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1 IntroductionThe importance of coherence time e�ects on the production and absorption of �eldquanta from the motion of source particles in non-equilibrium dense matter has �rstbeen discussed by Landau, Pomeranchuk, Migdal (LPM) [1,2] (and many otherslater) in the context of bremsstrahlung from ultra{relativistic electrons undergoingmultiple rescatterings on Coulomb centers. The �rst successful measurements of thecorresponding suppression of bremsstrahlung have been carried out at the StanfordLinear Accelerator Center very recently [3]. With this paper 2 we like to supplementsome quite intuitive and also formal considerations, which illustrate the nature ofproduction and absorption processes in a dense matter environment. The subject isof quite general nature and applies to many physical problems, where either a sourcecouples weakly to a wave �eld or for the proper determination of local gain and lossterms in quantum transport. Examples are the production of photon, or di-leptonfrom a piece of dense nuclear matter or hadron gas formed in high energy nuclearcollisions, the gluon or parton radiation and absorption in QCD transport and itspractical implementation in parton kinetic models (such problems are discussed,e.g. in [5,6]), the neutrino and axion radiation from supernovas and neutron-starmatter (see [7{10]), soft phenomena in quantum cosmological gravity (see [11]),many condensed matter phenomena, as particle transport in metals and semicon-ductors, radiation in plasma etc. (see [12,13]), and also the decoherence problem inthe electro-weak baryogenesis during the early universe (see [14,15]). To be speci�c,however, we take the example of electrodynamics, considering photon productionfrom a piece of nuclear matter as the source, but when appropriate comment onother cases. Since throughout the paper we discuss the corresponding proper selfenergy of the produced particle, all considerations also apply to gain and loss termsof other particles in non-equilibrium dynamics.In the context of high-energy nucleus{nucleus collisions [6] for example, it becamequite apparent over the last years, that a justi�cation of QCD transport (e.g. in termsof a parton kinetic picture) calls for a proper understanding of all soft processes.Well known is the Rutherford singularity in scattering cross-sections of interactionsmediated by the exchange of zero mass quanta (photons/ gluons). In dense matterthe exchanged quantum acquires a �nite real mass due to Debey-screening. Singu-larities are also encountered in absorption or radiation processes (bremsstrahlung).Induced by free scattering the rates diverge at vanishing four-momentum q of theradiated quantum, due to the in�nite time scales used in the quasi-free approxima-tion. In dense matter, however, due to the �nite free propagation time �coll betweensuccessive collisions the source particles aquire a damping and these rates becomeregular. In particle physics context, most of the papers on the LPM e�ect discussthe bremsstrahlung of some fast charged particle, such as hadron, quark or gluon,which traverses a dense hadron gas or quark{gluon plasma, e.g. see refs. [16,5], wherethe role of the matter is reduced to in�nitely massive scatterers. In reality all theparticles in dense matter which couple to the radiated �eld should be treated on2 a brief report of these results is given in [4]2



equal footing. E�ects of the �nite mean free propagation time on photon and gluonradiation have been considered e.g. in refs. [16,18{20,5].While the problem can be quite simply and intuitively formulated and solved in theclassical limit, where a classical source couples to a wave �eld, e.g. classical chargeparticles couple to a Maxwell �eld, considerable conceptual di�culties arise for thevery same problem, if the source is described as a quantum many-body system.In fact common standard techniques, like perturbation theory or the quasi-particleapproximation (QPA) have serious limitations to describe the production and/orabsorption rates over the whole range of energies and momenta, as they completelyfail in the soft limit.Starting from a quantum many-body formulation in terms of Green's functions mostderivations of transport descriptions employ two essential approximation steps: i) agradient expansion and ii) the QPA. For simplicity we concentrate on the defectsof the QPA in this paper. In the QPA, which is a consistent approximation schemefor low temperature Fermi liquids (Landau - Migdal, see [21,22]), all particles inthe medium are treated on-shell with a well determined energy-momentum relation(dispersion relation) which follows from the real part of the retarded self energyof the particle. To be speci�c in this notion, we use the term "on-shell", when theparticle follows a sharp energy-momentum relation. Thus the quasi-particle poles ofthe retarded Green's function lie just in�nitesimally below the causality cut alongthe real axis in energy. The corresponding approximation scheme in terms of theseon-shell states, which have in�nite life time, is called quasi-particle approximation(QPA). Due to interactions in dense matter the damping of the quasi-particles maybecome important, the corresponding "quasi-particle" poles of the retarded prop-agators move into the unphysical sheet below the real axis. As a consequence themass spectrum of the particles is no longer a sharp delta function but rather ac-quires a width �, and one talks about "o�-shell" propagation. In that case one hasto leave the standard description in terms of stable single particle states and em-ploy quantum propagators (Green's functions) with continuous mass distributions.Landsmann [23] has coined the notion of "non-shell particles" in this connection.One thus comes to a picture which uni�es resonances which have already a widthin vacuum due to decay modes with the "states" of particles in dense matter, whichobtain a width due to collisions (collisional broadening).The theoretical concepts for a proper many body description in terms of a real timenon equilibrium �eld theory have already been devised by Schwinger, Kadano�,Baym and Keldysh [24{26] in the early 60ies. First investigations of the quantume�ects on the Boltzmann collision term were given by Danielewicz [27], the princi-ple conceptual problems on the level of quantum �eld theory were investigated byLandsmann [23], while applications which seriously include the �nite width of theparticles in transport descriptions were carried out only in recent times, e.g. [12,27{37]. For resonances, e.g. the delta resonance in nuclear matter, it was natural toconsider broad mass distributions and ad hoc recipes have been invented to includethis in transport simulation models. However, many of these recipes are not correct3



as they violate some basic principle like detailed balance [34], and the description ofresonances in dense matter has to be improved. The present study also gives somehints on how to generalize the transport picture towards the inclusion of o�-shellpropagations in dense matter [29,32,33].In this paper we illustrate the practical implications of such non-equilibriumconceptsat the example of particle production from the dense matter dynamics. Thus allsource particles never reach an asymptotic state and naturally have a continuousmass spectrum. In sect. 2 we derive the basic formulas for the rate of bremsstrahlung.The classical and general quantum mechanical expressions, the latter in terms ofnon{equilibrium Green's functions and self energies, are derived for the case of non{equilibrium dynamics. In sect. 3 we concentrate on the description of radiation fromclassical sources. We start with the bremsstrahlung from a classical di�usion process,and subsequently derive the photon spectrum for a classical random walk (Langevin)process in terms of a completely regular multiple collision expansion. The low energybehavior is discussed and pocket correction formulas for the in{matter radiationcross sections are suggested in terms of standard transport coe�cients. Also �nitesize corrections are obtained. Then in sect. 4 we use the non{equilibrium Green'sfunction formalism, see [24{27,38,31], and formulate diagrammatic resummationswhere all quantities are expressed through physically meaningful terms. We showhow infra-red convergent results can be obtained through the account of the �nitedamping width and discuss the QPA (sect. 4.5) and quasi{classical (QC) (sect. 5)limits from the corresponding in�nite series of diagrams. In sect. 6 the lowest orderloop diagrams for the production rate from a piece of equilibrium dense matter areanalyzed in the quantum case, both at high and low temperatures. Conclusions andperspectives are given in sect. 7. Some formal details are deferred to the Appendix.We use rational units ~ = c = 1. Whenever the behavior of some quantity is discussedin the classical limit (~! 0), ~ will be given explicitly.2 Basic Formulas for the Rate of BremsstrahlungIf the source system couples only perturbatively (to lowest order in e2) to the elec-tromagnetic �eld, the production or absorption rate of photons can be formulatedusing standard text book concepts in terms of Fermi's golden rule. The correspond-ing transition amplitude is given by the electromagnetic current operator betweenthe initial and �nal states of the source. For dense matter problems it is more ad-vantage to use a more general concept, where the local production and absorptionrates are expressed through the current-current correlation function 33 For the description of coordinates and momenta we use the following conventions: num-bers 1, 2, etc. abbreviate space-time points x1 = (t1;x1), etc.; for two-point functionscoordinate means are x = (x1 + x2)=2 = (t;x), relative coordinates: � = x1 � x2 = (�; �);the corresponding four vector Wigner coordinates are (x; q) = (t;x;!; q) for the photonand (x; k) = (t;x; �;k) for the particles of the source. Whenever advantage or necessary4



Dj�y(2)j�(1)E for production, and Dj�(2)j�y(1)E for absorption: (1)Although j(x) = j(x; t) is a hermitian operator we distinguish between j and jyin order to designate the photon creation and annihilation vertex, respectively. Thebracket h: : :i denotes a quantum ensemble average over the source; quantum statesand operators are taken in the Heisenberg picture.With reference to the description of non{equilibrium systems, where it is advantageto use real-time non{equilibrium �eld theory concepts, such as the Schwinger -Kadano� - Baym - Keldysh technique [24{27] we introduce the following notions4� Dj�y(2)j�(1)E = �i����+(1; 2); 4� Dj�(2)j�y(1)E = �i���+�(2; 1) ; (2)which relate the correlation functions to the proper self energies ��+ and �+� ofthe photon, which are responsible for gain and loss (c.f. sect. 4.3). Throughout thispaper we use the f�;+g notation, de�ned in detail in sect. 4 in the convention ofref. [38], chapt. 10.In this formulation the production term for the phase space occupation n
(x;q; t)(Wigner density) of on-shell photons per space{time volume d4x = d3x dt, and perenergy{momentum ! � q volume, d4q = d!d3q, with polarization � = f��g is givenby d8n
(x;q; t) = �i��������+(x; q) (1 + n
(x;q; t)) �(!2 � !2q)d4xd4q ; (3)where !q is the photon on-shell energy, and� i����+(x; q)= 4� Z d4�eiq� Dj�y(x� �=2)j�(x+ �=2)E (4)denotes the space-time Wigner transformation of the auto correlation function (2).This local gain term is the on-shell version of a general quantum transport con-cept (Kadano�-Baym equation [25], c.f. (46), sect. 4). It likewise applies for virtualphotons (e.g. dilepton production), replacing the on-shell �-function in (3) by thecorresponding o�-shell photon spectral function.The above expressions are the space and time-dependent version of the more familiargolden rule for quantum transitions between exact stationary eigenstates. Note thatby de�nition, c.f. (4), �i������� is a real quantity; if integrated over phase-spacewe shall swap from one to another or even to some mixed representation, just changing thecorresponding arguments of the functions; for space -, or space-time independent systemswe drop the argument x or x, respectively; e.g.: �12 = �(1; 2) $ �(x; q) ! �(!; q) $�(�; q); the latter two in space-time homogeneous systems. For simplicity the polarizationindices � and � or i and k for the spatial part of the tensor structure of ��� will not alwaysbe given in later equations. 5



volumes �x�q large compared to ~ it becomes positive and serves as a productionrate.Such a formalism has been applied in many cases employing the QPA for the equi-librium Green's functions, c.f. refs. [41,10]. However, the general formalism allowsto go beyond this limit and to account for the �nite damping width of the sourceparticles due to their �nite mean free path, which is the main topic of this paper.Therefore the current-current correlation function is the central quantity of interest.In graphical form it is determined by the proper self energy diagram of the photon� i��+ = �� ���i� (5)which sums all one-photon irreducible self energy diagrams 4 . The dashed lines relateto the photon, while the interior area (�i�) symbolically denotes the exact inclusionof all strong interactions among the source particles.2.1 Analytical properties and constraintsThe self energies for gain and loss obey some analytical relations that follow rightfrom the de�nitions (2,4), like�i����+(1; 2) = ��i����+(2; 1)��which implies that �i�������(x; q) is real. Production and absorption parts obey����+(x; q) = ���+�(x;�q):Integration over ! projects onto equal time properties. Of particular help for thediscussion of soft processes [18,19] are the following energy weighted dipole (q = 0)sum-rules (e.g. [39])� i 1Z�1 d!2� !n�2��+(!;q = 0; t;x)d3x = Sn = 8>>>>><>>>>>: 4� DJ i(t)Jk(t)E for n = 2�2�i D[Di(t); Jk(t)]E for n = 14� DDi(t)Dk(t)E for n = 0 (6)which are valid also in the general non-equilibrium case. Here i; k 2 f1; 2; 3g de-note the spatial components. The r.h. expressions are given by the space integrated4To order e2 naturally all diagrams are one-photon irreducible; however for the appli-cation to the production of particles with a larger coupling constant, e.g. for gluons withcoupling constant g, also diagrams to higher order in g are relevant and one then has todiscard diagrams which are one gluon line reducible.6



currents and dipole momentsJ i(t) = Z d3xji(t;x); Di(t) = Z d3xxij0(t;x): (7)While the n = 2 sum-rule directly follows from de�nition (4) and applies to anycurrent even non conserving, the other two use current conservation and partialintegrations, known as Siegert's theorem (c.f. [40]), and therefore also require thatthe system has a �nite space extension. (If there are no long range correlations, then = 2 and n = 1 relations can also be used for in�nite matter, if properly takenper volume). For non-relativistic currents the commutator in the n = 1 (Thomas- Reiche - Kuhn) sum-rule just becomes the sum of square charges in the systemi[Di(t); Jk(t)] = P e2�, where � labels the constituents.For systems in thermal equilibrium production and absorption follow the detailedbalance relation (Kubo - Martin - Schwinger [17])��+(q;x) = �+�(q;x)e�!=T (8)where T is the temperature. They allow to write the l.h.s. of the sum-rules as half-sided integrals, e.g. integrating only the production rate�i 1Z0 d!2� !n�2��+(!;q = 0; t;x) �1 + (�1)ne!=T�d3x = Sn: (9)These rules have been used to estimate the validity of the quasi-free scatteringprescription in kinetic models [18,19]. In the classical limit, where ~! ! 0 (c.f. sect.3. below) the l.h.s. of the n = 1 and n = 2 sum-rules coincide in equilibrium, apartfrom a factor T=2, and the ensuing identity 2S2 = TS1 is a disguised form of theclassical equal partition theorem.A further consistency check for diagrammatic elements which determine the selfenergy can be given in terms of Ward identities in the case of conserved currents.Since the space-integral of j0 gives the conserved total charge Z of the system, onemay also use that the space integrated density-density correlator is constant in time,i.e. Z d3x1d3x2�00�+(1; 2) = Z d3x�0��+(�;q = 0; t;x) = 4�Z2 = const:; (10)which applies even in non-equilibrium cases. For isolated systems the motion of thecenter of mass leads to no radiation. Therefore one normally introduces e�ectivecharges for the di�erent kind of particles of the source in the standard manner suchthat the total e�ective charge vanishes Zeff = 0.7



