1

qkm qkm,+1

i T (. ) = Aol <

2 and 4. In conclusion: the commonly used 1QF prescription fails for soft particle
production.
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3.8 Finite Size Corrections

For systems of finite spatial extension and conserved currents one can consider the
n = 0 sum rule. Tt demands that TT**~*(g; ) has to vanish at least quadratically
with ¢ — 0. This property survives in the classical limit, where formally 7 — 0
and the spectrum becomes continuous. Thus, the term of zero order in w given by
[ {(v(7))(v(0))) d7 has to drop and the ensuing low energy part of the spectrum
(24) starts quadratically in w

lim [T (w. q = 0)] =

w—>0
drepy [w? & i w?
- 0 {ﬁ Y (n+1)(n+2) <”}n,”fﬁ,+n> +0 (F“)}. (29)

m
n=0

The simple relaxation ansatz (11) does not fulfill this finite size condition, since it
ignores long term anti-correlations on the scale of some recurrence time 1/1°,... That
is the time, where on the mean the center of charges returns to the same point ©.
This defect of the relaxation ansatz may be cured by a more general form which
includes such an anti-correlation, e.g.

I
(v(7)v(0)) = <v2> {emrl - FT:F |T|€rm|f|} ;
II . 2 ]’12 ]’12 (UJQ o ]—12 )
i = - 2 tok r rec rec
S (w7 1= 0) —dme Po <7) v > F_T {(4}2 + ]’172” * (U)Q + FZSC)Q } . (30)

The extra parameter I',... can be determined such that the spectrum fulfills the n =0
dipole sum-rule (6). For larger systems one infers that T',.. &~ 2 (v?) /((2*) T',.), where
() is the mean-square extension.

For small systems both time scales become comparable and the self energy tensor
attains the form

AT
—ill; T (w,q = 0) = 47e’po <7)”7)k> m for I, =T,... (31)

This form has been found in the one-dimensional model of ref. [19], where due to
the dominance of back scattering both time scales merge.

6 not to be confused with the Poincare recurrence time, which is of no relevance here.
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3.4 Comparison with Monte Carlo Fvaluation of Amplitudes

For illustration we like to present a simple model result and compare it to a Monte
Carlo method, where amplitudes are calculated by considering the phase of the
photon field along the classical orbits. Thus, one evaluates

| / div(t) expliwt — iqa(1)] (32)

along the random straight sections of the classical paths in the cascade model. This
method also permits to illustrate the finite size corrections discussed above. The
dotted line in fig. 4. shows the Monte Carlo phase integral result (32) from an
oriented random walk, compared to the simple relaxation result (13), dashed line.
The example has the property that the motion is limited to a finite space with
(2%) ~ 10 (v?) /T? and T, = 0.8T". The sharp dip at w = 0 and the little over shoot
around w ~ 0.31" are due to the finite size of the system. The full line gives the
relaxation result including the finite size corrections (30).

Evidently the Monte Carlo method is highly unreliable due to the strong cancelations
of terms that are randomly generated. The precision in fig. 4 is obtained with 200
cascade runs where each path has about 10” collisions (simulation codes have by far
less statistics!). The analytical result (24) has significant computational advantages,
provided the random process is of this form. For the same precision already a single
representative path with about 10% collisions is sufficient, while for the relaxation

ansatz one only has to determine the relaxation rate, i.e. a simple moment in time.
3.5  Infra-red Divergences, Current Conservation, Gauge Invariance and Identities

In the above multiple collision description with damping (22) all terms have a finite
range in time. Thus, they all are void of infra-red divergences and so is any limited
sum of terms of them. This is the desirable feature that we are aiming at. In addition
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the example above illustrates that in many cases only a few rescattering terms are
necessary in order to properly recover the correct result for the transverse part of
the correlation tensor both at small and large w. In fact the number n,. of required
rescattering terms is given by n, ~ 1'/T,.

The picture is more subtile for the longitudinal components of the tensor, since some
particular integrals are conserved (time independent) as they related to the total
charge, c.f. eq. (10), sect. 2.1. Thus —ill? (g = 0,7), c.f. fig. 1, has to be constant.

For the Langevin case this identity holds, since

i (FT’)”’

n=0

e T =1. (33)

n.

However, for any finite number of such terms this identity can never be recovered
exactly for all times, since the relaxation time of total charge is infinite!

Quite often one is interested in a solution of the problem up to a maximal time 1,4,
and one likes to request charge conservation on the correlator level to be maintained
only within this time span or within the corresponding w-range limited to w >
Wimin = 1 /tmar. With this limitation a finite number of terms n, ~ I't, .. ~ I'/wpin
is required for a proper description also of the longitudinal parts of the correlation
tensor at g = 0.

The above features have to be contrasted with perturbation theory (c.f. eq. (23)),
where the correlation function can be expressed by a power series in I in this case
and therefore leads to a power series in 7. Here the zero order term is finite (and
trivially constant in time), while the higher order terms cancel out for each given
order, c.f. (23). Thus, in perturbation theory current conservation is maintained
order by order also for the classical correlator (as one is used to from the quantum
case). The price to be payed is that in perturbation theory the infra-red properties
are completely ill.

In favor of the finite width description one should realize that any finite width
calculation up to a certain order n, includes the perturbation theory or QPA results
up to the very same order n,. In other words, if one would expand all finite width
terms within the order n, into powers of " one recovers all the QPA or perturbation
theory terms up to that order!

Only in the above sense current conservation, gauge invariance and other identities
related to them (e.g. Ward identities) can be understood and expected to hold for
a finite set of terms. These considerations are general. In particular they also apply
to any finite set of self-energy diagrams in the quantum case, which use full Green’s
functions with damping as discussed in the next section.

This completes the formal discussion of the classical radiation rate and the corre-
sponding classical expressions for the self energy of the photon.
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4 Non Equilibrium Green’s Function Description

In this section the production rate or photon self energy (2) is discussed in the
context of non-equilibrium quantum field theory, in terms of Green’s functions and
the corresponding non-equilibrium diagrams. Thereby one has to go beyond pertur-
bation theory which is not applicable for strongly interacting systems. The idea to
formulate theory in terms of appropriately defined physical terms was very fruitful.
It resulted in the development of the QPA method, see [21,22], where the changes
in the real part of the fermion self energy are taken into account substituting the
free particle energy 62 by the corresponding QPA energy. This method proved to
be very successful for the case of equilibrium matter at rather small temperature
(T < ep, where ¢ is the Fermi energy), since higher order corrections lead to

additional (T/er)? factors [41].

Since in the QPA the imaginary part of the self energy (ImXF) is supposed to be
negligible in the corresponding Green’s functions it still suffers the same infra red
problems as the perturbation expansion. Any finite set of diagrams leads to infra
red divergences in the soft limit (¢ — 0). Even certain resummation methods as the
hard thermal loop expansion [42,43] in QCD do not cure the problem. On the other
hand the classical considerations of the previous section clarify, that all infra red
divergences disappear, if one properly accounts for the finite collision rate I". Thus,
one has to avoid the zero-width perturbation theory or QPA and seriously account
for the finite damping width T' = —2Im%" of the source particles.

Therefore the simplest and physically most meaningful step is to go to the full
Green’s functions G (full lines in diagrams) associated with the in-medium propa-
gation for the constituents of the source. Thus one has to solve Dyson’s equation
in order to include also the damping width of the particles. This is done in sect.
4.2. The derivation of transport schemes is summarized. Further on some physically
meaningful resummations of the diagrams are proposed. Various graphical contri-
butions to the self energy diagram (5) are discussed in the QPA, and in the QC
limit.

4.1 Vertices and Green’s functions

For a theory of fermions interacting with bosons the basic diagrammatic elements
are the corresponding Green’s functions iG (lines) and interaction vertices —iV.
For non equilibrium description it makes no sense to discuss amplitudes. Rather
one evaluates the time-dependence of the ensemble averaged expectation values of
observables. Such expectation values involves standard time-ordered products (T)
for the evolution of the "ket” | ) and also anti time ordered products (A) for the
evolution of the "bra” (| in the matrix elements. Both can be summarized to a
contour-ordered product [24]. Therefore one distinguishes two types of vertices: the

—) vertices with value —iV pertain to the time ordered part. and the adjoint (+
P part, ]
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vertices with value 41V for the anti time ordered section, in the here used conven-
tion[38]. Thereby V is the real interaction vertex of the Lagrangian. Correspondingly
two point functions, like the Green’s functions, have four components, which can be
arranged in matrix form (we reserve bold face notation for the two by two {—+}
matrices)

(G e _ [{Tvovie) F (vevn)

i (34)
iGYy G (wi2))  (Av()ut(2))

Here 1 and 2 denote the two space time points and (...) the ensemble average.
Upper and lower signs refer to fermion and boson Green’s functions, respectively.
The four Green’s function components are obviously not independent. Rather they
relate to the retarded and advanced ones by

GF = <[w<1),qﬁ(2)]

G = 4 <[w<1),qﬁ(2)]

i> Ol — 1) =G — G+ =Gt — G

i> Oly—th)=G  —GYF =G+ —a* . (35)
where @ is the step function and [...,...]+ denotes the fermion anti- or boson
commutator.

