
Resonane Transport and Kineti EntropyYu. B. Ivanov1;2, J. Knoll1 and D. N. Voskresensky1;31Gesellshaft f�ur Shwerionenforshung mbH, Plankstr. 1,64291 Darmstadt, Germany2Kurhatov Institute, Kurhatov sq. 1, Mosow 123182, Russia3Mosow Institute for Physis and Engineering, Kashirskoe sh.31, Mosow 115409, RussiaAbstratWe ontinue the desription of the dynamis of unstable partiles within the real-time formulation of nonequilibrium �eld theory initiated in a previous paper [1℄.There we suggest to use Baym's �-funtional method in order to ahieve approx-imation shemes with 'built in' onsisteny with respet to onservation laws andthermodynamis even in the ase of partiles with �nite damping width. Startingfrom Kadano�{Baym equations we disuss a onsistent �rst order gradient approahto transport whih preserves the �-derivable properties. The validity onditionsfor the resulting quantum four-phase-spae kineti theory are disussed under theperspetive to treat partiles with broad damping widths. This non-equilibriumdynamis naturally inludes all those quantum features already inherent in theorresponding equilibrium limit (e.g. Matsubara formalism) at the same level of�-derivable approximation. Various ollision-term diagrams are disussed inludingthose of higher order whih lead to memory e�ets. As an important novel part wederive a generalized nonequilibrium expression for the kineti entropy ow, whihinludes ontributions from utuations and mass-width e�ets. In speial ases anH-theorem is derived implying that the entropy an only inrease with time. Mem-ory e�ets in the kineti terms provide ontributions to the kineti entropy owthat in the equilibrium limit reover the famous bosoni type T 3 lnT orretion tothe spei� heat in the ase of Fermi liquids like Helium-3.1 IntrodutionThe appropriate frame for the desription of nonequilibrium proesses is the real-time for-malism of quantum �eld theory, developed by Shwinger, Kadano�, Baym and Keldysh[2{4℄. This formalism �nds now appliations in various �elds, suh as quantum hro-modynamis [5,6℄, nulear physis [7{13℄, astrophysis [11,14,15℄, osmology [16℄, spinsystems [17,18℄, lasers [19℄, physis of plasma [20{22℄, physis of liquid 3He [23℄, ritialphenomena, quenhed random systems and disordered systems [24℄, normal metals andPreprint submitted to Elsevier Preprint 7 Marh 2000



super-ondutors [14,25,26℄, semiondutors [27,28℄, tunneling and seondary emission[29℄, et.The Green's funtion tehnique provides desriptions in terms of one- and two-point fun-tions. Compared to the various equal-time operator formulations of transport theories, .f.[30℄, and within the path-integral formulation [31℄, the Green's funtion approah withits non-loalities in time o�ers probably the only onvenient way for a dynamial desrip-tion of spetral information of unstable partiles. The orresponding mass-width e�etsbeome inreasingly important espeially in the realm of high-energy nulear ollisions,where one deals with resonanes, like the delta resonane and rho meson, with vauumdeay widths whih are even larger than the system's temperature. In spite of 40 yearsof work of many authors a proper dynamial sheme for suh situations is still laking.Rather ad-ho reipes are in use that sometimes violate basi requirements as given byfundamental symmetries and onservation laws, detailed balane or thermodynami on-sisteny. The question of onservation laws beome espeially vital for the dynamis ofbroad resonanes. In the ontext of Green's funtions the problem of onserving approxi-mations has �rst been addressed by Baym and Kadano� [32,33℄ on very general groundswithin the imaginary time formalism. Baym, in partiular, showed [33℄ that so-alled �-derivable approximations are onserving. It turned out that the � funtional required ispreisely the auxiliary funtional introdued by Luttinger and Ward [34℄ (see also ref. [35℄)in onnetion with the thermodynami potential at the two-partile irreduible level.The onept of generating funtionals on the Shwinger{Keldysh ontour has been ex-plored by many authors, e.g. see refs. [16,24,28,36℄. In our previous paper [1℄ we havemade a step further in these funtional methods, i.e. we reinvestigated the � funtionalon the real-time ontour. The � funtional is determined by losed vauum skeleton dia-grams in terms of full lassial �elds and full Green funtions. All important dynamialquantities up to the two-point funtion level, suh as the soures of lassial �elds, self-energies, interation energy, et. are derived from � by