3 Radiation from Classical SourcesIn this section we discuss two examples which treat the source as a classical systemcoupled to a Maxwell �eld. This limit just amounts to evaluate the current-currentcorrelator on the classical level 5 . We discuss the radiation caused by a single chargedparticle (the source), which stochastically moves in neutral dense matter. The motionof the source is described (a) by mesoscopic transport (di�usion process) and (b)by a microscopic Langevin process. Since these examples represent the QC limits ofthe corresponding quantum �eld theory cases, we carry on the discussion in termsof the photon self energy ��+.3.1 Di�usion ProcessThe motion of a non-relativistic source particle is assumed to be described by atime dependent phase-space distribution f(x;v; t) in space and velocity with con-vective current density j(x; t) = e R d3v v f(x;v; t). For standard dissipative mediain equilibrium the velocity autocorrelation function (integrated over space) decaysexponentially in timeDvi(� )vk(0)E = 13 Dv2E �ike��xj� j; (11)where �x is the relaxation rate which is supposed to be approximately constant onthe relaxation time scale 1=�x. It relates to the spatial di�usion coe�cient D viaEinstein's relationD = 13 1Z0 d� hv(� )v(0)i = 13�x Dv2E : (12)Compared to the infra{red divergent quasi{free result / 1=!2 (c.f. eq. (28) below)this form of the correlation renders the photon self energy� i��+cl (!;q = 0) = 4�e2�0 DvivkE 2�x!2 + �2x = 4�e2�0 2D�2x!2 + �2x �ik (13)regular at four momentum q = 0. It is determined by mesoscopic transport proper-ties, namely by the di�usion coe�cient D and relaxation rate �x; �0 is the spatialdensity of the charged particles.5One has to realize that a classical photon carries no energy in the quantum sense, i.e.~! ! 0 and the energy is given by the electromagnetic �elds.8



Both f(x;v; t) and the autocorrelation function can be obtained in closed form, ifthe time evolution of f , and the propagation of 
uctuations �f are governed by astandard (non-relativistic) di�usion process (Fokker{Planck equation)@@tf(x;v; t) =  D�2x @2@v2 + �x @@vv � v @@x! f(x;v; t): (14)In the equilibrium limit (t ! 1) the distribution attains a Maxwell-Boltzmannformfeq(x;v) = �0feq(v) = �0 (2�D�x)�3=2 exp "� v22D�x # = m3(2�)3 e�(�(v)��)=T ; (15)where T = m hv2i =3 = mD�x and � are the equilibrium temperature and chemicalpotential and �(v) is the energy of the particle.At � = 0 we consider an initial 
uctuation �f(x;v; � = 0) = �3(x)�3(v � v0).Its propagation in the equilibrated matter is also governed by the Fokker Planckequation (14). By a Gaussian ansatz for the Fourier transform of this 
uctuation� ~f(q;y; � ) = R d3xd3vf(x;v; � ) exp[�iqx + iyv] the time-dependence can be ob-tained in closed form as� ~f(q;y; � ) = exp h�A+ iBy � Cy2i ; whereC = D�x2 �1� e�2�x�� ; B = v0e��x� � iqD �1� e��x��2 ; (16)A = iq �Z0 d� 0B(� 0) = Dq22�x h2�x� � e�2�x� + 4e��x� � 3i� iq v0�x �e��x� � 1� :This 
uctuation �f is the conditional probability which determines the time-depen-dence of the current autocorrelation function. With four vectors fv�g = f1;vgand fB�g = f1;Bg one can express the full correlation tensor in the mixed �;qrepresentation as�i����+cl (�;q) = 4� Z d3xe�iqx hj�(x; � )j�(0; 0)i= 4�e2�0 Z d3vfeq(v)v�B�e�A = 4�e2�0 Dv�B�e�AEeq= 4�e2�0 exp(�D q2�x ��xj� j+ e��xj� j � 1�) (17)�8>>>>><>>>>>:�hv�v�ieq e��xj� j �D2q�q� �e��xj� j � 1�2� for �; � 2 f1; 2; 3giq�D �e��xj� j � 1� sign(� ) for � = 0; � 2 f1; 2; 3g1 for � = � = 09



with A and B as a function of � , q and v0 = v from (16). Here the ensembleaverage h: : :ieq over the equilibrium distribution feq keeps only even moments of vwith hv2i = 3D�x. The result complies exactly with current conservation, i.e. oneveri�es @0�0� + iqk�k� � 0.For transverse photons terms proportional to q�q� drop. The corresponding spatialpart of the tensor is shown in �g. 1, right part. This correlation function decaysexponentially as � e��x� at q = 0, and its width further decreases with increasingmomentum q = jqj due to the increase in spatial resolution. The left part showsthe corresponding density-density correlation (� = � = 0), which decays only fornon-zero momentum, due to charge conservation.
Fig. 1: Density-density and current-current correlation functions, �i�00 �+cl (�; q ) and�i�11 �+cl (�; q ), normalized to the values at � = 0 as a function of time � (in units of1=�x) for di�erent values of the photon momentum q2 = 3k2�2x=< v2 > with k = 0; 1; 2; 3.The remaining time Fourier transformation gives the !;q-dependence of the pho-ton self-energy. It can be expressed in terms of the incomplete gamma function.Straightforward expansion in powers n(Dq2=�x)e��xj� jon leads to� i��+cl (!;q )= 4�e2�0 DvivkEeq exp hD q2=�xi� 1Xn=0 1n!  �D q2�x !n 2(n + 1)�x + 2D q2((n+ 1)�x +D q2)2 + !2 (18)for transverse photons. Since the correlation functions are properly determined fromthe time structure of the source, they comply with the n = 2 (and n = 1) sum-ruleconstraints.There are two limiting cases where simpler analytical forms can be obtained: i)at small momentum transfers where eq. (18) can be expanded in powers of q andrewritten as to provide a propagator type form and ii) for large momentum transferswhere from the expf: : :g part in (17) a short time Gaussian behavior emerges. Thus,for small momentum transfers one �nds10



limhv2iq2��2x n�i��+cl (!;q )o = 4�e2�0 DvivkEeq 2�x�2x + !2 + 2�2x�4!23(4�2x+!2) hv2iq2� 4�e2�0 DvivkEeq 2�x�2x + !2 + hv2i q2=6 for ! � �x (19)which generalizes the relaxation result (11,13) to �nite q. On the other hand forlarge momenta one realizes thatlimD q2��x h�i��+cl (�;q )i=4�e2�0 DvivkEeq exp h�D q2�x� 2=2i ; and thereforelimD q2��x h�i��+cl (!;q )i=4�e2�0 DvivkEeqs 2�D q2�x exp(� !22D q2�x) (20)=4�e2 DvivkEeq m2T2�jqj expn� �m2 !2=jqj2 � �� =To ;where obviously the essential contributions come from velocities which satisfy theCherenkov condition jvj � !=jqj. This limit is independent of the relaxation rate �xand coincides with the quantum one-loop diagram result in the corresponding largejqj limit, as we shall see in sect. 6.Although the above expressions give the exact solution of the mathematical problemposed in this section, its physical interpretation has to be done with some care for thefollowing reason. The equilibrium source distribution contains velocity componentsthat exceed the speed of light. Therefore for the physical result mistakes of the orderof exp[�3=(2 hv2i)] = exp[�m=(2T )] are expected. This restricts the application tonon-relativistic sources and for large q to space-like photons, where jqj � !.For systems with given �xed mean-square velocity hv2i = const: the exact classicalon-shell rate (3) at jqj = ! evidently scales as a function of !=�x. It properly vanishesat ! = 0 and at in�nity. It is important to note that the rate has an upper boundof � 23�e2�0 hv2i, and indeed attains its maximum value around ! � �x, which iscollision-rate independent. For simplicity we quote the closed form obtained in thenon-relativistic limit (19), which coincides with the dipole limit. Thered5n
d3xd!dt � 43� e2�0 Dv2E !=�x1 + (!=�x)2 ! 43�e2�0 Dv2E8>>>>><>>>>>:�x=! for ! � �x12 for ! = �x!=�x for ! � �x: (21)One realizes that the ultra-violet part of the spectrum ! � �x behaves as intuitivelyexpected, �g. 2: the rate grows proportional to the relaxation rate, until it saturatesaround ! � �x. For the soft part ! � �x, however, the rate becomes inverselyproportional to the collision rate! The higher the collision rate the more suppressedthe spectrum. In order to illustrate the non-perturbative character of this soft be-havior supposes �x / g2, where g is the strong coupling constant of the source11



system. One sees that indeed the low-! part with � / e2!=�x / e2!=g2 representsa genuine non-perturbative result in g, while the large !-part, where � / e2g2=!, iswell described perturbatively.
Fig. 2: Rate of real photons dN=(d!dt) inunits of 4�e2 
v2� =3 for a non-relativisticsource for �x =50,100,150 MeV; for com-parison the IQP results (dashed lines) arealso shown. Fig. 3: Current correlation function for the�rst terms n = 0; 1; 2; 3 of the Langevin re-sult, eq. (22) and the total sum (�) for thecase that�x=� = 
(vm � vm+1)2� =(2 
v2�) = 1=3.3.2 Microscopic Langevin ProcessFor a later comparison with quantum diagrams in sect. 4 we should look into thecorresponding microscopic picture of classical propagation. There one can consider aclassical random process (Langevin process), where hard scatterings occur at randomwith a constant mean collision rate �. These scatterings consecutively change thevelocity of a point charge from vm to vm+1 to vm+2, : : : (in the following subscriptsm,n, and l refer to the collision sequence, while superscripts i; k 2 f1; 2; 3g specify thespatial components of vectors and the self-energy tensor). In between scatterings thepoint charge moves freely. For such a multiple collision process some explicit resultscan be given. They all refer to the case of vanishing photon momentum q = 0 (dipoleapproximation) and therefore apply to non-relativistic sources where hv2iq2 � �2xor to dilepton production, for example, since only the time structure is well knownin this case, while the space structure would require an integration of the randomclassical paths.For such a Langevin process the modulus of the autocorrelation function takes asimple Poissonian form (�g. 3)� i��+cl (�;q = 0)=4�e2�0 Dvi(� )vk(0)E=4�e2�0e�j�� j 1Xn=0 j�� jnn! Dvimvkm+nEm : (22)12