The unperturbed Green’s function GY, is resolvent of the corresponding free single
particle Schrodinger - (non rel. fermions) or Klein-Gordon equation (rel. bosons)

10 + % (non rel. F)

S1GYy = (S))" Gy =6(1 — )., S=
—9? 4+ A —m? (rel. B)

(36)

where the subscript specifies the coordinate to differentiate. Here o . is the third
Pauli matrix and 6(1 — 2) is the four-space delta function.

With this extension to the two types of vertices — and 4 and the corresponding four
Green’s function components all standard diagrammatic Feynman rules defined for
amplitudes can directly be generalized. These rules are then again defined with
respect to the real time (as in zero temperature theory)”. For conventions and a
detailed explanation of the diagrammatic rules used here we refer to the text book of
Lifshitz and Pitaevskii [38]. For a given n-point function all n external vertices have
a specified sign assignment, while one has to sum over all possible sign combinations
at the internal vertices.

" Please note that in refs. [24,25,27] the diagrammatic rules are defined with respect to
the closed time contour, which leads to the same definition for Green’s functions, however
the off-diagonal components of the self energies used there ¥< = —% " and ¥> = - %+~
have opposite values.
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4.2 Resummations: Dyson - and Kadanoff-Baym equations

Since diagrammatic elements, e.g. Green’s functions (¢ and self energies ¥ are con-
nected at a given vertex, the same vertex type — or + appears in both functions
and Dyson’s equation can simply be written in matrix form

Giy= G?Q + /d3d4 G?3§]34G42 or simply as (37)
G=G"+G X0 G=G+GHEX0G

involving usual matrix algebra, which automatically provides the sum over all in-

ternal vertex sign combinations. Here the two by two matrix ¥ denotes the proper

self energy of the source particles®. The & abbreviates the space-time folding. In
diagrams Dyson’s equation becomes

— = + S

Co)—
W—m+ (38)

where we explicitly distinguish between fermions (label F'; full straight lines for
Gr) and bosons (label B; full wavy lines for Gg). The four components of —iX
are defined as the sum of all standard proper self energy diagrams like in normal
perturbation theory, now however with definite 4+ or — assignments at the external
vertices, and summed over the —+ signs at all internal vertices as explained above.

Using the resolvent properties (36) of G one can transform Dyson’s equation into
a set of integro-differential equation which in short matrix notation reads

S'1G12:(5(] — 2)0'2 + o, /dg 213G32
(qu)* G12 :5(] — 2)0'2 —I— /dg G132320'Z (39)

The four equations involving the time changes of G~ and GGt~ are known as the
Kadanoff-Baym equations [25], originally derived by the imaginary time method.
Here they are a direct consequence of the Dyson equation in matrix form. Like the
four components of G also those of X are not independent. Their dependence can
be determined observing that the Dyson equations for retarded or advanced Green’s

8 We reserve 3 for the self energy of the source particles, while II denotes the self energy
of the external photon.
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functions have to involve only retarded or advanced entities, respectively. Thus they
completely decouple

GR:GOR+GOR®ER®GR7 (;1A:(;10A_|_(;10AG>2A<§(;A7 (40)

where ©F and ¥4 are the corresponding advanced and retarded self energies. From

(35), (37) and (40) one therefore follows that
SR=wnt, Y=y oyt owt ey = (S ) ()

The full Green’s functions account for the finite damping width

M= —2lmsf =i (97 - x*7) (42)

of the particles, which destroys the sharp relation between energy and momentum.
Thus the spectral function

Al p) == —2ImGF () = i (GF (w1p) — G (w;p) (43)

is no longer an on-shell 6-function by rather has a width I'(x; p). This width does not
only arises from decays (resonances) but also from collisions of the particles in dense
matter. It is important to realize, that the resummation to full Green’s functions
(bold straight or wave lines in diagrams) reduces the set of all diagrams to a subset
of diagrams with skeleton topology, where all self energy insertions are excluded in
the diagrams.

4.3 Transport equations

In the presented picture the Wigner transforms of the off-diagonal Green’s functions
FiG T and iGY are Wigner densities in four space and four momentum for the
occupied and available 'single particle states’, which now have a finite width and
therefore can be off mass shell. We will see that the corresponding non-diagonal
components of the proper self energy —1% are the gain and loss coefficients for the
transport description of these Wigner densities.

The entry to such transport equations is given by the Kadanoff-Baym equations,
which are contained in the set (39). Subtracting the two equations for G~ yields

: A=Ay
a5 .

(*37521 + af,?? + A — Az)
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= /d3 {2;{ G;; + E;;G;; + Gy 2;2+ + G;fj— Eg—;}

for non rel. fermion or rel. bosons, respectively. The next step is to take the Wigner
transformation of this equation. This involves the Wigner transformation of convolu-

tion integrals C'(1;2) = [d3A(1;3)B(3;2) which formally can be obtained through

i

Ol ) = explS(080F — 02PN A(rs K) B )

NA(r//:;k)l?(r//:;k)—I—%{A,B}7 (45)

where A(x; k), ete. are the Wigner transforms of A, B and C and the differential
operators act on A and B separately. The approximate expression in terms of 4-
dimensional Poisson bracket {A, B} = 0,A0,B — 0, A0, B defines the first order
gradient expansion. To this order separating real and imaginary parts one obtains

for the Wigner densities Fi(G~T [29]

{S(k) — S, k), i}~ G, k), S (2, k) |
=Y (a0, )GY (2, k) — ST (2, k)G V(2. k) (46)
with Y= (7434 /2, G =(G"+64) )2

Here S(k) = ¢ — E*/(2m) or S(k) = k? —m? is the Wigner form of the Schrodiger
or Klein-Gordon operator (36). The first Poisson bracket on the left side gives the
usual Vlasov part. On the right side ¥"tG*T™ and ¥t~ G™F define gain and loss
terms. This transport equation is quite general and as the original Dyson equation
still accounts for off-mass-shell processes, part of which are contained in the peculiar
second Poisson bracket according to Botermans and Malfliet [29]. We will see that
the account of the finite damping width and the inclusion of higher order diagrams
for the self energies (sect. 4.5) are essential to extend the scheme beyond classical
transport concepts.

Fquation (46) by itself is not yet complete, since it requires a relation between G~
and G, which normally is provided by a certain physical "ansatz”. Under near
on-shell conditions, where the Wigner densities are well peaked close to a single on-
shell energy € ~ €,, c.f. next subsection, one can use the Kadanoff - Baym ansatz or
apply the QPA (see Appendix A). Then the integral over ¢ reduces (46) to a familiar
form [27,31]

{af + vy — (Duey) a,,} n(@.p,1)
= (HY (1 Fn(z,p. 1) +i5F n(z.p.1)) 7 (47)
(£i2 — Tn(z,p.1)) 7.
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for the on-shell particle densities of non-rel. fermions or rel. bosons

[ de

il =
J 27

. [ de N
ni(z.p,t) = Gt mmlwpt) =i [ Syt (18)

Here v = dpe(p) is the group velocity, and 7, = 1/(1 — dReX"/de) for non-
relativistic fermions and 7, = 1/(2¢ — OReX" /d¢) for relativistic bosons is a normal-
ization factor. In all expressions ¢ is determined by the dispersion relation ¢ = ¢(p),

c.f. (50) below.

The form of the collisional integral in (47) is convenient in many cases, e.g. to extract
stationary solution (cf. next subsection) or for the relaxation time approximation,
where 1/1'7, is the corresponding collision time, see (A.4). In the diffusion approxi-
mation of eq.(47) one easily recovers eq.(14). The usual Boltzmann-like form of the
collisional integral is obtained from the lowest order self energy diagram which in
QPA contributes to TmX:" (usually second order in the two body interaction), c.f.
[27,31] and (66) in sect. 4.8. More general schemes beyond QPA are suggested in
sect. 4.7. The photon production rate, eq. (3), is a simple case of (47).

4.4 Stationary and Fquilibrium Properties

For a homogeneous stationary system in Wigner (2 p) representation all Green’s
functions become space-time independent and the ¢ operation reduces to a simple
product for the remaining 4-momentum part in the Dyson equation (37). With p =
(¢, p) we therefore drop the z-argument. Eqgs. (40) can then be solved algebraically

R _ 1 R _ 1
O e 0 g Y

while GA(p) = (G"(p))* and X4 (p) = (B%(p))*. The dispersion relations are

€+ pr =)+ YE(e+ pr, p), ) = p*>/2m (non-rel. fermions) (50)

(e4+un)? = () + YE(e+ ur,p), (e5)? = p>+m?> (vel. bosons)

with corresponding free on-shell energies €) and chemical potentials pp and pp.