funtional variations with respetto its arguments. The advantage of the � funtional is that one may formulate variousapproximations in terms of approximate � (so alled �-derivable approximations), whihpreserve the onservation laws related to global symmetries of the underlying theory andthermodynami onsisteny. Thereby, one may restrit oneself to either a few diagramsonly or to some sub-set of diagrams for �. The basi terms of this sheme are summarizedin set. 2.In set. 3 the steps towards quantum kineti equations are summarized. They involvethe Wigner transformation of the ontour Dyson equation together with the �rst-ordergradient approximation. The former formulates all quantities in terms of phase-spae dis-tribution funtions in four dimensions, i.e. as a funtion of energy and momentum for anyspae-time oordinate. The gradient approximation leads to Poisson-braket expressionswhih permit a lassial interpretation. Thereby the standard quasipartile approximationis not required at any step.It should be noted though that there were many attempts in the literature to improve the2



standard quasipartile approximation and to disuss small damping width and retardatione�ets on di�erent model examples, see [21,22,27,36{42℄ and refs. therein. However, allthese derivations lose some information on �nite width e�ets due to the inherent redu-tion to a 3-momentum representation of the distribution funtions by some spei� ansatz.With the aim to develop a self-onsistent approah we defer to use suh kind of redutions.Thus we'll treat the spetral information ontained in the spetral funtions dynamially,i.e. on the four-phase-spae level. We show that this an onsistently be ahieved in thelimit of slow spae-time variations of the distribution funtions thereby preserving all theinvarianes of the �-derivable approximation, employing the standard Kadano�{Baymequations right after gradient expansion. We reinvestigate the validity ondition of theresulting set of equations and in partiular show that the generalization of the so alledmass-shell equation loses its quasipartile sense and beomes equivalent to the quantumfour-phase-spae kineti equation within the validity of the gradient approximation. Thephysial meaning of the di�erent terms in the quantum four-phase-spae kineti equation,espeially the role of damping and utuation terms leading to a bak-ow response, aredisussed. The properties of � determine the onservation laws in terms of onservedNoether urrents. For the onserved energy-momentum tensor we derive a losed expres-sion whih also inludes terms arising from the the �nite mass width of the partilesand from utuations. Arguments are given that the generalized distribution funtionsremain positive during the time evolution thus permitting a probabilisti interpretationin four-momentum spae at eah spae-time point.In set. 4 further properties are exploited with the help of the deomposition rules forthe diagrams of � formulated in terms of full Green funtions [13℄. These rules lead toa multi-proess deomposition of a �-derivable ollision term, whih ontains spae-timeloal and nonloal parts, the latter representing memory e�ets. We demonstrate how onean systematially treat suh e�ets in self-onsistent kinetis.The seond main issue of this paper is the role of entropy. Although the entropy is a entralquantity in thermodynamis and statistial mehanis, many problems onneted with it,in partiular, its desription in terms of Green funtions in the nonequilibrium ase, isstill open. One an �nd related disussions in many textbooks and reviews, e.g., in refs.[43,45{48℄. The thermodynami entropy has extensively been disussed in the literatureat the end of the sixties and beginning of the seventies also within the �-derivable shemefor the thermodynami potential, f. refs. [49{51℄ and referenes therein. The fat thatthe quantum four-phase-spae kineti equation possesses a proper thermodynamial limit,does not yet imply that this limit will be approahed during the evolution. The latter isensured however, if one an prove an H-theorem for the equations of motion. In spite ofmany attempts so far, H-theorem has not yet been proven even for the lassial kinetiequation inluding triple ollision term, f. ref. [48℄. Therefore, up to now there exists noappropriate kineti entropy expression (derived from a quantum four-phase-spae kinetidesription). Using the �-derivable properties we are able to get an expression, whihtakes the sense of a nonequilibrium kineti entropy expressed in terms of Green funtionsand self-energies (set. 5). For spei� forms of the �-derivable self-energies, relevantfor the majority of ases disussed in transport problems, the quantum four-phase-spae3