Here h: : :im denotes the average over the discrete collision sequence fmg. This form,which one writes down intuitively, directly includes what one calls damping andtherefore corresponds to a resummation description in the quantum case. The cor-responding perturbation theory result is obtained through an expansion in powersof � � i��+cl (�;q = 0) = 4�e2�0 1Xn=0 j�� jnn! nXl=0(�1)k nl!Dvimvkm+lEm ; (23)which for dimensional reasons is also a power series in j� j in this case. If theDvimvkm+nE expectation values are replaced by unity in (22) or (23), one obtainsthe 00-component of � which becomes constant in time in line with (10).The time Wigner transform of (22) determines the !-spectrum at vanishing q� i��+cl (!;q = 0) = 4�e2�0 1Xn=0 Dvimvkm+nEm Re(2�n f(� + i!)n+1g(!2 + �2)n+1 ) : (24)This is a genuine multiple collision description for the photon production rate incompletely regular terms due to the (!2 + �2)n form of all denominators. Each termis regular, since right from the beginning one accounts for the damping of the sourceparticle because of its �nite mean time 1=� between collisions. The result (24) stillaccounts for the coherence of the photon �eld, now expressed through the correlationshvmvm+nim arising from the sequence of collisions. Note in particular, that, althoughthe total expression is positive, the n > 0 terms can be negative since they describethe interference of the radiation arising from di�erent propagation segments of thesource particle. Thus, the terms in (24) de�ne partial rates, which later (sect. 5.2)will be associated with speci�c self energy diagrams.As already mentioned, the q-dependence of the self energy cannot be given in closedform in general apart from the n = 0 term (c.f. with n = 0 term from eq. (24))� i��+cl (!;q) � 4�e2�0 * 2� vimvkm(! � qv)2 + �2+m : (25)It shows the typical Cherenkov enhancement at ! = qv. At this level one may betempted to associate this (n = 0) term with the relaxation ansatz result (13). Thishowever is only true if < vm vm+n >m= 0 for n 6= 0, an approximation recently usedin refs. [16]. In the general case velocity correlations between successive scatteringsexist, and there will be a di�erence between the microscopicmean collision rate � andthe mesoscopic relaxation rate �x. Still, for systems, where the velocity is degradedby a constant fraction � per collision, such that hvm � vm+nim = �n hvm � vmim, onecan resum the whole series in (24) and thus recover the relaxation result (13) atq = 0. The macroscopic rate �x is then determined by the microscopic scattering13



properties through �x = (1��)�, or 2 h(vm)2im �x = h(vm � vm+1)2im �. This clar-i�es that the di�usion result (18) represents a resummation of the random multiplecollision result.The following relations show di�erent reformulations and limits of the Langevinresult (24). For instance the invariance of (24) is not directly visible, since absolutevelocities enter. Still the perturbation expression (23) can be rewritten, such thatexcept for the zero order term, which drops out in the Fourier transform, onlyvelocity di�erences appear�i��+cl (�;q = 0) = 4�e2�0 (DvimvkmEm � j�� j2 D(vim � vim+1)(vkm � vkm+1)Em� 1Xn=2 j�� jnn! n�2Xl=0 (�1)k n� 2l ! D(vim � vim+1)(vkm+l+1 � vkm+l+2)Em) : (26)Terms of lowest odd order in j� j determine the asymptotic large ! (ultra violet)behavior of the spectrumlim!!1 h�i��+cl (!;q = 0)i = 4�e2�0� (�2!2 D(vim � vim+1)(vkm � vkm+1)Em+ 1Xn=2��!�2n 2n�3Xl=0 (�1)l 2n � 3l !D(vim � vim+1)(vkm+l+1 � vkm+l+2)Em) : (27)Apart from the mean collision time � 1=� this is an expansion in powers of (�=!)2and therefore represents the perturbation expansion result for the classical source(� representing the interaction, while 1=! relates to the intermediate propagator).This perturbation expansion (27) is interesting since it already displays the mainproblem: While for ! � � the series converges, if higher order correlations ceasesu�ciently fast, there is no hope to ever recover the correct result (24) for ! � �.This is so, since i) this series is necessarily divergent (it has to recover 1=(!2 + �2)by a power series in �), but also it misses the knowledge on the even powers in � ineq. (26) which essentially determine the soft behavior.The �rst term in (27) represents the incoherent quasi{free production rate which for�nite q at given polarization � reads� i��������+IQF (!;q) = 4�e2�0�*������kmqkm � �km+1qkm+1 �����2+m : (28)It carries the known divergence at the soft point q = 0, c.f. dashed lines in �g.2 and 4. In conclusion: the commonly used IQF prescription fails for soft particleproduction. 14



3.3 Finite Size CorrectionsFor systems of �nite spatial extension and conserved currents one can consider then = 0 sum rule. It demands that ����+(q;x) has to vanish at least quadraticallywith q ! 0. This property survives in the classical limit, where formally ~ ! 0and the spectrum becomes continuous. Thus, the term of zero order in ! given byR1�1 h(v(� ))(v(0))i d� has to drop and the ensuing low energy part of the spectrum(24) starts quadratically in !lim!!0 h�i��+cl (!;q = 0)i =�4�e2�0� (!2�2 1Xn=0(n + 1)(n+ 2) Dvimvkm+nEm +O  !4�4!) : (29)The simple relaxation ansatz (11) does not ful�ll this �nite size condition, since itignores long term anti-correlations on the scale of some recurrence time 1=�rec. Thatis the time, where on the mean the center of charges returns to the same point 6 .This defect of the relaxation ansatz may be cured by a more general form whichincludes such an anti-correlation, e.g.hv(� )v(0)i= Dv2E (e��xj� j � �2rec�x j� je��recj� j) ;�i��+cl (!;q = 0)= 4�e2�0 DvivkE 2�x ( �2x!2 + �2x + �2rec(!2 � �2rec)(!2 + �2rec)2 ) : (30)The extra parameter �rec can be determined such that the spectrum ful�lls the n = 0dipole sum-rule (6). For larger systems one infers that �rec � 2 hv2i =(hx2i�x), wherehx2i is the mean-square extension.For small systems both time scales become comparable and the self energy tensorattains the form�i��+cl (!;q = 0) = 4�e2�0 DvivkE 4�x!2(!2 + �2x)2 for �x = �rec: (31)This form has been found in the one-dimensional model of ref. [19], where due tothe dominance of back scattering both time scales merge.6 not to be confused with the Poincare recurrence time, which is of no relevance here.15



Fig. 4: Current correlation function�i�11�+(!; q = 0) for a random colli-sion sequence limited to a �nite size inspace such that 
x2� ' 10 
v2� =�2 and�x = 0:8�: full line from Monte Carlo cal-culation of the phase integral (32); dashed-dotted line from the analytic Langevin re-sult (24); dotted line includes �nite sizecorrections (30); dashed line from quasi-free scattering prescription.3.4 Comparison with Monte Carlo Evaluation of AmplitudesFor illustration we like to present a simple model result and compare it to a MonteCarlo method, where amplitudes are calculated by considering the phase of thephoton �eld along the classical orbits. Thus, one evaluatesZ dtv(t) exp[i!t� iqx(t)] (32)along the random straight sections of the classical paths in the cascade model. Thismethod also permits to illustrate the �nite size corrections discussed above. Thedotted line in �g. 4. shows the Monte Carlo phase integral result (32) from anoriented random walk, compared to the simple relaxation result (13), dashed line.The example has the property that the motion is limited to a �nite space withhx2i ' 10 hv2i =�2 and �x = 0:8�. The sharp dip at ! = 0 and the little over shootaround ! � 0:3� are due to the �nite size of the system. The full line gives therelaxation result including the �nite size corrections (30).Evidently theMonte Carlo method is highly unreliable due to the strong cancelationsof terms that are randomly generated. The precision in �g. 4 is obtained with 200cascade runs where each path has about 103 collisions (simulation codes have by farless statistics!). The analytical result (24) has signi�cant computational advantages,provided the random process is of this form. For the same precision already a singlerepresentative path with about 103 collisions is su�cient, while for the relaxationansatz one only has to determine the relaxation rate, i.e. a simple moment in time.3.5 Infra-red Divergences, Current Conservation, Gauge Invariance and IdentitiesIn the above multiple collision description with damping (22) all terms have a �niterange in time. Thus, they all are void of infra-red divergences and so is any limitedsum of terms of them. This is the desirable feature that we are aiming at. In addition16



the example above illustrates that in many cases only a few rescattering terms arenecessary in order to properly recover the correct result for the transverse part ofthe correlation tensor both at small and large !. In fact the number nx of requiredrescattering terms is given by nx � �=�x.The picture is more subtile for the longitudinal components of the tensor, since someparticular integrals are conserved (time independent) as they related to the totalcharge, c.f. eq. (10), sect. 2.1. Thus �i�00�+(q = 0; � ), c.f. �g. 1, has to be constant.For the Langevin case this identity holds, since1Xn=0 (�� )nn! e��� � 1: (33)However, for any �nite number of such terms this identity can never be recoveredexactly for all times, since the relaxation time of total charge is in�nite!Quite often one is interested in a solution of the problem up to a maximal time tmax,and one likes to request charge conservation on the correlator level to be maintainedonly within this time span or within the corresponding !-range limited to ! >!min = 1=tmax. With this limitation a �nite number of terms nx � �tmax � �=!minis required for a proper description also of the longitudinal parts of the correlationtensor at q = 0.The above features have to be contrasted with perturbation theory (c.f. eq. (23)),where the correlation function can be expressed by a power series in � in this caseand therefore leads to a power series in � . Here the zero order term is �nite (andtrivially constant in time), while the higher order terms cancel out for each givenorder, c.f. (23). Thus, in perturbation theory current conservation is maintainedorder by order also for the classical correlator (as one is used to from the quantumcase). The price to be payed is that in perturbation theory the infra-red propertiesare completely ill.In favor of the �nite width description one should realize that any �nite widthcalculation up to a certain order nx includes the perturbation theory or QPA resultsup to the very same order nx. In other words, if one would expand all �nite widthterms within the order nx into powers of � one recovers all the QPA or perturbationtheory terms up to that order!Only in the above sense current conservation, gauge invariance and other identitiesrelated to them (e.g. Ward identities) can be understood and expected to hold fora �nite set of terms. These considerations are general. In particular they also applyto any �nite set of self-energy diagrams in the quantum case, which use full Green'sfunctions with damping as discussed in the next section.This completes the formal discussion of the classical radiation rate and the corre-sponding classical expressions for the self energy of the photon.17



4 Non Equilibrium Green's Function DescriptionIn this section the production rate or photon self energy (2) is discussed in thecontext of non-equilibrium quantum �eld theory, in terms of Green's functions andthe corresponding non-equilibrium diagrams. Thereby one has to go beyond pertur-bation theory which is not applicable for strongly interacting systems. The idea toformulate theory in terms of appropriately de�ned physical terms was very fruitful.It resulted in the development of the QPA method, see [21,22], where the changesin the real part of the fermion self energy are taken into account substituting thefree particle energy �0p by the corresponding QPA energy. This method proved tobe very successful for the case of equilibrium matter at rather small temperature(T � �F , where �F is the Fermi energy), since higher order corrections lead toadditional (T=�F )2 factors [41].Since in the QPA the imaginary part of the self energy (Im�RF ) is supposed to benegligible in the corresponding Green's functions it still su�ers the same infra{redproblems as the perturbation expansion. Any �nite set of diagrams leads to infra{red divergences in the soft limit (q! 0). Even certain resummation methods as thehard thermal loop expansion [42,43] in QCD do not cure the problem. On the otherhand the classical considerations of the previous section clarify, that all infra{reddivergences disappear, if one properly accounts for the �nite collision rate �. Thus,one has to avoid the zero-width perturbation theory or QPA and seriously accountfor the �nite damping width � = �2Im�R of the source particles.Therefore the simplest and physically most meaningful step is to go to the fullGreen's functions G (full lines in diagrams) associated with the in-medium propa-gation for the constituents of the source. Thus one has to solve Dyson's equationin order to include also the damping width of the particles. This is done in sect.4.2. The derivation of transport schemes is summarized. Further on some physicallymeaningful resummations of the diagrams are proposed. Various graphical contri-butions to the self energy diagram (5) are discussed in the QPA, and in the QClimit.4.1 Vertices and Green's functionsFor a theory of fermions interacting with bosons the basic diagrammatic elementsare the corresponding Green's functions iG (lines) and interaction vertices �iV .For non equilibrium description it makes no sense to discuss amplitudes. Ratherone evaluates the time-dependence of the ensemble averaged expectation values ofobservables. Such expectation values involves standard time-ordered products (T̂ )for the evolution of the "ket" j i and also anti{time ordered products (Â) for theevolution of the "bra" h j in the matrix elements. Both can be summarized to acontour-ordered product [24]. Therefore one distinguishes two types of vertices: the(�) vertices with value �iV pertain to the time ordered part, and the adjoint (+)18



vertices with value +iV for the anti{time ordered section, in the here used conven-tion[38]. Thereby V is the real interaction vertex of the Lagrangian. Correspondinglytwo point functions, like the Green's functions, have four components, which can bearranged in matrix form (we reserve bold face notation for the two by two f�+gmatrices)iG12 := 0B@ iG��12 iG�+12iG+�12 iG++12 1CA = 0BB@DT̂	(1)	y(2)E � D	y(2)	(1)ED	(1)	y(2)E DÂ	(1)	y(2)E 1CCA (34)Here 1 and 2 denote the two space{time points and h: : :i the ensemble average.Upper and lower signs refer to fermion and boson Green's functions, respectively.The four Green's function components are obviously not independent. Rather theyrelate to the retarded and advanced ones byGR :=�i�h	(1);	y(2)i���(t1 � t2)= G�� �G�+ = G+� �G++GA :=+i�h	(1);	y(2)i���(t2 � t1)= G�� �G+� = G�+ �G++ ; (35)where � is the step function and [: : : ; : : :]� denotes the fermion anti- or bosoncommutator.The unperturbed Green's function G012 is resolvent of the corresponding free singleparticle Schr�odinger - (non rel. fermions) or Klein-Gordon equation (rel. bosons)S1G012 = (S2)�G012 = �(1� 2)�z ; S = 8><>: i@t + �2m (non rel. F)�@2t +��m2 (rel. B) (36)where the subscript speci�es the coordinate to di�erentiate. Here �z is the thirdPauli matrix and �(1� 2) is the four-space delta function.With this extension to the two types of vertices � and + and the corresponding fourGreen's function components all standard diagrammatic Feynman rules de�ned foramplitudes can directly be generalized. These rules are then again de�ned withrespect to the real time (as in zero temperature theory) 7 . For conventions and adetailed explanation of the diagrammatic rules used here we refer to the text book ofLifshitz and Pitaevskii [38]. For a given n-point function all n external vertices havea speci�ed sign assignment, while one has to sum over all possible sign combinationsat the internal vertices.7Please note that in refs. [24,25,27] the diagrammatic rules are de�ned with respect tothe closed time contour, which leads to the same de�nition for Green's functions, howeverthe o�-diagonal components of the self energies used there �< = ���+ and �> = ��+�have opposite values. 19