With T'(p) = —2Im%P(p) =1 (X *(p) — X+ (p)) the spectral function (43) are

I'(p)

Ar(p) = 5 (non-rel. fermions),
(e e — g = ReX(p)) "+ (I(p)/2)°

Ag(p) = "(p) (rel. bosons). (51)

((c+1r)? — (92— ReSR(p))” + (T(p)/2)?
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They satisfy the sum rules

(o) (o) d/
/AB 2(—:1 and / AF(p)2i:1. (52)
. v

The generalization to relativistic fermions with gamma-matrices up to tensor inter-
actions can be found in ref. [44]. For illustration and later use we give the equilib-

rium results explicitly, which follow from the stationary condition X=*(p)G*~ (p) =
Yt (p)Gt(p), c.f. eq. (46), and the Kubo-Martin-Schwinger condition [17]

S (p) = X (p)e T (53)

Then all the Green’s functions can be expressed through either retarded or advanced

Green’s functions. From (34), (35) and (41) one then finds

G (p)= (1 Fn )G (p) £ n.GNp), G (p) = +in A(p), (54)
G (p) = i1 Fn)Ap), G (p) = (1 F )G (p) F G (p)

and the relations for the four components of the self energies

Yoo =%F+inT(p), BT =FinI(p),
S =i Fa)(p), ST = (27)7, (55)

where the thermal occupations at temperature T (Fermi-Dirac or Bose-Finstein
distributions) are

n. = {exple/T]+1} 7" . (56)

In the general non equilibrium case there are no such simple relations between
Green’s functions and self energies as at equilibrium. In order to proceed one may
simplify the problem applying so called Kadanoff Baym ansatz (given in Appendix
A) or using the QPA.

4.5 Diagrammatic Decomposition into Physical Sub-Processes

There have been many attempts in the literature to eliminate the redundancy in the
definition of the four Green’s function components. We do not like to follow such
schemes and rather prefer to keep all four components as they are, since they display
a symmetry between the time-ordered and the anti-time ordered parts, i.e. between
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the "bra” and "ket” parts of the correlator?.

In this formulation physical observables like densities, production rates, etc., are
always given by diagrams, where the external vertices appear in conjugate pairs, i.e.
with fixed opposite signs, just defining correlation functions. If Fourier transformed
over space-time differences they have the properties of Wigner functions. Special
examples are the off-diagonal components of the Green’s functions and self energies,
which define Wigner densities and gain or loss rates, respectively. Working with full
Green’s functions such correlation diagrams are given by a sum of all topologically
distinguished skeleton diagrams with the fixed external vertices of opposite signs.
Fach diagram of given topology consists of 2¥ terms, where v is the number of
internal vertices, due to the —+ summations. These extra summations make this
approach rather non-transparent. In this section, however, we like to suggest a very
simple classification of correlation diagrams and a reformulation of the corresponding
sum, which amends a simple physical interpretation.

We start with the observation, that at least in one way any correlation diagram of
given topology and given sign assignments at all vertices can be decomposed into
two pieces, such that each of the two sub pieces is a connected diagram which carries

only one type of sign on all its external vertices '’

YYY

- (57)

=
+
At
Q\

FYVY

The reason for such a decomposition is that then each diagram is given by a "prod-
uct” of two sub diagrams o~ and ST with the same external lines, which one may
call amplitude and adjoint amplitude diagrams. Here a and 3 denote amplitude
diagrams including sign assignments. The adjoint a™ of any amplitude diagram o~
is given by inverting the senses of all propagator lines and inverting the signs of
all vertices; the respective values are conjugate complex to each other (o™ )* = a™.
For amplitude diagrams only the external vertices have definite signs, while internal
vertices have still no sign restrictions. In analytical terms the decomposition (57)

can be written as

= 54—

YYY

AL
o
Il

(FONG (1) 3G (p) BF(prs s pm )™ (P12 pm) (58)
(FNG (1) -G () (B (1 p)) 0 (pr - i)

FYVY

Tn thermal field theory the ”+47 vertices are often considered as ghosts. We do not like

” " ones for

to support this viewpoint as these conjugate vertices are as physical as the
the full correlation matrix element!

10 For the construction: just deform the diagram such that all + and — vertices are placed
left and respectively right from a vertical division line and cut along this line. Pieces which
then become disconnected are to be reconnected to the other side until two connected sub-
pieces remain. In case that disconnected pieces appear on both sides the result may depend

on the order of reconnection and consequently different decompositions are possible.
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for space-time homogeneous cases (in general corresponding space-time foldings ap-
pear). Here FiG"*(pg) or iGT (px) (depending on the line-sense) are the Wigner
densities of occupied (or available states) for each external line, with off-shell 4-
momenta p; to p,, connecting both pieces. When a correlation diagram can be
decomposed in more than one way according to rule (57), the picture is not unique
and one may assign partial weights which sum to unity to the different decomposi-
tions ' . Applying this decomposition scheme to all skeleton diagrams of the proper
self energy leads to a decomposition in terms of physical processes with a varying
number m of external "states” py,...,p, besides the external photon in this case

—il () = > /R*+(p17---7pm)iG*+(p1)d4p1 o AGT (P )d (59)
m=2"

Here the R™%(py,...,pm) define the partial rates for each physical sub process with
certain in and ouf-states p; to p,,, which all can be off-shell. In the sense of crossing
symmetry the notion of in and out may be fixed by the line sense: incoming or
outgoing lines. Naturally for fermions there are as many in as out-states. It is
important to realize that the partial rates

R (i pm) =3 (B (e oopa)) 0 (pr ) (60)

o8

arise from a restricted sum (indicated by the prime at the sum-symbol) over am-
plitude products o times #* such that each term arises from a given correlation
diagram in the original sum. Note in particular that the sum (60) no longer includes
all possible interference terms of any two amplitudes! The unrestricted sum over
all pair-products of amplitude o~ times (57)* is false and leads to serious incon-
sistencies, since there are interference terms, which correspond to closed diagrams
of non-skeleton type, which have to be omitted! The simplest case to see this is the
normal diagram for bremsstrahlung (left)

D -
_:_f—f:_ N __+—__. (61)

Its absolute square leads to a diagram with self-energy insertion (61;right), which
is not a proper skeleton diagram; rather the corresponding partial rate is already
included in the 1-loop diagram with full Green’s functions!

Therefore, only when each term that enters a physical rate (60) originates from a
valid decomposition of proper skeleton self energy diagrams, then this formulation

WA simple example for such an ambiguity is the following diagram which permits two

decompositions indicated by the thin line: - -
+g EE )— +( E§ 2—
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is void of double counting. It amends a straight forward interpretation in terms of
physical scattering processes between certain in  and out-states. These processes
occur with partial rates R, which can be positive or negative. The warning to be
formulated at thisinstance is, that if one works with full Green’s functions which also
include the finite damping width T', particular care has to be taken. The unconsidered
account of certain Feynman amplitudes together with finite width spectral functions
for the particles, as sometimes done heuristically, may lead to serious inconsistencies.

On the other hand the important point to realize at this level is that the so de-
fined decomposition gives rise to a generalized formulation of transport theories,
where multi-particle processes can be considered in a well defined scheme even if
one permits for off shell propagation. Note in particular: for a theory of fermions in-
teracting with bosons the contribution with the fewest number of external particles
is just three (rather than four as in the Boltzmann equation). It results from the de-
composition a one-loop diagram and allows for one particle in and two out and vice
versa, . Thus, in dense matter an off-shell fermion can just decay into a fermion plus
boson or the opposite can happen, e.g. see [31,45]. For these processes it is impor-
tant that all particles have a finite damping width in dense matter, so that creation
and decay modes, which are forbidden from energy-momentum conservation in free
space, may occur without principle restrictions in dense matter.

Please note that our decomposition rules are different from the standard cutting
rules which only apply either to the set of perturbation theory diagrams [46] or to
the set of the quasi-particle diagrams [41]. There diagrams are cut across all +—
lines, each cut providing an on-shell delta function from the zero width spectral
functions. Diagrams that can be cut into more than two pieces contain a product
of more than one delta-function on total energy conservation and therefore show a
singular behavior which is not present in the final correlation function. Therefore
all such "multi”-cut diagrams have to cancel out. Such arguments can no longer
be given in the case that all spectral functions have finite widths, where the set of
diagrams is reduced to the set of skeleton diagrams. Thus, such diagrams have also
to be considered in a description with full Green’s functions!