kineti sheme provides us with an H-theorem. Our expressions for the kineti entropy owapply beyond the quasipartile limit aounting for utuation and memory e�ets (thelatter have to be established for eah partiular ase). Thus the well known equilibriumexpression [50℄ obtained in Matsubara formalism within the �-funtional sheme is nowgeneralized to the genuine nonequilibrium ase (set. 6). Some formal details are deferredto Appendies.To be spei�, we onentrate on systems of non-relativisti partiles. Bosoni mean �eldsare not treated in this paper; they an however be inluded along the lines given in ref.[1℄.2 Generating Funtional � on Real-Time ContourWe assume the nonequilibrium system to be prepared at some initial time t0 in termsof a given density operator b�0 = P� P� j�i h�j, where the j�i form a omplete set ofeigenstates of b�0, and formulate all expetation values on a speial time ontour, thelosed real-time ontour (see �gure 1) with the time arguments running from t0 to 1along the time-ordered branh and bak to t0 along the anti-time-ordered branh.
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Figure 1: Closed real-time ontour with two external points x; y on the ontour.Multi-point ontour funtions like the free (thin line) and full (thik line) propagators�x y = iG0(x; y) = DTC b' I(x) b'yI(y)E= Tr h b�0TC b' I(x) b'yI(y)i (2.1)�x y = iG(x; y) = DTC b'(x) b'y(y)E = Tr � b�0TC b' I(x) b'yI(y) exp�� i ZC bH intI dt�� ; (2.2)are de�ned as the expetation values of ontour-ordered produts of �eld operators with�0, where b'(y) and b' I(y) denote the full and interation piture �eld operators with theinteration Hamiltonian bH intI , while TC spei�es the speial time-ordering, whih ordersthe operators aording to a time parameter running along the time ontour C.With the aim to ome to a self-onsistent and onserving treatment on the two-pointfuntion level, we use the �-funtional method [34,33℄ generalized to the real-time ontourin our previous paper [1℄. It is based on a deomposition of the generating funtional �with biloal soures into a two-partile reduible part and an auxiliary funtional � whihompiles all two-partile-irreduible (2PI) vauum diagrams4
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Here upper signs relate to fermion quantities, whereas lower signs, to boson ones, whilen� and n� ount the number of self-energy insertions in the ring diagrams and the numberof verties in the diagrams of �, respetively. The stationarity onditionÆ� fG; �g =ÆG = 0 (2.4)provides the ontour Dyson equation of motion for the two-point Green funtionsSxG(x; y)= ÆC(x; y) + ZC dz�(x; z)G(z; y); (2.5)SxG0(x; y)= ÆC(x; y); where Sx = i�t + 12m�2x; (2.6)the latter in non-relativisti kinematis. Here ÆC(x; y) is Æ-funtion on the ontour and RCdenotes the ontour integration.The funtional �fGg ats as the generating funtional for the self-energy � via the fun-tional variation�i�(x; y) = �Æi�=ÆiG(y; x): (2.7)The losed diagrams of � are expressed in terms of full propagators and therefore haveto be of two-partile irreduible (2PI) topology. In graphial terms, the variation (2.7)is realized by opening a propagator line in any diagram of � providing proper skeletondiagrams for � in terms of full propagators, i.e. void of any self-energy insertions.The advantage of this formulation is that � an be trunated at any level, thus de�ningapproximation shemes with built in internal onsisteny with respet to onservationlaws and thermodynami onsisteny. For details we refer to the original literature [33,34℄and our previous paper [1℄. Thus restriting the in�nite set of diagrams for � to eitheronly a few of them or some sub-series of them de�nes a �-derivable approximation. Notethat � itself is onstruted in terms of \full" Green funtions, where \full" now takes thesense of solving self-onsistently the Dyson equation with the driving term derived fromthis approximate � through relation (2.7). It means that even restriting ourselves to a5



single diagram in �, in fat, we deal with a whole sub-series of diagrams in terms of freepropagators, and \full" takes the sense of the sum of this whole sub-series. The Wikdeomposition, the trunation in � together with the gradient approximation, may leadto a sheme whih generally is time-irreversibe [3,7,52,53,43,44℄, as disussed in set. 5.