4.2 Resummations: Dyson - and Kadano�-Baym equationsSince diagrammatic elements, e.g. Green's functions G and self energies � are con-nected at a given vertex, the same vertex type � or + appears in both functionsand Dyson's equation can simply be written in matrix formG12=G012 + Z d3d4 G013�34G42 or simply as (37)G=G0 +G0 �� �G = G0 +G ���G0involving usual matrix algebra, which automatically provides the sum over all in-ternal vertex sign combinations. Here the two by two matrix � denotes the properself energy of the source particles 8 . The � abbreviates the space-time folding. Indiagrams Dyson's equation becomes���������������� = ���������������� + ������������������ ���i�B ����������������- = - + - �� ���i�F - (38)where we explicitly distinguish between fermions (label F ; full straight lines forGF ) and bosons (label B; full wavy lines for GB). The four components of �i�are de�ned as the sum of all standard proper self energy diagrams like in normalperturbation theory, now however with de�nite + or � assignments at the externalvertices, and summed over the �+ signs at all internal vertices as explained above.Using the resolvent properties (36) of G0 one can transform Dyson's equation intoa set of integro-di�erential equation which in short matrix notation readsS1G12= �(1� 2)�z + �z Z d3 �13G32(S2)�G12= �(1� 2)�z + Z d3 G13�32�z (39)The four equations involving the time changes of G�+ and G+� are known as theKadano�-Baym equations [25], originally derived by the imaginary time method.Here they are a direct consequence of the Dyson equation in matrix form. Like thefour components of G also those of � are not independent. Their dependence canbe determined observing that the Dyson equations for retarded or advanced Green's8We reserve � for the self energy of the source particles, while � denotes the self energyof the external photon. 20



functions have to involve only retarded or advanced entities, respectively. Thus theycompletely decoupleGR = G0R +G0R ��R �GR; GA = G0A +G0A � �A �GA; (40)where �R and �A are the corresponding advanced and retarded self energies. From(35), (37) and (40) one therefore follows that�R = ��� + ��+ ; �A = ��� + �+� ; �++ + ��� = � ��+� + ��+� : (41)The full Green's functions account for the �nite damping width� = �2Im�R = i ���+ ��+�� (42)of the particles, which destroys the sharp relation between energy and momentum.Thus the spectral functionA(x; p) := �2ImGR(x; p) = i �G+�(x; p)�G�+(x; p)� (43)is no longer an on-shell �-function by rather has a width �(x; p). This width does notonly arises from decays (resonances) but also from collisions of the particles in densematter. It is important to realize, that the resummation to full Green's functions(bold straight or wave lines in diagrams) reduces the set of all diagrams to a subsetof diagrams with skeleton topology, where all self energy insertions are excluded inthe diagrams.4.3 Transport equationsIn the presented picture the Wigner transforms of the o�-diagonal Green's functions�iG�+ and iG+� are Wigner densities in four space and four momentum for theoccupied and available 'single particle states', which now have a �nite width andtherefore can be o� mass shell. We will see that the corresponding non-diagonalcomponents of the proper self energy �i� are the gain and loss coe�cients for thetransport description of these Wigner densities.The entry to such transport equations is given by the Kadano�-Baym equations,which are contained in the set (39). Subtracting the two equations for G�+ yields�i (@t1 + @t2) + �1��22m ���@2t1 + @2t2 +�1 ��2�9>=>;G�+12 (44)21



= Z d3n���13 G�+32 + ��+13 G++32 +G��13 ��+32 +G�+13 �++32 ofor non rel. fermion or rel. bosons, respectively. The next step is to take the Wignertransformation of this equation. This involves the Wigner transformation of convolu-tion integrals C(1; 2) = R d3A(1; 3)B(3; 2) which formally can be obtained throughC(x; k)= exp[ i2(@Ak @Bx � @Ax @Bk )]A(x; k)B(x; k)'A(x; k)B(x; k) + i2fA;Bg; (45)where A(x; k), etc. are the Wigner transforms of A, B and C and the di�erentialoperators act on A and B separately. The approximate expression in terms of 4-dimensional Poisson bracket fA;Bg = @kA@xB � @xA@kB de�nes the �rst ordergradient expansion. To this order separating real and imaginary parts one obtainsfor the Wigner densities �iG�+ [29]nS(k)� �(x; k); iG�+o� niG(x; k);��+(x; k)o= ��+(x; k)G+�(x; k)� �+�(x; k)G�+(x; k) (46)with � = ��R + �A� =2; G = �GR +GA� =2:Here S(k) = �� k2=(2m) or S(k) = k2 �m2 is the Wigner form of the Schr�odigeror Klein-Gordon operator (36). The �rst Poisson bracket on the left side gives theusual Vlasov part. On the right side ��+G+� and �+�G�+ de�ne gain and lossterms. This transport equation is quite general and as the original Dyson equationstill accounts for o�-mass-shell processes, part of which are contained in the peculiarsecond Poisson bracket according to Botermans and Mal
iet [29]. We will see thatthe account of the �nite damping width and the inclusion of higher order diagramsfor the self energies (sect. 4.5) are essential to extend the scheme beyond classicaltransport concepts.Equation (46) by itself is not yet complete, since it requires a relation between G�+and G+�, which normally is provided by a certain physical "ansatz". Under nearon-shell conditions, where the Wigner densities are well peaked close to a single on-shell energy � � �p, c.f. next subsection, one can use the Kadano� - Baym ansatz orapply the QPA (see Appendix A). Then the integral over � reduces (46) to a familiarform [27,31]�@t + v@x � (@x�p) @p� n(x;p; t)= ��i��+(1 � n(x;p; t)) + i�+�n(x;p; t)�Zp (47)= ��i��+ � �n(x;p; t)�Zp;22



for the on-shell particle densities of non-rel. fermions or rel. bosonsnF (x;p; t) = �i Z d�2�G�+F ; nB(x;p; t) = i Z d�2�2�G�+B : (48)Here v = @p�(p) is the group velocity, and Zp = 1=(1 � @Re�R=@�) for non-relativistic fermions and Zp = 1=(2��@Re�R=@�) for relativistic bosons is a normal-ization factor. In all expressions � is determined by the dispersion relation � = �(p),c.f. (50) below.The form of the collisional integral in (47) is convenient in many cases, e.g. to extractstationary solution (cf. next subsection) or for the relaxation time approximation,where 1=�Zp is the corresponding collision time, see (A.4). In the di�usion approxi-mation of eq.(47) one easily recovers eq.(14). The usual Boltzmann-like form of thecollisional integral is obtained from the lowest order self energy diagram which inQPA contributes to Im�R (usually second order in the two body interaction), c.f.[27,31] and (66) in sect. 4.8. More general schemes beyond QPA are suggested insect. 4.7. The photon production rate, eq. (3), is a simple case of (47).4.4 Stationary and Equilibrium PropertiesFor a homogeneous stationary system in Wigner (x; p) representation all Green'sfunctions become space-time independent and the � operation reduces to a simpleproduct for the remaining 4-momentum part in the Dyson equation (37). With p =(�;p) we therefore drop the x-argument. Eqs. (40) can then be solved algebraicallyGRF (p) = 1�+ �F � �0p � �R(p) ; GRB(p) = 1(�+ �B)2 � (�0p)2 � �R(p) ; (49)while GA(p) = (GR(p))� and �A(p) = (�R(p))�. The dispersion relations are�+ �F = �0p + �RF (�+ �F ;p); �0p = p2=2m (non-rel. fermions)(�+ �B)2 = (�0p)2 + �RB(�+ �B;p); (�0p)2 = p2 +m2 (rel. bosons) (50)with corresponding free on-shell energies �0p and chemical potentials �B and �F .With �(p) = �2Im�R(p) = i (��+(p)� �+�(p)) the spectral function (43) areAF (p) = �(p)��+ �F � �0p �Re�R(p)�2 + (�(p)=2)2 (non-rel. fermions);AB(p) = �(p)�(�+ �B)2 � (�0p)2 � Re�R(p)�2 + (�(p)=2)2 (rel. bosons): (51)23



They satisfy the sum rules1Z�1 AB(p)2� d�2� = 1 and 1Z�1 AF (p) d�2� = 1: (52)The generalization to relativistic fermions with gamma-matrices up to tensor inter-actions can be found in ref. [44]. For illustration and later use we give the equilib-rium results explicitly, which follow from the stationary condition ��+(p)G+�(p) =�+�(p)G�+(p), c.f. eq. (46), and the Kubo-Martin-Schwinger condition [17]��+(p) = �+�(p)e��=T : (53)Then all the Green's functions can be expressed through either retarded or advancedGreen's functions. From (34), (35) and (41) one then �ndsG��(p) = (1 � n�)GR(p) � n�GA(p) ; G�+(p) = �in�A(p); (54)G+�(p) = �i(1� n�)A(p) ; G++(p) = �(1� n�)GA(p)� n�GR(p) ;and the relations for the four components of the self energies��� =�R � in��(p) ; ��+ = �in��(p);�+� = i(1� n�)�(p) ; �++ = � ������ ; (55)where the thermal occupations at temperature T (Fermi-Dirac or Bose-Einsteindistributions) aren� = fexp[�=T ]� 1g�1 : (56)In the general non{equilibrium case there are no such simple relations betweenGreen's functions and self energies as at equilibrium. In order to proceed one maysimplify the problem applying so called Kadano�{Baym ansatz (given in AppendixA) or using the QPA.4.5 Diagrammatic Decomposition into Physical Sub-ProcessesThere have been many attempts in the literature to eliminate the redundancy in thede�nition of the four Green's function components. We do not like to follow suchschemes and rather prefer to keep all four components as they are, since they displaya symmetry between the time-ordered and the anti-time ordered parts, i.e. between24



the "bra" and "ket" parts of the correlator 9 .In this formulation physical observables like densities, production rates, etc., arealways given by diagrams, where the external vertices appear in conjugate pairs, i.e.with �xed opposite signs, just de�ning correlation functions. If Fourier transformedover space-time di�erences they have the properties of Wigner functions. Specialexamples are the o�-diagonal components of the Green's functions and self energies,which de�ne Wigner densities and gain or loss rates, respectively. Working with fullGreen's functions such correlation diagrams are given by a sum of all topologicallydistinguished skeleton diagrams with the �xed external vertices of opposite signs.Each diagram of given topology consists of 2� terms, where � is the number ofinternal vertices, due to the �+ summations. These extra summations make thisapproach rather non-transparent. In this section, however, we like to suggest a verysimple classi�cation of correlation diagrams and a reformulation of the correspondingsum, which amends a simple physical interpretation.We start with the observation, that at least in one way any correlation diagram ofgiven topology and given sign assignments at all vertices can be decomposed intotwo pieces, such that each of the two sub pieces is a connected diagram which carriesonly one type of sign on all its external vertices 10'&�+ $%��---��� (57)The reason for such a decomposition is that then each diagram is given by a "prod-uct" of two sub diagrams �� and �+ with the same external lines, which one maycall amplitude { and adjoint amplitude diagrams. Here � and � denote amplitudediagrams including sign assignments. The adjoint �+ of any amplitude diagram ��is given by inverting the senses of all propagator lines and inverting the signs ofall vertices; the respective values are conjugate complex to each other (��)� = �+.For amplitude diagrams only the external vertices have de�nite signs, while internalvertices have still no sign restrictions. In analytical terms the decomposition (57)can be written as���+ ����---��� =(�i)G�+(p1) : : : iG+�(pm)�+(p1; : : : ; pm)��(p1; : : : ; pm) (58)= (�i)G�+(p1) : : : iG+�(pm) ���(p1; : : : ; pm)�� ��(p1; : : : ; pm)9 In thermal �eld theory the "+" vertices are often considered as ghosts. We do not liketo support this viewpoint as these conjugate vertices are as physical as the "�" ones forthe full correlation matrix element!10 For the construction: just deform the diagram such that all + and � vertices are placedleft and respectively right from a vertical division line and cut along this line. Pieces whichthen become disconnected are to be reconnected to the other side until two connected sub-pieces remain. In case that disconnected pieces appear on both sides the result may dependon the order of reconnection and consequently di�erent decompositions are possible.25