4.6 Three and Four Point Functions

In principle one can stick to the above picture since all infra-red divergences disap-
pear for all diagrams due to the finite propagation times of all Green’s functions.
However one may have to consider still quite a numerous amount of diagrams in or-
der to achieve meaningful results. For instance on the QP level we expect, that the
proper in-medium current appears at both external vertices in a symmetric fashion.
Thus for the convective currents one expects

)~ en” = eiG(p) = ¢ (aipyﬁg + %RPER) / (] - %RQER) ) (62)
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where e(p) = €) + ReX"(e(p), p) defines the QP energy momentum relation, see
eq. (A.3) in Appendix A. In diagrammatic terms this can be achieved by certain
partial resummation that lead to vertex corrections. Thereby we shall not consider
an immediate resummation to the exact full vertex, since this would amount to solve
the whole problem. Rather we like to stay to a picture where in certain limits like
the QPA and QC limit, piece by piece an interpretation in physically meaningful
terms can be given.

The considerations in the preceding subsection assigned a particular role to the full
—+ and 4+— Green’s functions as Wigner densities. This suggests to apply further
resummations and to extend the ideas put forward in ref. [41] in the context of quasi-
particles now to particles with finite width. Namely, one likes to gather diagram
pieces that are void of the Wigner densities G~ or G, both for fermions and
bosons. That is, one likes to resum sub-pieces of skeleton diagrams with given number
and type of external vertices (3 point or 4 point functions, for example) where all
internal and external vertices have only one definite sign value. The {—} diagrams
then contain only time-ordered full Green’s functions 7= and therefore represent
a straight forward generalization of the standard zero temperature Feynman 3 or
4 point functions now including the full self energies. The {+} diagrams are just
the adjoined expressions. This way one can define 4 point functions (in-medium
interactions)

- —F-_—F- —F-_ P —F-_ P
I = g + § § + 8 e (63)
- -4—_-4— ® _-4— hd _-4—
Here the thick wavy lines relate to the corresponding (G5~ exact boson propaga-
tors or two-body potentials in non-relativistic theories with potentials. Since only
like sign vertices are permitted, no G~ and G~ lines appear in these functions.
Such resummed expressions have been proven useful in the low temperature QPA
to define in-medium interactions and effective vertices and they appear also quite
meaningful in the limit of low densities, as in the classical limit for example. Vari-

ous approximation levels are possible for the 4-point functions; a detailed discussion
would be beyond the scope of this presentation. We mention just a few possibilities:

a) a ladder summation in the s-channel (horizontal in diagram (63)) for the particle-
particle (p-p) and particle-hole (p-h) channels generalizes the Bruckner G-matrix
to non equilibrium;

b) in many practical cases (e.g. Landau - Migdal’s Fermi-liquid theory [21,22]) the
4-point functions are approximated by 2-point approximants in the t-channel (ver-
tical in (63)). Then RPA-type resummations are possible [41,10], which iterate p-h
7 " and "4+ 47 loops in the t-channel; details are given in Appendix B; where
also the scheme of the bosonization of the interaction is presented, cf. [10,50].

d) the ultimate could be a crossing and exchange symmetric form; in this case one

relies on suitable parameterizations.

These like sign effective interactions generalize the two-body scattering matrix in
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matter to non equilibrium. Thereby one does not only account for the change of the
fermionic occupations (as already considered in the literature) but also includes the
damping of the fermions. In this respect it would be interesting to see, how bound
states (e.g. the deuteron [51] or the .J/W) change their properties in dense matter
(Mott transition) also due to the damping widths. For consistency these like sign
effective interactions then also enter the definition of the in-medium vertices (3 point
functions) defined as

< _ < s C< (61

4.7 Key diagrams

For simplicity we confine the discussion to the case where the ’external’ photon just
couples to fermions. Any generalization to other types of particles (external and
source internal) is straight forward. Due to the above considerations from now on the
remaining diagrams include the following elements: full fermion Green’s functions,
like-sign 4-point interactions and the corresponding vertices. Please notice that this
reduces the set of diagrams even further! In particular not all sign combinations are
permitted any longer since some of them are already included in the resummed 3 or
4 point functions.

All photon self-energy diagrams can be build up by iterative four point insertions.
Thus, the set of diagrams for TT-* reduces to

Gy By By
+ _T%‘“ + j@t. + _T%‘“ + - . (65)

This set of "key”- diagrams is important for all subsequent considerations and there-
Yy P q
fore deserves further comments.

(i) Each diagram in (65) represents already a whole class of perturbative diagrams
of any order in the interaction strength and in the number of loops. The most

2 which is positive definite, and cor-

essential term is the one-loop diagram
responds to the first term of the classical Langevin result for Tl in (24) as
we shall show later. The other diagrams represent interference terms due to

rescattering.

2Tn perturbation theory or QPA the corresponding one-loop diagram usually vanishes
for on-shell photons due to conservation laws. Here however, with full Green’s and vertex
functions it represents a series of perturbative diagrams as the reader can easily imagine.
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(i1) Compared to conventional diagrams, vertex corrections can appear on both
sides of one loop as they are separated by {+—} lines (see example given in
Appendix B).

(iii) Note that the restriction to like sign vertices for the resummations (64) and
(63) are defined with respect to skeleton diagrams in terms of full Green’s
functions. "Opened” to perturbative diagrams with thin G° lines, these can
still contain alternative signs, since Dyson’s equation (37) includes all signs in
the intermediate summations!

(iv) In some simplified representations (being often used) the 4-point functions be-
have like intermediate bosons (e.g. phonons), c.f. Appendix B.

(v) For particle propagation in an external field, e.g. infinitely heavy scattering
centers, only the one-loop diagram remains, since the one deals with a gen-
uine one-body problem. However, extra complications arise, since translation
invariance is generally broken and the Green’s functions then also depend on

4.8 Decomposition of Closed Diagrams into Feynman Amplitudes in the (QPA

The QPA is quite commonly used concept originally derived for Fermi liquids at
low temperatures (Landau-Migdal, see [21,22]). There one deals with on-mass-shell
fermions in matter (quasi-particles) described by the pole part of the Green’s func-
tions, i.e. one assumes that ImX% — 0 in the Green’s function GE. Then with the
help of some phenomenologically introduced interaction (particle-hole irreducible)
one calculates the values ReX™ and TmYF which now depend on quasi-particle prop-
erties. Since in QPA the finite width contributions have to appear in higher order
through corresponding ITm¥-insertions the whole set of QPA diagrams defining the
full =TT~ is by far larger, than set (65).

The QPA has considerable computational advantages as Wigner densities (7 +7
and "+ 7 lines) become energy ¢ functions, and the particle occupations can be
considered to depend on momentum only rather than on the energy variable'?.
Formally the energy integrals in eq.(h), (65) can be eliminated, in diagrammatic
terms just cutting the corresponding 7 +7 and "4+ 7 lines [41]. This way one
establishes a correspondence between correlation diagrams (65) and usual Feynman
amplitudes in terms of QPA asymptotic states and QPA Green’s functions. Thus
the QPA allows a transparent interpretation of correlation diagrams.

For the dynamics of the fermion transport the first QPA diagram that contributes
to the gain (loss) term

3 The later approximation is also often used beyond the scope of the QPA and is then
known as Kadanoff Baym ansatz, see [25] and Appendix A, c.f. [12]
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- (;i;z+(p1)(;+(p1) ~ {+@‘}QPA (1 —mn) (66)
i e

2
54(271 +p2 —p3 — pa)(1 —n1)(1 — ng)nzng

— /d4p2 .. .d4p4

leads to the standard Boltzmann collision term with corresponding occupation and
Pauli suppression factors for the in and out states. Here and below the full blocks
denote the effective two fermion interactions, and thick fermion lines denote the
QPA states or Green’s functions.

For the here studied photon rates we discuss in detail the correlations diagrams on
the right side of (65) with consecutive numbers 1 to 6. Thereby diagrams 1, 2, 4
and 5 describe the bremsstrahlung related to a single in-medium scattering of two
fermionic quasi-particles and can be symbolically expressed as Feynman amplitude

(67a)

(a)

::I‘i:
(c) :];:I‘: (d) :{:

The full circle denotes the effective vertex. One should bear in mind that the photon
may couple to any of the external fermion legs and all exchange combinations are
possible. The one-loop diagram in (65) is particular, since its QP approximant van-
ishes for real or time-like photons. However the full one-loop includes QPA graphs
of the type (67b), which survive to the same order in I'/¢ as the other diagrams [41].
In fact it is positive definite and corresponds to the absolute square of the amplitude
(67a)), c.f. (61). The other diagrams 2, 4 and 5 of (65) describe the interference of
amplitude (67a) either with those where the photon couples to another leg or with
one of the exchange diagrams. Thereby for neutral interactions diagram (65:2) is
more important than diagram 4 , while this behavior reverses for charge exchange
interactions (the latter is also important for gluon radiation from quarks in QCD
transport due to color exchange interactions). Diagrams like 3 describe the interfer-
ence terms due to further rescatterings of the source fermion with others. According
to our rules the diagram (65:3) corresponds to a two-body collision process and de-
scribes the interference of amplitude (67¢) with that one where the photon couples
to the initial leg. Diagram (65:6) describes the photon production from intermediate
states and is given by Feynman graph (67d). In the soft photons limit (w, < ¢p) this
diagram (67d) gives a smaller contribution to the photon production rate than the
diagram (67a) in QPA, where the normal bremsstrahlung contribution diverges like
1/w, compared to the 1/e¢p value typical for the coupling to intermediate fermion
lines [47]. However in some specific cases the process (67d) might be very important
even in the soft limit. This is indeed the case for so called modified URCA process
nn — nper which is of prime importance in the problem of neutrino radiation from
the dense neutron star interior, see [45].
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Some of the diagrams, (c.f. the graph shown in footnote 7) which are not presented
explicitly in eq.(65) give more than two pieces, if being cut, so they do not reduce
to the Feynman amplitudes.