3 Quantum Four-Phase-Spae Kinetis3.1 Gradient Expansion ShemeFor slightly inhomogeneous and slowly evolving systems, the degrees of freedom an besubdivided into rapid and slow ones. Any kineti approximation is essentially based onthis assumption. Then for any two-point funtion F (x; y), one separates the variable� = (t1 � t2; r1 � r2), whih relates to rapid and short-ranged mirosopi proesses, andthe variableX = 12(t1+t2; r1+r2), whih refers to slow and long-ranged olletive motions.The Wigner transformation, i.e. the Fourier transformation in four-spae di�erene � =x � y to four-momentum p leads to the orresponding Wigner densities in four-phase-spae. Sine the Wigner transformation is de�ned for physial spae-time oordinatesrather than for ontour oordinates one has to deompose the ontour integrations intoits two branhes, the time-ordered f�g branh and the anti-time ordered f+g branh,f. Appendix A. Two-point funtions then beome matries of the ontour deomposedf�+g omponents with physial spae-time arguments. ThusF ij(X; p) = Z d�eip�F ij (X + �=2; X � �=2) ; i; j 2 f�+g (3.1)leads to a four-phase-spae representation of two-point funtions, whih obey retardedor advaned relations, presented in Appendix A. The gradient expansion onverts theWigner transformation of any onvolution of two-point funtions into a produt of theorresponding Wigner funtions plus higher order gradient termsZ d�eip� �Z dzf(x; z)'(z; y)�= exp " i~2 (�p�X0 � �X�p0)# f(X; p)'(X 0; p0)!p0=p;X0=X(3.2)' f(X; p)'(X; p) + i~2 ff(X; p); '(X; p)g ; (3.3)where the �rst order terms are given by Poisson braketsff(X; p); '(X; p)g = �f�p� �'�X� � �f�X� �'�p� (3.4)6



here in ovariant notation. We would like to stress that the smallness of the ~�X ��p omessolely from the smallness of spae{time gradients �X , while momentum derivatives �p arenot assumed to be small! This point is sometimes inorretly treated in the literature.The Wigner transformation of the Dyson equation (2.5) leads to the following set ofequations [3℄iv���XGij(X; p)= Z d�eip� ZC dz ��(xi; z)G(z; yj)�G(xi; z)�(z; yj)� ; (3.5)bQXGij(X; p)=�ij + 12 Z d�eip� ZC dz ��(xi; z)G(z; yj) +G(xi; z)�(z; yj)� ; (3.6)where �ij aounts for the integration sense on the two ontour branhes, f. Eqs. (A.2),(A.3). For non-relativisti kinematis v� = (1;p=m), and bQX = p0� p2=2m� �2X=8m. Inthis matrix notation, two of equations (3.5) and (3.6), involving G�+ and G+� on the left-hand side, are known as the Kadano�-Baym equations, here in Wigner representation [3℄.Partiular ombinations of these equations lead to the retarded and advaned equationswhih ompletely deouple and involve only integrations over physial times rather thanontour times.It is helpful to avoid all the imaginary fators inherent in the standard Green funtionformulation and introdue quantities whih are real and, in the quasi-homogeneous limit,positive, f. subset. 