for space-time homogeneous cases (in general corresponding space-time foldings ap-pear). Here �iG�+(pk) or iG+�(pk) (depending on the line-sense) are the Wignerdensities of occupied (or available states) for each external line, with o�-shell 4-momenta p1 to pm, connecting both pieces. When a correlation diagram can bedecomposed in more than one way according to rule (57), the picture is not uniqueand one may assign partial weights which sum to unity to the di�erent decomposi-tions 11 . Applying this decomposition scheme to all skeleton diagrams of the properself energy leads to a decomposition in terms of physical processes with a varyingnumber m of external "states" p1; : : : ; pm besides the external photon in this case�i��+(q) = 1Xm=2 Z R�+(p1; : : : ; pm)iG�+(p1)d4p1 : : : iG+�(pm)d4pm: (59)Here the R�+(p1; : : : ; pm) de�ne the partial rates for each physical sub process withcertain in{ and out-states p1 to pm, which all can be o�-shell. In the sense of crossingsymmetry the notion of in and out may be �xed by the line sense: incoming oroutgoing lines. Naturally for fermions there are as many in{ as out-states. It isimportant to realize that the partial ratesR�+(p1; : : : ; pm) =X�;� 0 ���(p1; : : : ; pm)�� ��(p1; : : : ; pm) (60)arise from a restricted sum (indicated by the prime at the sum-symbol) over am-plitude products � times �� such that each term arises from a given correlationdiagram in the original sum. Note in particular that the sum (60) no longer includesall possible interference terms of any two amplitudes! The unrestricted sum overall pair-products of amplitude �� times (��)� is false and leads to serious incon-sistencies, since there are interference terms, which correspond to closed diagramsof non-skeleton type, which have to be omitted! The simplest case to see this is thenormal diagram for bremsstrahlung (left)- -- - t-6 2 �! �� ��u u� �--�� : (61)Its absolute square leads to a diagram with self-energy insertion (61;right), whichis not a proper skeleton diagram; rather the corresponding partial rate is alreadyincluded in the 1-loop diagram with full Green's functions!Therefore, only when each term that enters a physical rate (60) originates from avalid decomposition of proper skeleton self energy diagrams, then this formulation11A simple example for such an ambiguity is the following diagram which permits twodecompositions indicated by the thin line: �� �������������� ������������
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is void of double counting. It amends a straight forward interpretation in terms ofphysical scattering processes between certain in { and out-states. These processesoccur with partial rates R, which can be positive or negative. The warning to beformulated at this instance is, that if one works with full Green's functions which alsoinclude the �nite damping width �, particular care has to be taken. The unconsideredaccount of certain Feynman amplitudes together with �nite width spectral functionsfor the particles, as sometimes done heuristically, may lead to serious inconsistencies.On the other hand the important point to realize at this level is that the so de-�ned decomposition gives rise to a generalized formulation of transport theories,where multi-particle processes can be considered in a well de�ned scheme even ifone permits for o�{shell propagation. Note in particular: for a theory of fermions in-teracting with bosons the contribution with the fewest number of external particlesis just three (rather than four as in the Boltzmann equation). It results from the de-composition a one-loop diagram and allows for one particle in and two out and viceversa, . Thus, in dense matter an o�-shell fermion can just decay into a fermion plusboson or the opposite can happen, e.g. see [31,45]. For these processes it is impor-tant that all particles have a �nite damping width in dense matter, so that creationand decay modes, which are forbidden from energy-momentum conservation in freespace, may occur without principle restrictions in dense matter.Please note that our decomposition rules are di�erent from the standard cuttingrules which only apply either to the set of perturbation theory diagrams [46] or tothe set of the quasi-particle diagrams [41]. There diagrams are cut across all +�lines, each cut providing an on-shell delta function from the zero width spectralfunctions. Diagrams that can be cut into more than two pieces contain a productof more than one delta-function on total energy conservation and therefore show asingular behavior which is not present in the �nal correlation function. Thereforeall such "multi"-cut diagrams have to cancel out. Such arguments can no longerbe given in the case that all spectral functions have �nite widths, where the set ofdiagrams is reduced to the set of skeleton diagrams. Thus, such diagrams have alsoto be considered in a description with full Green's functions!4.6 Three and Four Point FunctionsIn principle one can stick to the above picture since all infra-red divergences disap-pear for all diagrams due to the �nite propagation times of all Green's functions.However one may have to consider still quite a numerous amount of diagrams in or-der to achieve meaningful results. For instance on the QP level we expect, that theproper in-medium current appears at both external vertices in a symmetric fashion.Thus for the convective currents one expectsj� ' ev� = e @@p� �(p) = e @@p� �0p + @@p�Re�R! = 1 � @@�Re�R! ; (62)27



where �(p) = �0p + Re�R(�(p);p) de�nes the QP energy momentum relation, seeeq. (A.3) in Appendix A. In diagrammatic terms this can be achieved by certainpartial resummation that lead to vertex corrections. Thereby we shall not consideran immediate resummation to the exact full vertex, since this would amount to solvethe whole problem. Rather we like to stay to a picture where in certain limits likethe QPA and QC limit, piece by piece an interpretation in physically meaningfulterms can be given.The considerations in the preceding subsection assigned a particular role to the full�+ and +� Green's functions as Wigner densities. This suggests to apply furtherresummations and to extend the ideas put forward in ref. [41] in the context of quasi-particles now to particles with �nite width. Namely, one likes to gather diagrampieces that are void of the Wigner densities G�+ or G+�, both for fermions andbosons. That is, one likes to resum sub-pieces of skeleton diagrams with given numberand type of external vertices (3 point or 4 point functions, for example) where allinternal and external vertices have only one de�nite sign value. The f�g diagramsthen contain only time-ordered full Green's functions G�� and therefore representa straight forward generalization of the standard zero temperature Feynman 3 or4 point functions now including the full self energies. The f+g diagrams are justthe adjoined expressions. This way one can de�ne 4 point functions (in-mediuminteractions)� �- - = �- �-����������������uu + �- �-���������������� ����������������uu uu + �- �-� � � �� � � ����� ����uu uu : : : (63)Here the thick wavy lines relate to the corresponding G��B {exact boson propaga-tors or two-body potentials in non-relativistic theories with potentials. Since onlylike sign vertices are permitted, no G�+ and G+� lines appear in these functions.Such resummed expressions have been proven useful in the low temperature QPAto de�ne in-medium interactions and e�ective vertices and they appear also quitemeaningful in the limit of low densities, as in the classical limit for example. Vari-ous approximation levels are possible for the 4-point functions; a detailed discussionwould be beyond the scope of this presentation. We mention just a few possibilities:a) a ladder summation in the s-channel (horizontal in diagram (63)) for the particle-particle (p-p) and particle-hole (p-h) channels generalizes the Bruckner G-matrixto non{equilibrium;b) in many practical cases (e.g. Landau - Migdal's Fermi-liquid theory [21,22]) the4-point functions are approximated by 2-point approximants in the t-channel (ver-tical in (63)). Then RPA-type resummations are possible [41,10], which iterate p-h"{ {" and "+ +" loops in the t-channel; details are given in Appendix B; wherealso the scheme of the bosonization of the interaction is presented, cf. [10,50].d) the ultimate could be a crossing and exchange symmetric form; in this case onerelies on suitable parameterizations.These like{sign e�ective interactions generalize the two-body scattering matrix in28



matter to non{equilibrium. Thereby one does not only account for the change of thefermionic occupations (as already considered in the literature) but also includes thedamping of the fermions. In this respect it would be interesting to see, how boundstates (e.g. the deuteron [51] or the J=	) change their properties in dense matter(Mott transition) also due to the damping widths. For consistency these like{signe�ective interactions then also enter the de�nition of the in-medium vertices (3 pointfunctions) de�ned as- ���@@Iv = - ���@@I + - �
- ���@@I (64)4.7 Key diagramsFor simplicity we con�ne the discussion to the case where the 'external' photon justcouples to fermions. Any generalization to other types of particles (external andsource internal) is straight forward. Due to the above considerations from now on theremaining diagrams include the following elements: full fermion Green's functions,like-sign 4-point interactions and the corresponding vertices. Please notice that thisreduces the set of diagrams even further! In particular not all sign combinations arepermitted any longer since some of them are already included in the resummed 3 or4 point functions.All photon self-energy diagrams can be build up by iterative four point insertions.Thus, the set of diagrams for ��+ reduces to�� ���i� = �� ��s s + �� ��s s�� �� + �� ��s s�� ���� �� + : : :���
���
s s ++ �� ��s s





























JJJ JJJ JJJ JJJ JJJ JJJ JJJ JJJ JJJ JJJ + ���
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s s�������� + : : : : (65)This set of "key"- diagrams is important for all subsequent considerations and there-fore deserves further comments.(i) Each diagram in (65) represents already a whole class of perturbative diagramsof any order in the interaction strength and in the number of loops. The mostessential term is the one-loop diagram 12 , which is positive de�nite, and cor-responds to the �rst term of the classical Langevin result for �cl in (24) aswe shall show later. The other diagrams represent interference terms due torescattering.12 In perturbation theory or QPA the corresponding one-loop diagram usually vanishesfor on-shell photons due to conservation laws. Here however, with full Green's and vertexfunctions it represents a series of perturbative diagrams as the reader can easily imagine.29



(ii) Compared to conventional diagrams, vertex corrections can appear on bothsides of one loop as they are separated by f+�g lines (see example given inAppendix B).(iii) Note that the restriction to like sign vertices for the resummations (64) and(63) are de�ned with respect to skeleton diagrams in terms of full Green'sfunctions. "Opened" to perturbative diagrams with thin G0 lines, these canstill contain alternative signs, since Dyson's equation (37) includes all signs inthe intermediate summations!(iv) In some simpli�ed representations (being often used) the 4-point functions be-have like intermediate bosons (e.g. phonons), c.f. Appendix B.(v) For particle propagation in an external �eld, e.g. in�nitely heavy scatteringcenters, only the one-loop diagram remains, since the one deals with a gen-uine one-body problem. However, extra complications arise, since translationinvariance is generally broken and the Green's functions then also depend onx.4.8 Decomposition of Closed Diagrams into Feynman Amplitudes in the QPAThe QPA is quite commonly used concept originally derived for Fermi liquids atlow temperatures (Landau-Migdal, see [21,22]). There one deals with on-mass-shellfermions in matter (quasi-particles) described by the pole part of the Green's func-tions, i.e. one assumes that Im�RF ! 0 in the Green's function GRF . Then with thehelp of some phenomenologically introduced interaction (particle-hole irreducible)one calculates the values Re�R and Im�R which now depend on quasi-particle prop-erties. Since in QPA the �nite width contributions have to appear in higher orderthrough corresponding Im�-insertions the whole set of QPA diagrams de�ning thefull �i��+ is by far larger, than set (65).The QPA has considerable computational advantages as Wigner densities ("{ +"and "+ {" lines) become energy �{functions, and the particle occupations can beconsidered to depend on momentum only rather than on the energy variable 13 .Formally the energy integrals in eq.(5), (65) can be eliminated, in diagrammaticterms just cutting the corresponding "{ +" and "+ {" lines [41]. This way oneestablishes a correspondence between correlation diagrams (65) and usual Feynmanamplitudes in terms of QPA asymptotic states and QPA Green's functions. Thusthe QPA allows a transparent interpretation of correlation diagrams.For the dynamics of the fermion transport the �rst QPA diagram that contributesto the gain (loss) term13The later approximation is also often used beyond the scope of the QPA and is thenknown as Kadano�{Baym ansatz, see [25] and Appendix A, c.f. [12]30