For the validity of the QPA one normally assumes that I' < ¢, where € is an average
particle kinetic energy (~ T for equilibrium matter). With T' ~ 7272 /ep for Fermi
liquids, c.f. (A.5), the QPA constitutes a consistent scheme for all thermal excitations
Ae ~ T < ep. However with the application of transport models to higher energies
this concept has been taken over to a regime where its validity can no longer easily
be justified. Moreover, our considerations show that the condition I' <« € is not
at all sufficient. Rather one has to demand that also w > T in the QPA, since
finally energy differences of order w appear' . In particular, the remaining series
of QPA-diagrams is no longer convergent unless w > 1", since arbitrary powers in
I'/w appear, and there is no hope to ever recover a reliable result by a finite number
of QPA-diagrams for the production of soft quanta! With full Green’s functions,
however, one obtains a description that uniformly covers both the soft (w < T') and

the hard (w > T') regime.

5 The Quasi-classical Limit (QC)

In this section we like to discuss, which class of diagrams remains in the quasi-
classical limit and how this is to be interpreted.

The QC limit requires that

1) all occupations of the source particles are small ((np) < 1) implying a
Boltzmann gas with g < —T and that

i1) all inverse length or time-scales times i are small compared to the typical
momentum and energy scales of the source systems.

In particular this implies hw, h|q| < €, and a collision rate I' = I/7.an < €, where
¢ is a typical particle kinetic energy (~ T for equilibrium matter). To be precise: w
and q of the produced particle are sensitive to the space-time structure of the source,
while they are negligible as far as energy and momentum balances are concerned. The
latter fact permits to prove the Kadanoff Baym ansatz in this case (see Appendix A
and discussion of eq. (84) below) which considers the occupations of the source
particles to dependent only on momentum n, = n.,_,,. but no longer on energy .
Also we assume that T will not depend on time in between subsequent collisions

(I~ 1/T).

We note in particular that for bosons with chemical potential ug = 0, like the
produced photon, the equilibrium occupations will be large, ng &~ T'/w > 1! This

4 This statement is particular, since one compares the photon energy w with the
damping width of the source particles T', while the damping rate of the photon itself
vy~ TT=F| /(2wnB) < 41e?po/(Tm) ~ 60MeV? /T for nuclear matter can be quite small!
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fact is of no further relevance, if one excludes internal photon lines in the proper
correlation functions (2), TT"* and 1Tt~ as we do.

5.1 Time Structure of Green’s Functions and Loops in QC Limit

For fermion Green’s functions one has the following simplifications

Grt(p) = inpA(p),  GE(p) = —i(1 —np)A(p), (68)

while at large temperatures T' the particle occupations are given by

np ~ expl—(ep — pr)/T] < 1. (69)

The correspondence between the diagrammatic expansion (65) and classical limit
of sect. 3 becomes more transparent if one uses the mixed 7 — p representation for
the Green’s functions, where 7 is the time difference between the two space-time
points. Then from the definition of G~1 and GGF~ Green’s functions (see eq. (34))
one immediately finds for fermions

Gt (7,p) ~ inp exp[—[I'7[/2 —iepr], (70)
Gl (r,p) ~ —i(1 = np)exp[—|I'7]/2 —iepT], (71)
while G~ = (1 — np)GE — npG and GEY = —(1 — ny) G + npGE are essentially

retarded and advanced, respectively.

A further simplification comes from the time behaviour of fermion-loops, c.f (B.7),
which mediate classical energy and momentum transfers. The corresponding time
scales 1/¢ or 1/(vp) are very short on the damping scale 1/T", so that such loop
insertions become instantaneous. This is the reason, why one recovers a Markovian
description for the motion of the source in the classical limit. With these simplifica-
tions we now calculate the diagrams (65).

5.2 Self Energy Diagrams in the QC' Approximation

In the mixed 7 — q representation the one loop diagram is given by

+ d*pr1d’p py v+ - 3
Sy ) = [ TG )G (25 8, )
dgp v —|Tr| —i(gv)r
~ /WV“V n(p+q/2)(1 —n(p—q/2))e "l (72)



if |qv| < T. Here V* a2 \/47j#(p) defines the in-medium photon - fermion vertex
in the classical limit following eq. (62), while p = (p, + p,)/2. Apart from the ¢-
dependent oscillations the time structure of this diagram is given by an exponential
decay: ¢ "l which leads to

R _ 2 d®p 200 "
Tl () = dre? (P @/~ nlp —a/2)

) ik
~  dwepg 5 . (73)
(w—qo))” +17

for the spatial components of TT™F. This expression is identical to the n = 0 term of
the classical Langevin result (25).

The classical Langevin example (sect. 3) considers the propagation of a single charge
(say a proton) in neutral matter (e.g neutrons). Therefore for this case only diagrams
occur, where both photon vertices attach to the same proton line. Also, of course,
no direct proton-proton interactions occur. In the following we like to show that
diagrams of the type

R & S () SR C- XY

with n {—41} scattering interactions (intermediate particle-hole { —4} neutron loops)
correspond to the n-th term in the Langevin result (24). To demonstrate this we
look into the time structure of such a diagram, and assign times 0 and 7 to the
external — and 4+ vertices, while the — and + interactions are taken at ¢ to f, and
1T to tF, respectively. Tn the classical limit G~ is retarded, while GT is advanced
(see eqs. (35), (70) and (71)), such that both time sequences have the same time
ordering: 0 < #; < ... < t, < 7tand 0 < tf < ... < tF < 7 (all inequalities
reverse, if all line senses are reversed). Thus the 7-dependence of the modulus of
these diagrams gives e "7l A second simplification emerges from the fact that the
+— loop interaction insertions mediate classical momentum transfers |p, — p, |
which are large compared to Al'. Therefore the time structure of these loops be-
comes very short on the scale 1/T" and therefore merge §-functions: §(¢, —tF). With
t, = 1., = tf diagram (74) then no longer depends on the intermediate times ¢,
apart from the ordering condition, and therefore results in a factor |I't|"/n! With
hq = 0 also the corresponding momenta are pair-wise identical, and the remaining
momentum integrations just serve to define the correlation between v,, and v,,4,

after n scattering. Thus

R ‘e:ele’ - (75)

—ill, *(7,q = 0) ~ 47e?p, <7);7n7) ',+n> _|r;!|"€,|r7|
—ill, T (w,q = 0) ~ 47e?py <7);7n7)

b

|
SRS
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where the resulting proportionality to the proton density pg results from —+ and
+— Green’s functions next to the external vertices. Here of course we have silently
assumed a consistency condition to be fulfilled: namely that the interaction loops
which one takes into account also consistently define the damping width T' of the
source particles! In particular the extra powers in occupations coming from the +—
loops are contained in I', and therefore do no longer explicitly appear in the final
result. This proves that in the classical limit these diagrams reproduce the terms of
the classical Langevin series (24).

5.3 Hierarchy of the QC' expansion

The Langevin diagrams (75) have the following properties:

a) external vertices: the external photon couples to the same fermion line;

b) topology: the diagrams are planar, i.e. no crossing of lines occur.

¢) —+ sign topology: if one cuts them at all —+ lines they decompose precisely
into two pieces;

d) walue: apart from the velocity correlations they all give the same contribution
to the soft photon point (w,q) =0.;

Using the equal time properties of classical —+-loop interaction insertions one finds
that

+ + [ee] + - [ee]
(=) = /T’efFTdT =1, while (=) = /nT’efFTdT =n (76)
—= 0 —= 0

at ¢ = 0, where n is the proton occupation. The left case iteratively enters the

[Langevin diagrams and one compiles factors of unity for each time folding, since the
loop insertions of order 1" are compensated by the time integration over the Green’s
function product G~ G*+. This proves d).

What remains to be shown is that for the classical problems discussed in sect. 3 all
other key diagrams are disfavored by extra occupation factors n or I'/e which both
are small compared to unity.