3.4, and therefore have a straightforward physial interpretation,muh like for the Boltzmann equation. We de�neF (X; p)=A(X; p)f(X; p) = (�)iG�+(X; p);eF (X; p)=A(X; p)[1� f(X; p)℄ = iG+�(X; p); (3.7)for the generalized Wigner funtions F and eF and the orresponding four-phase-spaedistribution funtions f(X; p) and Fermi/Bose fators [1� f(X; p)℄. HereA(X; p) � �2ImGR(X; p) = eF � F = i �G+� �G�+� (3.8)is the spetral funtion, where GR is the retarded propagator, f. Eq. (A.6). Aording torelations (A.6) and (A.7) between Green funtionsGij, only two independent real funtionsof all the Gij are required for a omplete desription.Likewise the redued gain and loss rates of the ollision integral are de�ned as�in(X; p)=�(X; p)(X; p) = (�)i��+(X; p); (3.9)�out(X; p)=�(X; p)[1� (X; p)℄ = i�+�(X; p) (3.10)7



with the damping width�(X; p)��2Im�R(X; p) = �out(X; p)� �in(X; p); (3.11)where �R is the retarded self-energy, f. Eq. (A.6). The opposite ombinationI(X; p) = [2 � 1℄� = �in(X; p)� �out(X; p); (3.12)is related to utuations. The dimensionless quantity  is introdued for further onve-niene.In terms of the new notation (3.7){(3.11) and within the �rst-order gradient approxima-tion, the Kadano�{Baym (KB) equations (3.5) for F and eF take the formDF (X; p)� n�in;ReGRo=C(X; p); (3.13)D eF (X; p)� n�out;ReGRo=�C(X; p); (3.14)whih we denote as the quantum four-phase-spae transport equations in the KB-hoie.Here the di�erential drift operator is de�ned asD =  v� � �Re�R�p� ! ��X + �Re�R�X� ��p� ; with v� = (1;p=m) (3.15)in non-relativisti kinematis,C(X; p) = �in(X; p) eF (X; p)� �out(X; p)F (X; p) = A�[ � f ℄ (3.16)is the ollision term with the dimensionless funtions f and  de�ned in (3.7) and (3.9),while n�in;ReGRo and n�out;ReGRo are utuation terms. The smallness of jf � j � 1indeed provides the validity ondition for the gradient expansion, sine the gradients onthe l.h.s. of (3.13) are of the order of the ollision term. It implies that the marosopitime sale �maro, haraterizing kineti proesses, is muh larger than the mirosopitime sale �miro, relating to rapid mirosopi proesses. Eqs. (3.13) and (3.14) wereoriginally derived by Kadano� and Baym [3℄. Here we have just presented them in kinetinotation useful for our further onsideration.Within the same approximation level Eq. (3.6) provides us with two alternative equationsfor F and eFMF � ReGR�in= 14 (f�; Fg � f�in; Ag) ; (3.17)M eF � ReGR�out= 14 �n�; eFo� f�out; Ag� (3.18)8



with the \mass" funtionM(X; p) = p0 � 12mp2 � Re�R(X; p) (for non-relativisti kinematis); (3.19)whih relates to the drift operator via Df = fM; fg for any four-phase-spae funtion f .Eqs. (3.17), (3.18) an be alled the four-phase-spae mass-shell equations, sine in thequasipartile limit they provide the mass-ondition M = 0. Appropriate ombinations ofthe two sets of equations (3.13){(3.14) and (3.17){(3.18) provide us with the retardedequations DGR(X; p) + i2 n�; GRo=0; (3.20)�M(X; p) + i2�(X; p)�GR(X; p)= 1; (3.21)whih are simultaneously solved by algebrai inversion of (3.21) [3,10℄, i.e.