� Z d�12� ��+(p1)G+�(p1) ' � � �--� �QPA (1� n1) (66)�! Z d4p2 : : :d4p4 ���� -- ����2 �4(p1 + p2 � p3 � p4)(1 � n1)(1 � n2)n3n4leads to the standard Boltzmann collision term with corresponding occupation andPauli suppression factors for the in and out states. Here and below the full blocksdenote the e�ective two{fermion interactions, and thick fermion lines denote theQPA states or Green's functions.For the here studied photon rates we discuss in detail the correlations diagrams onthe right side of (65) with consecutive numbers 1 to 6. Thereby diagrams 1, 2, 4and 5 describe the bremsstrahlung related to a single in-medium scattering of twofermionic quasi-particles and can be symbolically expressed as Feynman amplitude(67a)(a) - -- - t- (b) �� ��u u� �--�� (67)(c) - -- - -- - t- (d) �� ��-- ---The full circle denotes the e�ective vertex. One should bear in mind that the photonmay couple to any of the external fermion legs and all exchange combinations arepossible. The one-loop diagram in (65) is particular, since its QP approximant van-ishes for real or time-like photons. However the full one-loop includes QPA graphsof the type (67b), which survive to the same order in �=�� as the other diagrams [41].In fact it is positive de�nite and corresponds to the absolute square of the amplitude(67a)), c.f. (61). The other diagrams 2, 4 and 5 of (65) describe the interference ofamplitude (67a) either with those where the photon couples to another leg or withone of the exchange diagrams. Thereby for neutral interactions diagram (65:2) ismore important than diagram 4 , while this behavior reverses for charge exchangeinteractions (the latter is also important for gluon radiation from quarks in QCDtransport due to color exchange interactions). Diagrams like 3 describe the interfer-ence terms due to further rescatterings of the source fermion with others. Accordingto our rules the diagram (65:3) corresponds to a two-body collision process and de-scribes the interference of amplitude (67c) with that one where the photon couplesto the initial leg. Diagram (65:6) describes the photon production from intermediatestates and is given by Feynman graph (67d). In the soft photons limit (!q � �F ) thisdiagram (67d) gives a smaller contribution to the photon production rate than thediagram (67a) in QPA, where the normal bremsstrahlung contribution diverges like1=!q compared to the 1=�F{value typical for the coupling to intermediate fermionlines [47]. However in some speci�c cases the process (67d) might be very importanteven in the soft limit. This is indeed the case for so called modi�ed URCA processnn! npe�� which is of prime importance in the problem of neutrino radiation fromthe dense neutron star interior, see [45].31



Some of the diagrams, (c.f. the graph shown in footnote 7) which are not presentedexplicitly in eq.(65) give more than two pieces, if being cut, so they do not reduceto the Feynman amplitudes.For the validity of the QPA one normally assumes that �� ��, where �� is an averageparticle kinetic energy (� T for equilibrium matter). With � � �2T 2=�F for Fermiliquids, c.f. (A.5), the QPA constitutes a consistent scheme for all thermal excitations�� � T � �F . However with the application of transport models to higher energiesthis concept has been taken over to a regime where its validity can no longer easilybe justi�ed. Moreover, our considerations show that the condition � � �� is notat all su�cient. Rather one has to demand that also ! � � in the QPA, since�nally energy di�erences of order ! appear 14 . In particular, the remaining seriesof QPA-diagrams is no longer convergent unless ! > �, since arbitrary powers in�=! appear, and there is no hope to ever recover a reliable result by a �nite numberof QPA-diagrams for the production of soft quanta! With full Green's functions,however, one obtains a description that uniformly covers both the soft (! � �) andthe hard (! � �) regime.5 The Quasi-classical Limit (QC)In this section we like to discuss, which class of diagrams remains in the quasi-classical limit and how this is to be interpreted.The QC limit requires thati) all occupations of the source particles are small (hnpi � 1) implying aBoltzmann gas with �� �T and thatii) all inverse length or time-scales times ~ are small compared to the typicalmomentum and energy scales of the source systems.In particular this implies ~!;~jqj � ��, and a collision rate � = ~=�coll � ��, where�� is a typical particle kinetic energy (� T for equilibrium matter). To be precise: !and q of the produced particle are sensitive to the space-time structure of the source,while they are negligible as far as energy and momentumbalances are concerned. Thelatter fact permits to prove the Kadano�{Baym ansatz in this case (see Appendix Aand discussion of eq. (84) below) which considers the occupations of the sourceparticles to dependent only on momentum np = n�p��F but no longer on energy �.Also we assume that � will not depend on time in between subsequent collisions(j� j � 1=�).We note in particular that for bosons with chemical potential �B = 0, like theproduced photon, the equilibrium occupations will be large, nB � T=! � 1! This14This statement is particular, since one compares the photon energy ! with thedamping width of the source particles �, while the damping rate of the photon itself
 ' j��+j =(2!nB! ) < 4�e2�0=(�m) � 60MeV2=� for nuclear matter can be quite small!32



fact is of no further relevance, if one excludes internal photon lines in the propercorrelation functions (2), ��+ and �+� as we do.5.1 Time Structure of Green's Functions and Loops in QC LimitFor fermion Green's functions one has the following simpli�cationsG�+F (p) ' inpA(p); G+�F (p) ' �i(1� np)A(p); (68)while at large temperatures T the particle occupations are given bynp ' exp[�(�p � �F )=T ]� 1: (69)The correspondence between the diagrammatic expansion (65) and classical limitof sect. 3 becomes more transparent if one uses the mixed � � p representation forthe Green's functions, where � is the time di�erence between the two space-timepoints. Then from the de�nition of G�+ and G+� Green's functions (see eq. (34))one immediately �nds for fermionsG�+F (�;p) ' inp exp[�j�� j=2� i�p� ]; (70)G+�F (�;p) ' �i(1� np) exp[�j�� j=2� i�p� ]; (71)while G��F = (1� np)GRF � npGAF and G++F = �(1� np)GAF + npGRF are essentiallyretarded and advanced, respectively.A further simpli�cation comes from the time behaviour of fermion-loops, c.f (B.7),which mediate classical energy and momentum transfers. The corresponding timescales 1=� or 1=(vp) are very short on the damping scale 1=�, so that such loopinsertions become instantaneous. This is the reason, why one recovers a Markoviandescription for the motion of the source in the classical limit. With these simpli�ca-tions we now calculate the diagrams (65).5.2 Self Energy Diagrams in the QC ApproximationIn the mixed � � q representation the one loop diagram is given by� i��+0 (�;q) = Z d3p1d3p2(2�)6 V �V �G�+(�;p1)G+�(�;p2)(2�)3�(p2 � q � p1)' Z d3p(2�)3V �V �n(p+ q=2)(1 � n(p� q=2))e�j�� je�i(qv)� ; (72)33



if jqvj � T . Here V � � p4�j�(p) de�nes the in-medium photon - fermion vertexin the classical limit following eq. (62), while p � (p1 + p2)=2. Apart from the q-dependent oscillations the time structure of this diagram is given by an exponentialdecay: e�j�� j which leads to� i��+0 (!;q) = 4�e2 Z d3p(2�)3n(p+ q=2)(1 � n(p� q=2)) 2�vivk(! � qv))2 + �2� 4�e2�0 * 2�vivk(! � qv))2 + �2+ : (73)for the spatial components of ��+. This expression is identical to the n = 0 term ofthe classical Langevin result (25).The classical Langevin example (sect. 3) considers the propagation of a single charge(say a proton) in neutral matter (e.g neutrons). Therefore for this case only diagramsoccur, where both photon vertices attach to the same proton line. Also, of course,no direct proton-proton interactions occur. In the following we like to show thatdiagrams of the type� i��+cl = �� ��s s + �� ��s s�� �� +�� ��s s�� ���� ��: : : �� �� + : : : (74)with n f�+g scattering interactions (intermediate particle-hole f�+g neutron loops)correspond to the n-th term in the Langevin result (24). To demonstrate this welook into the time structure of such a diagram, and assign times 0 and � to theexternal � and + vertices, while the � and + interactions are taken at t�1 to t�n andt+1 to t+n , respectively. In the classical limit G�� is retarded, while G++ is advanced(see eqs. (35), (70) and (71)), such that both time sequences have the same timeordering: 0 < t�1 < : : : < t�n < � and 0 < t+1 < : : : < t+n < � (all inequalitiesreverse, if all line senses are reversed). Thus the � -dependence of the modulus ofthese diagrams gives e�j�� j. A second simpli�cation emerges from the fact that the+� loop interaction insertions mediate classical momentum transfers jpn � pn+1jwhich are large compared to ~�. Therefore the time structure of these loops be-comes very short on the scale 1=� and therefore merge �-functions: �(t�n � t+n ). Withtn = t�n = t+n diagram (74) then no longer depends on the intermediate times tnapart from the ordering condition, and therefore results in a factor j�� jn=n! With~q = 0 also the corresponding momenta are pair-wise identical, and the remainingmomentum integrations just serve to de�ne the correlation between vm and vm+nafter n scattering. Thus�� ��s s�� ���� ��: : : �� �� (75)= 8><>:�i��+n (�;q = 0) ' 4�e2�0 Dvimvkm+nEm j�� jnn! e�j�� j�i��+n (!;q = 0) ' 4�e2�0 Dvimvkm+nEm 2�nRe 1(��i!)n+1 ;34



where the resulting proportionality to the proton density �0 results from �+ and+� Green's functions next to the external vertices. Here of course we have silentlyassumed a consistency condition to be ful�lled: namely that the interaction loopswhich one takes into account also consistently de�ne the damping width � of thesource particles! In particular the extra powers in occupations coming from the +�loops are contained in �, and therefore do no longer explicitly appear in the �nalresult. This proves that in the classical limit these diagrams reproduce the terms ofthe classical Langevin series (24).5.3 Hierarchy of the QC expansionThe Langevin diagrams (75) have the following properties:a) external vertices: the external photon couples to the same fermion line;b) topology: the diagrams are planar, i.e. no crossing of lines occur.c) �+ sign topology: if one cuts them at all �+ lines they decompose preciselyinto two pieces;d) value: apart from the velocity correlations they all give the same contributionto the soft photon point (!;q) = 0.;Using the equal time properties of classical �+-loop interaction insertions one �ndsthat -��� �� = 1Z0 �e���d� = 1; while -��� �� = 1Z0 n�e���d� = n (76)at q = 0, where n is the proton occupation. The left case iteratively enters theLangevin diagrams and one compiles factors of unity for each time folding, since theloop insertions of order � are compensated by the time integration over the Green'sfunction product G��G++. This proves d).What remains to be shown is that for the classical problems discussed in sect. 3 allother key diagrams are disfavored by extra occupation factors n or �=�� which bothare small compared to unity.To a): Since in the classical problems of sect. 3 only a single charged particle (saya proton) in neutral matter is considered, all diagrams with more than one protonline do not occur in this case. To b): Non-planar diagrams, where interactions cross,violate classical time-ordering. Either the two interaction times are interlocked ona time scale 1=�� and therefore lead to a penalty factor �=�� or restoring the time-ordering one obtains a Z-shape fermion line, which gives an extra occupation factorn. To c): Diagrams that can be cut into more than two pieces can be obtained onvarious ways: i) by any �+-loop insertion which switches signs on the outer protonlines, thus using the right insertion in (76); here one obtains an extra hindrancefactor n. ii) extra insertions of �� or ++ blocks linking the outer proton lines;35



since there are no direct proton-proton interactions these e�ective interactions aremediated by the surrounding neutron matter thus containing �� neutron loops,which also leads to an additional factor n, besides another n factor due to the �+proton Green's function.6 General Quantum Consideration for Hot and Dense MatterThe considerations above show the following. A proper treatment of an entirelyclassical problem, namely the coupling of a classical source to a wave (electromag-netic �eld), on the level of quantum many-body theory requires technics, that evennowadays are still non-standard, i.e. beyond perturbation theory or QPA. While theclassical problem can be solved quite conveniently and simple with no problems onthe infra red side, the corresponding quantum description requires an appropriateaccount of the �nite damping width � of the source particles. The most natural ap-proach in our mind is the real-time Green's function technic, which however requirespartial resummation, such that the �nite width is included already on the one-bodyGreen's function level.In this section we analyze the production rate from hot and dense matter in thequantum case in terms of non{equilibrium Green's functions. In order to providesome analytical results which easily can be discussed in di�erent limiting cases,we employ the following approximation for the full retarded Green's function. Weassume GR to be given by a simple pole approximation with constant residueGFR = 1�+ �F � �(p) + i�=2 (77)where �(p) = p2=(2m�F ),m�F being an e�ective fermionmass. The width � is assumedto be independent of � and p. Explicit results will be given for the one - and threeloop case (the �rst two diagrams in (65)).6.1 Qualitative expectationsCompared to the classical results we expect the following changes:a) one looses the classical hierarchy of diagrams, such that many more diagramscontribute in the quantum case; for speci�c couplings, however, some diagramsare disfavored or drop due to selection or suppression rules, e.g. non-planardiagrams in SU(n) coupling;b) the radiated quantum carries �nite momentum and energy (which vanish in theclassical limit), such that additional recoil corrections and phase-space factors� e�!=T appear; the latter is important, since it cures the classical ultra violet36