To a): Since in the classical problems of sect. 3 only a single charged particle (say
a proton) in neutral matter is considered, all diagrams with more than one proton
line do not occur in this case. To b): Non-planar diagrams, where interactions cross,
violate classical time-ordering. Fither the two interaction times are interlocked on
a time scale 1/¢ and therefore lead to a penalty factor I'/e or restoring the time-
ordering one obtains a 7-shape fermion line, which gives an extra occupation factor
n. To ¢): Diagrams that can be cut into more than two pieces can be obtained on
various ways: 1) by any —4-loop insertion which switches signs on the outer proton
lines, thus using the right insertion in (76); here one obtains an extra hindrance
factor n. ii) extra insertions of —— or +4 blocks linking the outer proton lines;
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since there are no direct proton-proton interactions these effective interactions are
mediated by the surrounding neutron matter thus containing —— neutron loops,
which also leads to an additional factor n, besides another n factor due to the —+
proton Green’s function.

6 General Quantum Consideration for Hot and Dense Matter

The considerations above show the following. A proper treatment of an entirely
classical problem, namely the coupling of a classical source to a wave (electromag-
netic field), on the level of quantum many-body theory requires technics, that even
nowadays are still non-standard, i.e. beyond perturbation theory or QPA. While the
classical problem can be solved quite conveniently and simple with no problems on
the infra red side, the corresponding quantum description requires an appropriate
account of the finite damping width I' of the source particles. The most natural ap-
proach in our mind is the real-time Green’s function technic, which however requires
partial resummation, such that the finite width is included already on the one-body
Green’s function level.

In this section we analyze the production rate from hot and dense matter in the
quantum case in terms of non equilibrium Green’s functions. In order to provide
some analytical results which easily can be discussed in different limiting cases,
we employ the following approximation for the full retarded Green’s function. We
assume (7 to be given by a simple pole approximation with constant residue

1
Gr = 77
T PRSI ()

where e(p) = p*/(2m3), m} being an effective fermion mass. The width T'is assumed
to be independent of ¢ and p. Explicit results will be given for the one - and three
loop case (the first two diagrams in (65)).

6.1 Qualitative expectations

Compared to the classical results we expect the following changes:

a) one looses the classical hierarchy of diagrams, such that many more diagrams
contribute in the quantum case; for specific couplings, however, some diagrams
are disfavored or drop due to selection or suppression rules, e.g. non-planar
diagrams in SU(n) coupling;

b) the radiated quantum carries finite momentum and energy (which vanish in the
classical limit), such that additional recoil corrections and phase-space factors

—/T appear; the latter is important, since it cures the classical ultra violet

~e
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catastrophe, where the intensity spectrum is white, leading to a divergence of
the radiated energy in the classical case;

¢) the occupations are no longer of Boltzmann type with n < 1, so that Pauli
suppression and Bose-Einstein enhancement effects are significant;

d) the duration time of binary collisions ~ 1/¢r mediated by interaction loop
insertions (B.7) in the correlation diagrams, are no longer negligible compare
to 1/T" as in the classical case, so that non-markovian memory effects become
important [48,49].

Points (b) and (¢) can be clarified using the exact relation between thermal fermion
and boson occupations

n"le+w/2)(1 —n"(e —w/2))=(n"(c —w/2) — n" (e +w/2)n" (W) (78)

which simplifies in the following limits to

nF(e—I—w/Q)(] — nF(ew/Q))%%nF(e)nB(w)w for w< T (79)

~n" (P (Ww/T for w< T,n" < 1.

At low temperatures only states close to the Fermi-surface contribute. The last
approximate relation suggests that relative to the classical results of sect. 3 an
additional phase-space suppression factor n?(w)w/T appears in the quantum case,
which accounts for the finite energy w carried away by the quantum.

6.2 Contribution of One Loop Diagram with Full Fermion Propagators

We first consider the one loop diagram of (65) with the full fermion propagators

_TO‘.. — il = VeV AT (80)

where A, T denotes the bare loop without vertices. For simplicity we will neglect ver-
tex corrections. The later can be trivially included in LLandau Migdal approximation

(e.g. see eq. (72), Appendix B and refs. [10,50]).

With the help of relation (78) and the equilibrium form of the Green’s functions
(54) the bare Toop reads

— Ayt =np / ded’p : L n — ney,,) L (81)
’ CLEE) (et pr =€)+ (T/2)? (64 pr — par +w)? + (1'/2)?

This expression can be evaluated in closed form in different limits. We first analyze

the QPA (ie. I' < w, kvp, T in case T < ey or I' < w,kvy ~ ky/T/m%, for
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T > ¢p), which can be found in the literature. In this limit one recognizes two
energy 6 functions in eq. (81) (see approximation formula (A.2) of Appendix A),
which together with momentum conservation and exact relativistic kinematic can

only be fulfilled for space-like (w, k). Following ref. [10] one obtains for the QPA

loop in various limits

) 0 for w > |k|
—1 -/40 (w, k)‘QPA = (m/%)QTnB]ﬂ eXp(H) + 1 for w<« |k|
2rk @ exp(k) + exp(—w/T) 7
* \2
Wm’? for k-1, wK |k|
U Sexp(—m)exp(—w/T) for 5> 1, w< |k|

where & = (m30*/2 — up)/T, with v = (w—k*/(2m%))/|k]|.

Here non-relativistic kinematics'® has been used, where v is the recoil corrected
fermion velocity that essentially contributes to the loop and the condition w < |k|
assures |v| < 1. The simplified expression for k < —1, realized for T' < ep ~ pp and
w < kvp, is quite frequently used for space-like interaction loops in low temperature
Fermi systems as in Landau’s Fermi liquid theory. However, it shows a singular
behavior o< 1/(kw) in the small w < k = |k| < T limit, which is a generic defect of
the QPA. The Boltzmann limit yup < —T leads to the K > 1 case, which apart from

/T chincides with

recoil correction and the extra quantum phase-space factor e
that for classical diffusion result (20) in sect. 3. In summary, for the one loop term
the QPA leads to meaningful results only for large space-like w,q (hard thermal

loops).

In the general case only the integral in eq. (81) over the angle }5]; can be performed

ToT dpm T
f'.A7+:/B/d, P K F o F
o nw; 6'0 (27)3k (e + pur —€y)? + (I'/2)? (ne = nei)
o st .
e+ pr+w—€, — e — pk/my
— arctan

(T'/2)

in closed form. To proceed further we consider the case of small spatial momenta
k = |k| such that pk < m3%I". For the remaining two-dimensional integral

15 As a defect of the non-relativistic approximation the result does not exactly vanish for
w > |k| but rather leads to terms of the order exp(—m7./T') or less.
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* \3/2 o b
. +_M’9/d Ay /d '/ .
1-/40 - (277')2 n/u) E 6(77/‘ TLF_I—W) 0 67)(67)) (6 + ,MF - 67?)2 + (‘1—1/2)2
r

X for pk < miT 84
(oo atep iy S e

one realizes that the e,-integration over the product of Lorentz functions gives

Anl\/e + pur
@ R/ 1T

for e+ up>1T (85)

while it is essentially zero for ¢ + up < —TI'. For correspondingly small values of T’
one therefore obtains
F(QTN* )3/2 o0
4+ .. B F 1/2 F R
e e B | s ) (59

0

where we have replaced the remaining e variable by €,. The very same form emerges,
if one formally replaces

F F F F
ns o ns—l—w - n/pr/J,p o n/Fp-l—u}*/J,p (87)

in (84) and first integrates over e. This approximation (87) corresponds to the
Kadanoff Baym ansatz (see Appendix A).

FEquation (86) valid for pk < m31" can be evaluated in two limits

At 9B r mipET /72 for T,T < ep & up (88)
R 0 — W *
T “(w—k2/(2m3))% 4+ 172 pr for T > ep,w, I

where essential contributions arise from momenta ~ ppr for T" < e or around
pr ~ /m73 T for T > er. Here pr is the density of the charged fermions. Compared
to the QPA which is zero for time-like momenta, this result is finite and of order
1/T in the soft limit. It agrees with the classical result (25) and the corresponding
QC limit (73) besides recoil and the quantum phase-space corrections.

Starting from the QPA for the fermion Green’s functions one usually attempts to
restore a dependence on the non-zero fermion width for the boson self energy 2%
by means of the analytical continuation w — w +il", where

d*p Ny — Npik
AR — / p Motk 39
o (27)3 e, — €pyr +w 1T (89)

In refs. [52,10,53] such a procedure has been used in order to account for the finite
A isobar width in the pion self energy. We see that the value ImA[ given by eq. (89)
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and that given by (86) coincide only if npyyp ™~ ne 0y, i.e. applying Kadanoff
Baym ansatz.