GR = 1M(X; p) + i�(X; p)=2 ) 8>>>><>>>>: A(X; p) = �(X; p)M2(X; p) + �2(X; p)=4 ;ReGR(X; p) = M(X; p)M2(X; p) + �2(X; p)=4 : (3.22)The spetral funtion satis�es the sum{rule1Z�1 dp02� A(X; p)= 1; (3.23)whih follows from the anonial equal-time (anti) ommutation relations for (fermioni)bosoni �eld operators.With the solution (3.22) for GR equations (3.13) and (3.17) beome idential to (3.14) and(3.18), respetively suh that one is altogether left with three di�erent equations ratherthan two. These relations are known sine the original text-book by Kadano� and Baym[3℄, here presented in a form onvenient for our further onsiderations. Now we like toome to some new onsiderations.At �rst glane equations (3.13) and (3.17) are not idential, while they were identialbefore the gradient expansion. However, even for �nite values of � the equivalene ofthese two equations an be assured within the validity range jf(X; p)�(X; p)j � 1 of thegradient approximation. Using this limit and writing all �in = � terms as (f +(�f))�,the four-phase-spae transport and mass-shell equations, (3.13) and (3.17), take the forms9



A22 (� fM; fg �M f�; fg)=�A( � f)� rkin; (3.24)AReGR2 (� fM; fg �M f�; fg)=MA( � f)� rmass�eq; (3.25)where the remaining terms rkin and rmass�shell are seen to be of order (�f) times gradientterms, i.e. of seond order in the gradient expansion 1 . >From Eq. (3.22) one has �ReGR =MA. Using this we ome to the observation that the four-phase-spae mass-shell equationloses its original quasipartile-like sense, sine to leading order in the gradient expansionrelation (3.25) is indeed equivalent to the four-phase-spae transport equation (3.24).However, the still remaining di�erene in the seond-order terms is inonvenient from thepratial point of view. Besides the retarded relations (3.20) whih are to be used in anyase, Kadano� and Baym have hosen equation (3.13) as the quantum four-phase-spaekineti equation. This has the property of providing a onserved energy momentum tensor(f. set. 3.3) whih is symmetri with respet to the appearane of real and imaginaryself-energy terms and propagators. Following Botermans and Maliet (BM) [10℄, who �rstsuggested to drop the above rkin term in the four-phase-spae kineti equation, we nowput rkin = rmass = 0 in both Eqs. (3.24) and (3.25) with the advantage that then theseequations beome ompletely idential. Dropping the rkin and rmass terms in (3.24) and(3.25) amounts to replae the �in and �out terms by f� and (1 � f)� in all Poissonbrakets. The so obtained quantum four-phase-spae kineti equations for F and eF inBM-hoie then readDF (X; p)� ��FA;ReGR�=C(X; p); (3.26)D eF (X; p)� (� eFA;ReGR)=�C(X; p); (3.27)whih are idential to eah other in view of the retarded relation (3.22). In terms of thefour-phase-spae oupation funtions f(X; p) both above equations redue toA2�2 �Df � M� f�; fg�=C: (3.28)To get Eq. (3.28) we used that the additional Poisson-braket term beomesn�f;ReGRo = M2 � �2=4(M2 + �2=4)2 D (�f) + M�2=2(M2 + �2=4)2 f�; fg : (3.29)1 These terms have the expliit formrkin = ���( � f);ReGR	 ; rmass�eq = 14 f�( � f); Ag :
10



Both, the KB hoie (3.13) and the BM hoie (3.26) are of ourse equivalent withinthe validity range of the �rst order gradient approximation. Frequently, however, suhequations are used beyond the limits of validity as ad-ho equations and then the di�erentversions may lead to di�erent results. So far we have no physial ondition whih givespreferene to one or the other hoie. The proedure used here, where in all Poissonbrakets the �in and �out terms have onsistently been replaed by f� and (1 � f)�,respetively is therefore optional. However, in doing so we gained few advantages. First,four-phase-spae kineti and mass-shell equation are from now exatly equivalent to eahother, as they were before the gradient expansion. Seond, the so obtained quantumkineti equations (3.26)-(3.27) has partiular feature with respet to the de�nition of