catastrophe, where the intensity spectrum is white, leading to a divergence ofthe radiated energy in the classical case;c) the occupations are no longer of Boltzmann type with n � 1, so that Paulisuppression and Bose-Einstein enhancement e�ects are signi�cant;d) the duration time of binary collisions � 1=�F mediated by interaction loopinsertions (B.7) in the correlation diagrams, are no longer negligible compareto 1=� as in the classical case, so that non-markovian memory e�ects becomeimportant [48,49].Points (b) and (c) can be clari�ed using the exact relation between thermal fermionand boson occupationsnF (�+ !=2)(1 � nF (�� !=2)) = (nF (�� !=2) � nF (�+ !=2))nB(!) (78)which simpli�es in the following limits tonF (�+ !=2)(1 � nF (�� !=2))�� dd�nF (�)nB(!)! for ! � T (79)�nF (�)nB(!)!=T for ! � T; nF � 1:At low temperatures only states close to the Fermi-surface contribute. The lastapproximate relation suggests that relative to the classical results of sect. 3 anadditional phase-space suppression factor nB(!)!=T appears in the quantum case,which accounts for the �nite energy ! carried away by the quantum.6.2 Contribution of One{Loop Diagram with Full Fermion PropagatorsWe �rst consider the one{loop diagram of (65) with the full fermion propagators�� ��s s = �i��+0 = �iV �V �A�+0 (80)whereA�+0 denotes the bare loop without vertices. For simplicity we will neglect ver-tex corrections. The later can be trivially included in Landau{Migdal approximation(e.g. see eq. (72), Appendix B and refs. [10,50]).With the help of relation (78) and the equilibrium form of the Green's functions(54) the bare loop reads� iA�+0 = nB! Z d�d3p(2�)4 �(�+ �F � �p)2 + (�=2)2 � (nF� � nF�+!)(�+ �F � �p+k + !)2 + (�=2)2 : (81)This expression can be evaluated in closed form in di�erent limits. We �rst analyzethe QPA ( i.e. � � !; kvF ; T in case T � �F or � � !; kvT � kqT=m�F , for37



T � �F ), which can be found in the literature. In this limit one recognizes twoenergy �{functions in eq. (81) (see approximation formula (A.2) of Appendix A),which together with momentum conservation and exact relativistic kinematic canonly be ful�lled for space-like (!;k). Following ref. [10] one obtains for the QPAloop in various limits�iA�+0 (!;k)���QPA = 8>><>>: 0 for ! � jkj(m�F )2T2�k nB! ln exp(�) + 1exp(�) + exp(�!=T ) for ! � jkj;!8><>: (m�F )2T2�k nB! for ���1; ! � jkj(m�F )2T2�k exp(��) exp(�!=T ) for �� 1; ! � jkj; (82)where � = (m�Fv2=2 � �F )=T; with v = (! � k2=(2m�F ))=jkj:Here non-relativistic kinematics 15 has been used, where v is the recoil correctedfermion velocity that essentially contributes to the loop and the condition ! � jkjassures jvj � 1. The simpli�ed expression for �� �1, realized for T � �F � �F and! < kvF , is quite frequently used for space-like interaction loops in low temperatureFermi systems as in Landau's Fermi liquid theory. However, it shows a singularbehavior / 1=(k!) in the small ! � k = jkj � T limit, which is a generic defect ofthe QPA. The Boltzmann limit �F � �T leads to the �� 1 case, which apart fromrecoil correction and the extra quantum phase-space factor e�~!=T coincides withthat for classical di�usion result (20) in sect. 3. In summary, for the one loop termthe QPA leads to meaningful results only for large space-like !;q (hard thermalloops).In the general case only the integral in eq. (81) over the angle p̂k̂ can be performed� iA�+0 = nB! 1Z�1 d� 1Z0 pdpm�F(2�)3k �(�+ �F � �p)2 + (�=2)2 (nF� � nF�+!)� "arctan �+ �F + ! � �p � �k + pk=m�F(�=2) (83)� arctan �+ �F + ! � �p � �k � pk=m�F(�=2) #in closed form. To proceed further we consider the case of small spatial momentak = jkj such that pk � m�F�. For the remaining two-dimensional integral15As a defect of the non-relativistic approximation the result does not exactly vanish for! � jkj but rather leads to terms of the order exp(�m�F =T ) or less.38



� iA�+0 = (2m�F )3=2(2�)3 nB! 1Z�1 d�(nF� � nF�+!) 1Z0 d�p(�p)1=2 �(�+ �F � �p)2 + (�=2)2� �(�+ �F � �p � �k + !)2 + (�=2)2 for pk � m�F� (84)one realizes that the �p-integration over the product of Lorentz functions gives4��p�+ �F(! � k2=(2m�F ))2 + �2 for �+ �F � � (85)while it is essentially zero for � + �F � ��. For correspondingly small values of �one therefore obtains� iA�+0 ' nB! �(2m�F )3=22�2[(! � k2=2m�F )2 + �2] 1Z0 �1=2p d�p(nF�p��F � nF�p+!��F ); (86)where we have replaced the remaining � variable by �p. The very same form emerges,if one formally replacesnF� � nF�+! ! nF�p��F � nF�p+!��F (87)in (84) and �rst integrates over �. This approximation (87) corresponds to theKadano�{Baym ansatz (see Appendix A).Equation (86) valid for pk � m�F� can be evaluated in two limits� iA�+0 �! !T nB! �(! � k2=(2m�F ))2 + �2 8><>:m�FpFT=�2 for �; T � �F � �F�F for T � �F ; !;� (88)where essential contributions arise from momenta � pF for T � �F or aroundpT � qm�FT for T > �F . Here �F is the density of the charged fermions. Comparedto the QPA which is zero for time-like momenta, this result is �nite and of order1=� in the soft limit. It agrees with the classical result (25) and the correspondingQC limit (73) besides recoil and the quantum phase-space corrections.Starting from the QPA for the fermion Green's functions one usually attempts torestore a dependence on the non-zero fermion width for the boson self{energy �RBby means of the analytical continuation ! ! ! + i�, whereAR0 = Z d3p(2�)3 np � np+k�p � �p+k + ! + i� : (89)In refs. [52,10,53] such a procedure has been used in order to account for the �nite�{isobar width in the pion self energy. We see that the value ImAR0 given by eq. (89)39



and that given by (86) coincide only if np+k ' n�p+!��F , i.e. applying Kadano�{Baym ansatz.The thus discussed one{loop diagram can also be used for the intermediate t-channelinteraction loops G�+ occuring in higher order diagrams. There the typical valuesof parameters are! < �F ; k � pF ; p � pF : (90)Therefore at least for � � �F one has large space-like momenta with pk � �m�F .Then from eq. (83) one obtains� iA�+0 = � 1Z�1 (m�F )24�2k (nF� � nF�+!)d� [�2 + arctan(�+ �F� )] ; (91)which merges the QPA expressions in (82) for large space-like momenta in the limit� � �F both at low temperatures T � �F � �F (� � �1) and in the Boltzmannlimit (�� 1).Thus, for the intermediate t-channel interaction loops G�+ one can safely use theQPA (� ! 0), which even accounts for higher order correction to this loop, as onesees from the corresponding limit of the di�usion result (20). Only for soft loops(e.g. as in the s-channel) the QPA is ill de�ned.Comparing the one-loop result at non-zero � (88) with the �rst non-zero diagramin the QPA (� = 0 in the fermion Green's functions)�� ��u u = C0(!)8<: �� ��u u� �--�� 9=;QPA (92)at small momentum k one determines a correction factorC0(!) = !2!2 + �2 ; (93)which cures the defect of the QPA for soft !. This factor complies with the re-placement ! ! ! + i�. A similar factor has been observed in the di�usion result,where however the macroscopic relaxation rate �x enters, due to the resummation ofall rescattering processes. Other factors between eq. (88) and in the correspondingQPA Feynman diagram (c.f. ref. [47]) become identical, if one explicitly calculatesthe width � to that order, see also [52]. 40



6.3 Higher Order Diagrams with Full Fermion PropagatorsAlong similar routes (details are given in Appendix C) the correction factors for thehigher order diagrams can be derived. Here we just quote the results for the nextlowest order diagrams�� ��s s�� �� =C1(!)( �� ��s s�� �� )QPA (94)���
���
s s =C0(!)( ���
���
s s )QPA (95)with C0(!) from (93) andC1(!) = !2 !2 � �2(!2 + �2)2 : (96)The total radiation rate is obtained from all diagrams in (65).The set of QPA diagrams in (92), (94) and (95) are just those that determine the IQFscattering rate (28) including the exchange diagram for a source of fermions (95).The latter drops in the classical limit, where the two other ones yield the n = 0 andn = 1 terms of the classical Langevin result (24). Thereby the damping correctionfactors C0 and C1 in the quantum case are the same as classically derived. For� � ! they tend to unity and the production rate coincides with the QPA resultsas obtained in ref. [47], while there is a substantial suppression at small frequencies! � �.In the corresponding QC limit all the diagrams of type (74) with an arbitrary numberof �+ NN{interaction insertions can be summed up leading to the di�usion result(18) in sect. 3.1. For small momenta q this leads to a suppression factor of the formC = !2=(!2 + �2x).There is hope that even in the quantum case some higher order diagrams can alsobe resummed and that qualitatively a similar suppression factor emerges like for thedi�usion result.7 Discussion and PerspectivesWe investigated the production of particles from the collision dynamics of dense mat-ter at the example of photon production. Thereby the source of charged particleswas described in two ways, a) as a classical system governed by classical transport41



equations and b) as a quantum system in terms of a real-time non-equilibrium �eldtheory formulation. The central quantity is the current-current correlation functionwhich relates to the imaginary part of the proper self energy of the produced par-ticle. Under quite general assumptions this correlation function governs the localproduction and absorption rates in the matter. Since the here discussed features areof kinematical origin, relating space-time scales to the corresponding momentumand energy scales, all conclusions drawn in this study are general and therefore alsoapply to the in-medium production and absorption rates of any kind of particle.The problem could be quite naturally formulated and solved in the classical de-scriptions by means of a macroscopic transport and a microscopic Langevin process.These studies showed that spectrum of produced particles is essentially governed byone macroscopic scale, the relaxation rate �x of the source. For frequencies ! of theproduced quantum which are large compared to �x the spectrum can be describedby the incoherent quasi-free scattering approximation (IQF) used in most of thetransport models. Higher order corrections help to improve the result. Once, how-ever, ! < �x this quantum is "soft". It can no longer resolve the individual collisionsin time and therefore the IQF picture fails and produces a false infra-red divergencein the rate. Rather, the correct rate is regular and di�ers from the IQF result by asuppression factorC0(!) = !2!2 + �2x : (97)This soft part of the spectrum is genuine non-perturbative. The essential featuresare summarized in �gs. 1 and 2 of sect. 3. For relativistic sources a second scalecomes in, once the wave number jqj of the produced particle exceeds the value of�x=qhv2i due to the increased spatial resolution as shown by the closed form resultsof the di�usion model.On the quantum level new scales come in since now ! and q also correspond tothe energy and momentum of the photon which have to be compared with thecharacteristic energy and momentum scales of the source as given by temperatureT and chemical potential � or the Fermi energy �F . Also the occupations can be-come degenerate and Pauli suppression or Bose enhancement e�ects are important.For the general formulation one has to leave theoretical schemes that are based onthe concept of asymptotic states like perturbation theory or quasi-particle approx-imation. The proper frame is the real-time non-equilibrium �eld theory, where theproper self-energy can be formulated in terms of closed correlation diagrams withgeneral propagators. Thereby the resummation of Dyson's equation to full propaga-tors which also include the imaginary parts of the self energy and therefore accountfor the damping of the source particles is the essential step to cure the infra-redproblem. Only this way one comes to a convergent scheme. After this resumma-tion the corresponding set of diagrams is then reduced to diagrams with skeletontopology. Using the Keldysh �+ notations we have addressed a particular role toall �+ and +� lines as 8-dimensional Wigner densities of occupied and available42