The thus discussed one loop diagram can also be used for the intermediate t-channel

interaction loops G+ occuring in higher order diagrams. There the typical values
of parameters are

w<6F7k2pF7p2pF- (QO)

Therefore at least for I' < er one has large space-like momenta with pk > I'mj..
Then from eq. (83) one obtains

o * \2
At = / (mi) n’, . )de [g + arctan( +r“F)], (91)

which merges the QPA expressions in (82) for large space-like momenta in the limit
I' < e¢r both at low temperatures T' < ¢y &~ pp (k <€ —1) and in the Boltzmann
limit (k> 1).

Thus, for the intermediate t-channel interaction loops G~ one can safely use the
QPA (T' — 0), which even accounts for higher order correction to this loop, as one
sees from the corresponding limit of the diffusion result (20). Only for soft Toops
(e.g. as in the s-channel) the QPA is ill defined.

Comparing the one-loop result at non-zero I' (88) with the first non-zero diagram
in the QPA (T" = 0 in the fermion Green’s functions)

3

at small momentum k one determines a correction factor

2

Co(w) = TR (93)

which cures the defect of the QPA for soft w. This factor complies with the re-
placement w — w 4+ il'. A similar factor has been observed in the diffusion result,
where however the macroscopic relaxation rate I',, enters, due to the resummation of
all rescattering processes. Other factors between eq. (88) and in the corresponding
QPA Feynman diagram (c.f. ref. [47]) become identical, if one explicitly calculates
the width T to that order, see also [52].
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6.3 Higher Order Diagrams with Full Fermion Propagators

Along similar routes (details are given in Appendix C) the correction factors for the
higher order diagrams can be derived. Here we just quote the results for the next
lowest order diagrams

+

@ o @l
GOt 00

with Co(w) from (93) and

2 2
, w”—T

Ci(w) =w m

(96)

The total radiation rate is obtained from all diagrams in (65).

The set of QPA diagramsin (92), (94) and (95) are just those that determine the IQF
scattering rate (28) including the exchange diagram for a source of fermions (95).
The latter drops in the classical limit, where the two other ones yield the n = 0 and
n = 1 terms of the classical Langevin result (24). Thereby the damping correction
factors Uy and 'y in the quantum case are the same as classically derived. For
I' €« w they tend to unity and the production rate coincides with the QPA results
as obtained in ref. [47], while there is a substantial suppression at small frequencies

wT.

In the corresponding QC limit all the diagrams of type (74) with an arbitrary number
of —+ NN interaction insertions can be summed up leading to the diffusion result
(18) in sect. 3.1. For small momenta g this leads to a suppression factor of the form

C=w?/(w? +T2).
There is hope that even in the quantum case some higher order diagrams can also

be resummed and that qualitatively a similar suppression factor emerges like for the
diffusion result.

7 Discussion and Perspectives

We investigated the production of particles from the collision dynamics of dense mat-
ter at the example of photon production. Thereby the source of charged particles
was described in two ways, a) as a classical system governed by classical transport
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equations and b) as a quantum system in terms of a real-time non-equilibrium field
theory formulation. The central quantity is the current-current correlation function
which relates to the imaginary part of the proper self energy of the produced par-
ticle. Under quite general assumptions this correlation function governs the local
production and absorption rates in the matter. Since the here discussed features are
of kinematical origin, relating space-time scales to the corresponding momentum
and energy scales, all conclusions drawn in this study are general and therefore also
apply to the in-medium production and absorption rates of any kind of particle.

The problem could be quite naturally formulated and solved in the classical de-
scriptions by means of a macroscopic transport and a microscopic Langevin process.
These studies showed that spectrum of produced particles is essentially governed by
one macroscopic scale, the relaxation rate I',, of the source. For frequencies w of the
produced quantum which are large compared to I',, the spectrum can be described
by the incoherent quasi-free scattering approximation (IQF) used in most of the
transport models. Higher order corrections help to improve the result. Once, how-
ever, w < I',, this quantum is "soft”. It can no longer resolve the individual collisions
in time and therefore the TQF picture fails and produces a false infra-red divergence
in the rate. Rather, the correct rate is regular and differs from the IQF result by a
suppression factor

w?

Colw) = S

(97)

This soft part of the spectrum is genuine non-perturbative. The essential features
are summarized in figs. 1 and 2 of sect. 3. For relativistic sources a second scale
comes in, once the wave number |g| of the produced particle exceeds the value of

I'../+/(v?) due to the increased spatial resolution as shown by the closed form results
of the diffusion model.

On the quantum level new scales come in since now w and ¢ also correspond to
the energy and momentum of the photon which have to be compared with the
characteristic energy and momentum scales of the source as given by temperature
T and chemical potential y or the Fermi energy ep. Also the occupations can be-
come degenerate and Pauli suppression or Bose enhancement effects are important.
For the general formulation one has to leave theoretical schemes that are based on
the concept of asymptotic states like perturbation theory or quasi-particle approx-
imation. The proper frame is the real-time non-equilibrium field theory, where the
proper self-energy can be formulated in terms of closed correlation diagrams with
general propagators. Thereby the resummation of Dyson’s equation to full propaga-
tors which also include the imaginary parts of the self energy and therefore account
for the damping of the source particles is the essential step to cure the infra-red
problem. Only this way one comes to a convergent scheme. After this resumma-
tion the corresponding set of diagrams is then reduced to diagrams with skeleton
topology. Using the Keldysh —+ notations we have addressed a particular role to
all —4 and 4+— lines as 8-dimensional Wigner densities of occupied and available
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"states”. This motivated further resummations which define in-medium interactions
and vertex corrections. The resulting set of diagrams can then be discussed in detail
in these physical terms. A decomposition of these correlation diagrams in terms of

the interference of two’

"amplitude” diagrams is suggested, where Wigner densities
enter as in- and out-states. This permits a transparent physical interpretation of
the correlations diagrams, which may be used to formulate multi-particle collision
processes in matter. They can serve as input for a generalized transport description,
which ultimately includes the off-shell propagation of particles and therefore unifies
resonances which have a width already in vacuum with all other particles in the

dense matter, which acquire a damping width due to collisions.

Once one has the full propagators and the in-medium interactions it is in principle
straight forward calculate the diagrams. However both, the computational effort to
calculate a single diagram and the number of diagrams, are increasing dramatically
with the loop order, such that in practice only lowest order loop diagrams can be
considered in the full quantum case. In certain limits some diagrams drop out. In
particular we could show, that in the classical limit of the quantum description
only a special set of diagrams survive, which could be associated with the multiple
collision terms of the classical random Langevin process. Comparing the lowest order
loop diagrams in various limits to the corresponding QPA diagrams one realizes that
also here correction factors similar to (97) appear. Now the characteristic scale is
the damping width T" of the source particles. Accounting for higher order diagrams
one concludes that also in the quantum case the relaxation rate 1", is the relevant
scale which decides between soft and hard photons. Thus for applications one has
to compare the typical energies of the produced particles with the typical relaxation
rates of the source system.

Our considerations are of particular importance for the theoretical description of
nucleus-nucleus collisions at intermediate to relativistic energies. With tempera-
tures T"in the range of 30 to 100 MeV for dense nuclear matter, up to 200 MeV for
hadronic matter and beyond 150 MeV for the quark gluon plasma or parton phase
most of the kinetic models that are used infer collision rates I for the constituents,
which during the high density phase can reach the system’s temperature, I' < T'.
Such estimates make the use of on-shell concepts already rather questionable. The
particles uncertainty in energy is comparable with the mean kinetic energy! In par-
ticular the bulk production and absorption rates of all particles with masses less than
T, if calculated in standard TQF approximation, are seriously subjected to the here
discussed effect. Therefore the corresponding quenching factors (97) should sensi-
tively affect the production rates of quark pairs and gluons during the plasma phase,
of low energy pions during during hadronization and real and virtual photons with
correspondingly low energies. Since our discussion was restricted to the production
in dense matter, for the particular case of photon production in nuclear collisions
one has to consider in addition the radiation caused by the incoming charged ions
and outgoing charged fragments. Due to Low’s theorem [57] the latter give rise to an
infra-red divergent ~ 1/w component which interferes with the one discussed here.
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In astrophysics neutrinos produced from neutron stars or during super nova collapse
have an absorption mean free path which is long compared to the size of the radiating
system (see [7,8,10,54,55]). Thus the production rates cannot be estimated by black-
body radiation. Rather the microscopic rates are relevant. The mean kinetic energies
per neutrino or vy-pair are about ~ 37T or ~ 67", respectively. With mean collision
rates of the order of ' ~ 7272 /ep < T [56], c.f. eq. (A.5), the production rates can
safely be estimated in IQF-approximation for relatively cold neutron stars 7" < 1.5
to 2 MeV. Already around T ~ 5 MeV the quenching factor (97) is significant (0.3)
and it may become even smaller during super nova collapse. Then the temperatures
can raise to T' ~ 10 — 30 MeV such that I' ~ T" and the here discussed suppression
effects are relevant for the corresponding neutrino emissivity.