anonequilibrium entropy ow and the formulation of an exat H-theorem in ertain ases(set. 5). If we omit these substitutions, both these features would beome approximateup to the seond-order gradient terms.So far the gradient approximation has been applied to the spae-time foldings ourringbetween the self-energies and the propagators appearing in the ollision term. They giverise to the gradient terms on the l.h.s. of the kineti equations. This is suÆient as longas the self-energies are alulated without further approximation. Commonly one alsolikes to obtain �in and �out in a kind of loal approximation evaluated with all Greenfuntions taken at the same spae-time point X. Then for self-energy diagrams with morethan two points, also nonloal gradient orretions arise for suh diagrams, whih haveto be treated in a onsistent gradient approximation sheme. The latter fat gives rise tomemory e�ets, whih will be disussed in detail in subset. 4.2, below.3.2 Physial interpretation and quasipartile limitWe now provide a physial interpretation of various terms in the quantum four-phase-spae kineti equation (3.26) or equivalently (3.28). This physial interpretation relies onthe similarity of most of the terms to onventional kineti equations, for example, suh asthe Landau kineti equation for Fermi liquids (see, e.g., refs. [51,54℄) and ref. [55℄ for therelativisti version), proposed by Landau on the basis of an intuitive quasipartile piture[56℄, although the omplete spetral dependene on energy is treated dynamially.For this purpose it is advantage to onvert the drift operator (3.15) into a spae and timeseparated form D = 1Z (�t + vg�X) + �tRe�R � �p0 � �XRe�R � �p ; (3.30)wherevg(X; p) = Z  v + �Re�R�p ! with Z =  v0 � �Re�R�p0 !�1 (3.31)11



takes the meaning of the group 3-veloity in the quasipartile approximation, while Z isthe standard renormalization fator. In the quantum four-phase-spae kinetis p0 and pare independent in (3.31).Thus, the drift term DF on the l.h.s. of Eqs. (3.13), (3.26) is the usual kineti drift terminluding the orretions from the self-onsistent �eld Re�R into the onvetive transfer infour-phase-spae. In the ollision-less ase DF = 0 (Vlasov equation), the harateristiurves of quasi-linear �rst-order di�erential operator D de�ne lassial paths in four-phase-spae with onserved probability F (X; p) in this ase. The formulation in termsof a Poisson braket in four dimensions implies a generalized Liouville theorem. In theollisional ase, both the ollision, C, and utuation terms (3.29) hange the phase-spaeprobabilities of the \generalized" partiles during their propagation along the the four-phase-spae paths given by D. Thereby partiles are no longer bound to their mass-shell,M = 0, during propagation due to damping proesses governed by the ollision term. ThePoisson-braket term (3.29) is speial. It ontains genuine ontributions from the �nitedamping width of the partiles and desribes the response of the surrounding matter dueto utuations. This an be seen from the onservation laws disussed below. In partiularthe �rst term in (3.29) gives rise to a bak-ow omponent of the surrounding matter. Itrestores the Noether urrents as the onserved ones rather than the intuitively expetedsum of onvetive urrents arising from the onvetive DF term in (3.26). Furthermore, itis seen from Eq. (3.28) that the termM f�; fg =� gives no ontribution in the quasipartilelimit due to the fator M and thus represents a spei� o�-mass-shell response.The r.h.s. of Eqs. (3.13), (3.26), (3.28) spei�es the ollision term C in terms of gain andloss terms, whih also an aount for multi-partile proesses. Sine F in Eqs. (3.13),(3.26) inludes a fator A, C further deviates from the standard Boltzmann-type formin as muh that it is multiplied by the spetral funtion A, whih aounts for the �nitewidth of the partiles.The equations so far presented, mostly with the KB hoie (3.13), were the startingpoint for many derivations of extended