"states". This motivated further resummations which de�ne in-medium interactionsand vertex corrections. The resulting set of diagrams can then be discussed in detailin these physical terms. A decomposition of these correlation diagrams in terms ofthe interference of two "amplitude" diagrams is suggested, where Wigner densitiesenter as in- and out-states. This permits a transparent physical interpretation ofthe correlations diagrams, which may be used to formulate multi-particle collisionprocesses in matter. They can serve as input for a generalized transport description,which ultimately includes the o�-shell propagation of particles and therefore uni�esresonances which have a width already in vacuum with all other particles in thedense matter, which acquire a damping width due to collisions.Once one has the full propagators and the in-medium interactions it is in principlestraight forward calculate the diagrams. However both, the computational e�ort tocalculate a single diagram and the number of diagrams, are increasing dramaticallywith the loop order, such that in practice only lowest order loop diagrams can beconsidered in the full quantum case. In certain limits some diagrams drop out. Inparticular we could show, that in the classical limit of the quantum descriptiononly a special set of diagrams survive, which could be associated with the multiplecollision terms of the classical random Langevin process. Comparing the lowest orderloop diagrams in various limits to the corresponding QPA diagrams one realizes thatalso here correction factors similar to (97) appear. Now the characteristic scale isthe damping width � of the source particles. Accounting for higher order diagramsone concludes that also in the quantum case the relaxation rate �x is the relevantscale which decides between soft and hard photons. Thus for applications one hasto compare the typical energies of the produced particles with the typical relaxationrates of the source system.Our considerations are of particular importance for the theoretical description ofnucleus-nucleus collisions at intermediate to relativistic energies. With tempera-tures T in the range of 30 to 100 MeV for dense nuclear matter, up to 200 MeV forhadronic matter and beyond 150 MeV for the quark gluon plasma or parton phasemost of the kinetic models that are used infer collision rates � for the constituents,which during the high density phase can reach the system's temperature, �<� T .Such estimates make the use of on-shell concepts already rather questionable. Theparticles uncertainty in energy is comparable with the mean kinetic energy! In par-ticular the bulk production and absorption rates of all particles with masses less thanT , if calculated in standard IQF approximation, are seriously subjected to the herediscussed e�ect. Therefore the corresponding quenching factors (97) should sensi-tively a�ect the production rates of quark pairs and gluons during the plasma phase,of low energy pions during during hadronization and real and virtual photons withcorrespondingly low energies. Since our discussion was restricted to the productionin dense matter, for the particular case of photon production in nuclear collisionsone has to consider in addition the radiation caused by the incoming charged ionsand outgoing charged fragments. Due to Low's theorem [57] the latter give rise to aninfra-red divergent � 1=! component which interferes with the one discussed here.43



In astrophysics neutrinos produced from neutron stars or during super nova collapsehave an absorption mean free path which is long compared to the size of the radiatingsystem (see [7,8,10,54,55]). Thus the production rates cannot be estimated by black-body radiation. Rather the microscopic rates are relevant. The mean kinetic energiesper neutrino or ���-pair are about � 3T or � 6T , respectively. With mean collisionrates of the order of � � �2T 2=�F � T [56], c.f. eq. (A.5), the production rates cansafely be estimated in IQF-approximation for relatively cold neutron stars T � 1:5to 2 MeV. Already around T � 5 MeV the quenching factor (97) is signi�cant (0:3)and it may become even smaller during super nova collapse. Then the temperaturescan raise to T � 10 � 30 MeV such that � � T and the here discussed suppressione�ects are relevant for the corresponding neutrino emissivity.AppendixA Kadano�{Baym Ansatz and QPAIn the general non{equilibrium case one has no simple relations between Green'sfunctions as in equilibrium. In order to proceed nevertheless one often uses the socalled Kadano�{Baym ansatz [25]. For Fermions it readsG+�F = 2i(1� nF�p��F )ImGRF ; G�+F = �2inF�p��F ImGRF ; (A.1)where nF�p��F are the fermion occupations which now depend on p through the on-shell dispersion relation (50) rather than on �. One should note that the Kadano�{Baym ansatz does not directly follow from the properties of the G�+ and G+�functions, rather it has been introduced in order to recover the Boltzmann limit.The correctness of this ansatz has only been proven in the QPA, see [12]. Eqs. (A.1)complies with the de�nition of the particle densities (48), as can be seen by the sumrules (52).Dealing with dressed particles we consider only diagrams with thick fermion linesdetermined from the corresponding Dyson equations. Approximation (A.1) is how-ever based on the assumption that Im�RF is much smaller than all other energiesscales entering the problem.In particular in the limit Im�RF ! 0 in the fermion Green's functions one comes tothe QPA, where the imaginary part of retarded Green's function becomes a deltafunction. E.g. for non{relativistic fermionsImGRF ' ���[�+ �F � �0p � Re�RF (�+ �F ;p)]; (A.2)where the dispersion relation between � and p is implicitly given by�p ' �0p +Re�RF (�p;p): (A.3)44



The simple form (A.2) has problems with the sum rule (52), if retardation e�ectsare important (@Re�R=@� 6= 0), which also contribute to the o�-shell part of GRF ,c.f. ref. [31]. For simplicity we ignore this and also employ a quadratic p{dependencefor Re�R in terms of an e�ective fermion mass �p ' p2=2m�F in the applications.From the dispersion equations one easily �nds the corresponding relaxation times.E.g., for fermions supposing that Im�R is small and introducing �col = 1=2��, wherewe use that  F � exp(�i(�p � i��)t), one �nds�col = ����� 1 � @Re�RF@� ! = �2Im�RF �������=�p : (A.4)This value would tend to in�nity for Im�RF ! 0. In reality the fermion width de-termined by the value Im�RF is rather large even at su�ciently small temperatures.E.g. for nucleons, applying the QPA for the intermediate nucleon lines, it can beestimated as follows [56]Im�RF ' �j ~MF j2[(1� �p=�F )2 + T 2�2=�2F ]; T � �F (A.5)with typically j ~MF j2 � �F at normal nuclear density [52]. This estimate shows thatjIm�RF j comes into the order of �F already at su�ciently small temperatures T ' 13�Fand still increases for higher T . This defers the application of the QPA for a widerange of temperatures.B Renormalization of the Two{Fermion InteractionAs an example we consider a theory where non-relativistic fermions interact via two-body potentials. A priori this theory has no bosons and the two-body interactionsalways connect two vertices of same sign, de�ning iV �� and iV ++ = (iV ��)y,while V �+ = V +� = 0. Even if resumed to an e�ective four point interaction G��0according to eq. (63) much like Bruckner G{matrix, one has an e�ective interactionthat connects only like sign vertices.For the following we approximate G0 by a two{point function (as for instance inFermi-liquid theory, where the residual interaction is supposed to be local and ex-tracted from comparison with experimental data [22,10]), while G�+0 = G+�0 = 0.We also suppose that G++0 and G��0 interactions are particle-hole irreducible in thet-channel (vertical in (63), c.f. [22,10]).Starting from G��0 and G++0 one can completely bosonize the interaction in thestandard way by resumming all intermediate particle-hole loop insertionsAij12 = Gik12Gkj21; i; j 2 f�+g (B.1)45



through the Dyson equation in two by two matrix formG = G0 + G0 �A� G: (B.2)In space-time homogeneous cases eq. (B.2) can be solved algebraically. First onede�nes a residual interactions through repeated A�� and A++ insertions asG��res = G��01� G��0 A�� ; G++res = G++01� G++0 A++ = � G��01 + G��0 A++ (B.3)Using G�+0 = G+�0 = 0 straight forward algebra yieldsG+� =ZG++resA+�G��res ; G�+ = ZG��resA�+G++res ;G++ = ZG++res ; G�� = ZG��res ; (B.4)for the components of the full interaction G, whereZ = �1� G++resA+�G��resA�+��1 (B.5)is a renormalization factor.The explicit dependence of G�+ and G+� on Z can be moved to a renormalizationof the loopG�+ = G��resA�+renG++res ; where A�+ren = ZA�+: (B.6)This full interaction G has bosonic features, just describing e�ective bosons, such asphonons, plasmons, sigma mesons, etc. Also the inclusion of real bosons, like pionsin nuclear matter, is possible, giving rise to a picture, where pions couple to pionicparticle-hole excitations, see [50,10]. These e�ective bosons can be taken on the samefooting as all other e�ective quanta, the fermions or other bosons, see [45,41]. Thus,e�ective bosons also acquire a spectral function with width and the non-diagonalcomponents of G�+ and G+� are also Wigner functions. Consequently one comes to atheory of e�ective in-medium fermions interacting with e�ective in-medium bosons.Obviously the full (anti-)time-ordered G�� (G++) depend on the in-matter den-sities G�+ and G+� also via Z. However in an approximation where the valueG++0 A+�G��0 A�+ is small, one has Z ' 1 for renormalization factor (B.5). So, onecan simplify further and comes to a scheme like leading logarithmic approximationin quantum �eld theory, namely, a perturbation series over G�+ (or G+�) neglectingcorrections 1+O(G+�A�+) in each leading term. Such corrections are proportionalto �2 (or �2). Thus, one approximately hasG�+ = ' G��resA�+G++res ' �� �� (B.7)46



with like{sign e�ective interactions (63) (whereas in the general case one comes to(B.7) with renormalized A�+ren loops).C Contribution of More Complicated DiagramsNeglecting vertex corrections diagram (95) is given as�� ��s s�� �� =�i��+n=1(q) = �iV �V �A�+1 (q) ; where�iA�+1 (q)=� Z d�d3p(2�)4 d!d3k(2�)4 iG��(p + k)iG++(p� q) (C.1)�iG�+(p)iG+�(p + k � q)iG�+(k) ;with four-vectors q = (!q;q), p = (�;k) and k = (!;k). Here G�+ is the "{ +"interaction loop (B.7). For q � k � pF the integration in (C.1) over the pk{anglegives 16J0(�)= 1Z�1 dxG��(p + k)G+�(p + k � q)= (1 � n�+!�!q )2m�F�pk �!q + i� th((�+ !)=(2T ))!2q + �2 : (C.2)Since j x j< 1 one has the following restrictions on p�p = p2=2m�F > �0 = (! � k2=2m�F � !q)2m�F=2k2: (C.3)Further integrations can only be done in certain limits. For �; !q � T one can useKadano�{Baym ansatz (87), c.f. Appendix A, (A.1). In that case the � integrationcan be performed. One needs only the real part of expression (C.1) since the imag-inary part is cancelled by the corresponding diagram with opposite time ordering(opposite line sense). Thus,J1=Re 1Z�1 d�G++(p� q)G�+(p)J0(�)'n�p��F (1 � n�p��F+!�!q )2m�F�2pk !2q � �2u(!2q + �2)2 ; (C.4)where16 using also q, k and p for jqj, etc. 47



u= th�+ !2T th�� !q2T = 1 � 2n��!q (1� n�+!)� 2n�+!(1 � n��!q ) (C.5)' 1� 2n�p��F�!q (1� n�p��F+!)� 2n�p��F+!(1 � n�p��F�!q ):For low fermion occupations u is about unity and we obtain with the help of relation(78) � iA�+1 =C1(!q) Z m�2F16�4!2q nB! nB!q�!Im�R0;B(!; k)J2(!; k)kdkd!; with (C.6)J2(!; k)= 1Z�0 (n�p��F+!�!q � n�p��F )d�p; C1(!q) = !2q !2q � �2(!2q + �2)2 :The integral in eq. (C.6) can be expressed through A�+0 in QPA (eq. (82)), sincepk � m�� and one obtains� iA�+1 (!q;q) = C1(!q) Z G++(!; k)G��(!; k)4�3 nB! nB!q�! (C.7)�ImAR0 (!; k)ImAR0 (!q � !; k)k2dkd!:This expression di�ers from the contribution of the corresponding QPA Feynmandiagram calculated in ref. [47] only by the pre{factor C1(!q) which is non{unit inour case of �nite width �. In the QC limit this expression (C.7) coincides with then = 1 term in classical Langevin result.Diagram���
���
s s = �iA�+ex (C.8)can be evaluated along similar lines considering the integrals for the left and rightsub-loopsJ3= Z (�1)iG��(p + k)iG�+(p)iG+�(p+ k � q)d4p; (2�)4 (C.9)J4= Z (�1)iG++(p1 + k � q)iG�+(p1 + k)iG+�(p1) d4p1(2�)4 : (C.10)Integration of (C.9), (C.10) is done quite analogously to the previous cases. One mayintegrate over pk{angle, then over � and �p in eq. (C.9) and over p1k{angle, �1 and�p1 in eq. (C.10), respectively. One recovers the corresponding QPA form derived inref. [47], however multiplied by the pre{factor C0(!q), c.f. (95).Acknowledgments:We thank G. Bertsch, J. Bondorf, J. Cleymans, P. Danielewicz,B. Friman, K. Geiger, M. Gyulassy, P. Henning, M. Herrmann, Yu. Ivanov, J. Ka-pusta, I. Mishustin, B. M�uller, V. Toneev and X. N. Wang for valuable suggestions48
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