Appendix

A  Kadanoff-Baym Ansatz and QPA

In the general non equilibrium case one has no simple relations between Green’s
functions as in equilibrium. In order to proceed nevertheless one often uses the so
called Kadanoff Baym ansatz [25]. For Fermions it reads

GEm=2i(1—nl )

ImGE,  Gpt = —2in]  TmGE, (A.T)

where nifﬂp are the fermion occupations which now depend on p through the on-

shell dispersion relation (50) rather than on e. One should note that the Kadanoff
Baym ansatz does not directly follow from the properties of the G~+ and G~
functions, rather it has been introduced in order to recover the Boltzmann limit.
The correctness of this ansatz has only been proven in the QPA, see [12]. Eqgs. (A.1)
complies with the definition of the particle densities (48), as can be seen by the sum

rules (52).

Dealing with dressed particles we consider only diagrams with thick fermion lines
determined from the corresponding Dyson equations. Approximation (A.1) is how-
ever based on the assumption that TmY% is much smaller than all other energies
scales entering the problem.

In particular in the limit ImYX% — 0 in the fermion Green’s functions one comes to
the QPA, where the imaginary part of retarded Green’s function becomes a delta
function. E.g. for non relativistic fermions

TmGP ~ —775[6—|—,up—eg—R,eE,@(e—l—,up,p)], (A.2)

where the dispersion relation between ¢ and p is implicitly given by

€p 62 + ReXE(ep, p). (A.3)
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The simple form (A.2) has problems with the sum rule (52), if retardation effects
are important (AReX"/de # 0), which also contribute to the off-shell part of GF,
c.f. ref. [31]. For simplicity we ignore this and also employ a quadratic p dependence
for ReX” in terms of an effective fermion mass e, ~ p*/2m3 in the applications.

From the dispersion equations one easily finds the corresponding relaxation times.
F.g., for fermions supposing that TmX" is small and introducing Teo] = 1/20€, where
we use that g ~ exp(—i(ep — 16€)t), one finds

R

(A.4)

F:Fp

This value would tend to infinity for ImX% — 0. In reality the fermion width de-
termined by the value ImXZ is rather large even at sufficiently small temperatures.
E.g. for nucleons, applying the QPA for the intermediate nucleon lines, it can be
estimated as follows [56]

IS~ |\ MpP[(1 = ep)er)? + T?7%[e2], T < ep (A.5)

with typically [Mp|> ~ e at normal nuclear density [52]. This estimate shows that
[TmY 2| comes into the order of e already at sufficiently small temperatures T’ ~ %6}7‘
and still increases for higher T'. This defers the application of the QPA for a wide
range of temperatures.

B Renormalization of the Two—Fermion Interaction

As an example we consider a theory where non-relativistic fermions interact via two-
body potentials. A priori this theory has no bosons and the two-body interactions
always connect two vertices of same sign, defining iV~ and VT = (iV**)T,
while V- = V*+= = (. FEven if resumed to an effective four point interaction G, ~
according to eq. (63) much like Bruckner (G matrix, one has an effective interaction
that connects only like sign vertices.

For the following we approximate Gy by a two point function (as for instance in
Fermi-liquid theory, where the residual interaction is supposed to be local and ex-
tracted from comparison with experimental data [22,10]), while Go* = Gf~ = 0.
We also suppose that GI* and G, ~ interactions are particle-hole irreducible in the

t-channel (vertical in (63), c.f. [22,10]).

Starting from G, and GFT one can completely bosonize the interaction in the
standard way by resumming all intermediate particle-hole loop insertions

=G0, e {+) (B.1)
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through the Dyson equation in two by two matrix form

G=Go+G, 0 AMG. (B.2)

In space-time homogeneous cases eq. (B.2) can be solved algebraically. First one
defines a residual interactions through repeated A=~ and ATT insertions as
Gy T G

— g;’l;_i— = — — S (Rg)

o TG A T GITAY T 156, A

Using G, + = G~ = 0 straight forward algebra yields

g+f — Zg++/4+fgff g7+ — Zg;;/47+g++

Tes res 9 Tes

GHt = ZGH, G =76, (B.4)

for the components of the full interaction G, where

Z=(1-GHar g A (B.5)

Tes Tes

is a renormalization factor.

The explicit dependence of G~ and Gt~ on 7 can be moved to a renormalization
of the loop

Gt=Gg _ATGHt  wherte AT =7AT. (B.6)

ren<~res ? TEen,

This full interaction G has bosonic features, just describing effective bosons, such as
phonons, plasmons, sigma mesons, etc. Also the inclusion of real bosons, like pions
in nuclear matter, is possible, giving rise to a picture, where pions couple to pionic
particle-hole excitations, see [50,10]. These effective bosons can be taken on the same
footing as all other effective quanta, the fermions or other bosons, see [45,41]. Thus,
effective bosons also acquire a spectral function with width and the non-diagonal
components of G~ and Gt~ are also Wigner functions. Consequently one comes to a
theory of effective in-medium fermions interacting with effective in-medium bosons.

Obviously the full (anti-)time-ordered G~ (G**) depend on the in-matter den-
sities Gt and Gt also via 7. However in an approximation where the value
Gt AY=G, - AT is small, one has 7 ~ 1 for renormalization factor (B.5). So, one
can simplify further and comes to a scheme like leading logarithmic approximation
in quantum field theory, namely, a perturbation series over G=% (or Gt7) neglecting
corrections 1 +O(Gt~ A1) in each leading term. Such corrections are proportional
to p? (or T'?). Thus, one approximately has

+

GFt= I ~ G AtGH ~ % (B.7)
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with like sign effective interactions (63) (whereas in the general case one comes to
(B.7) with renormalized A_F loops).

Ten

C Contribution of More Complicated Diagrams

Neglecting vertex corrections diagram (95) is given as

+

A DY = A ) = VIVIA ) where

o [EEEse e

<AG T (p)iGT (p+k—q)ig *(k),

with four-vectors ¢ = (w,,q), p = (e,k) and &k = (w, k). Here G~F is the 7 +7

interaction loop (B.7). For ¢ < k ~ pp the integration in (C.1) over the pk angle

gives '¢

Jo(€) = / drG (p+ K (p+ & — q)

2myw —w, + i th((e + w)/(QT)).

=(1 — Neyu—uw C.2
( Ney q) pk wg T T2 ( )

Since | # |< 1 one has the following restrictions on p
€ =P 2m5 > g = (w— k°/2m% — w,)’m /2K (C.3)

Further integrations can only be done in certain limits. For I',w, < T one can use
Kadanoff Baym ansatz (87), c.f. Appendix A, (A.1). In that case the ¢ integration
can be performed. One needs only the real part of expression (C.1) since the imag-
inary part is cancelled by the corresponding diagram with opposite time ordering
(opposite line sense). Thus,

Ji =Re / deGTH(p — )G T (p)Jo(e)

2mm? w3 —T?u
B S P e
/ q

where

6 using also ¢, k and p for |q|, etc.
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e—l—wthe—wq
2T 2T

~1— anpfﬂF‘*Wq(] o n‘p*MF“l‘W) o anpfﬂfl?“l‘w(] o n‘p*MF‘*Wq)‘

w=th

=1 =20, (1 —neyo) — 20y (1 —ney,) (C.5)

For low fermion occupations u is about unity and we obtain with the help of relation

(78)

*2

AT = (wy) [ nBnP IS (w0, k) ds(w, k) kdkdew,  with  (C.6)

) ]6774(.03 W w

o0

']2((“)7 k) = /(n/‘p*MF+W*Wq o n‘p*ﬂlf)dem 01 (wq) = ws

€0

2 2
w, T

(w2 + 12y

The integral in eq. (C.6) can be expressed through Ayt in QPA (eq. (82)), since
pk > m*I" and one obtains

g ((‘°7k)gii((“‘7k) B_B
n n’
4 3 w wq w

xImAl (w, B)Tm Al (w0, — w, k) dkdw.

A q) = Crley) [ (C.7)

This expression differs from the contribution of the corresponding QPA Feynman
diagram calculated in ref. [47] only by the pre factor Ci(w,) which is non unit in
our case of finite width T'. In the QC limit this expression (C.7) coincides with the
n =1 term in classical Langevin result.

Diagram

-f%‘-- = —iAat (C.8)

can be evaluated along similar lines considering the integrals for the left and right
sub-loops

4

Jo= [(0iG (04 BiG (i (p+ & — )22y’ (C.9)

b

d'py

(2m)"

Integration of (C.9), (C.10) is done quite analogously to the previous cases. One may

Jo— /(—])i(}“’(m k)G (4 k)G () (C.10)

integrate over pk angle, then over ¢ and ¢, in eq. (C.9) and over p1k angle, ¢; and
e, in eq. (C.10), respectively. One recovers the corresponding QPA form derived in
ref. [47], however multiplied by the pre factor Co(w,), c.f. (95).
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