Boltzmann and generalized kineti equations, eversine these equations have been formulated in 1962. Most of those derivations use theequal-time redution by integrating the four-phase-spae equations over energy p0, thusreduing the desription to three-phase-spae information, f. refs. [21,22,27,36{42℄ andrefs. therein. This an only onsistently be done in the limit of small width � employingsome kind of quasi-partile ansatz for the spetral funtion A(X; p). It is important torealize that the funtion 12A2� in front of the drift term in Eq. (3.28) is more sharplypeaked than the original spetral funtion A. Both 12A2� and A are redued to the sameÆ-funtion in the quasipartile limit, however orretions to the Æ-funtion in powers of �start linear for A whereas they start of order �3 for 12A2� [50℄. Partiular attention hasbeen payed to the treatment of the time-derivative parts in the Poisson brakets, whih inthe four-phase-spae formulation still appear time-loal, i.e. Markovian, while they leadto retardation e�ets in the equal-time redution. Generalized quasipartile ans�atze wereproposed, whih essentially improve the quality and onsisteny of the approximation,providing those extra terms to the naive Boltzmann equation (some times alled additional12



ollision term) whih are responsible for the orret seond-order virial orretions andthe appropriate onservation of total energy, .f. [27,38℄ and refs. therein.At the simplest level the quasipartile distribution takes the form [57℄F qp(X; p) = 2� Z(X; ";p) Æ (p0 � "(X;p)) fqp(X;p) (3.32)whih is a funtion of only three-momentum through the quasipartile dispersion relationfor the energy "(X;p) "(X;p) = 12mp2 +Re �R (X; "(X;p);p) : (3.33)However, all these quasi-partile shemes rely on the smallness of the damping widths. Yet,in order to desribe the transport of partiles with large mass widths, in partiular, broadresonanes, one has to stay at the level of the quantum four-phase-spae kineti equations(3.28) together with the retarded Eq. (3.22), whih preserve all the spetral information.It is the main objetive of this paper to study the properties of this four-phase-spaekinetis at the most general level.3.3 Conservations of Charge and Energy{MomentumThe quantum four-phase-spae kineti equation (3.26) weighted either with the harge eor with 4-momentum p�, integrated over momentum and summed over internal degreesof freedom like spin (Tr) gives rise to the harge or energy{momentum onservation laws,respetively, with the Noether 4-urrent and Noether energy{momentum tensor de�nedby the following expressionsj�(X)= eTr Z d4p(2�)4v�F (X; p); (3.34)���(X)=Tr Z d4p(2�)4v�p�F (X; p) + g�� �E int(X)� Epot(X)� : (3.35)HereE int(X) = D� bL int(X)E = Æ�Æ�(x) ������=1 (3.36)is the total interation energy density, whih in terms of � is given by a funtional variationwith respet to a spae-time dependent oupling strength of the interation part of theLagrangian density bL int ! �(x) bL int, f. ref. [1℄. The potential energy density Epot asintrodued in ref. [1℄ determines that potential energy whih a probe partile with Wigner13



density F (X; p) would have due to the interation with all other partiles in the system.For the BM hoie 2 it takes the formEpot(X) = Tr Z d4p(2�)4 �Re�RF + ReGR �AF � = Tr Z d4p(2�)4 �p0 � �0(p)�F (X; p)with �0(p) = p22m:(3.37)This auxiliary quantity is diretly related to the self-energy �. Whereas the �rst term inthe square braket omplies with quasipartile expetations, namely mean potential timesdensity, the seond term displays the role of the width in the potential energy density.For the BM hoie the entire expression an be redued to a simple trae over F (X; p).In general, E int(X) has to be determined aording to its diagrams given by �, f. [1℄.Only for spei� interations there are diret relations to Epot(X). This is the ase, if toall interation verties of bL int the same number � of �eld operators is attahed. Then onesimply deduesE int(X) = 2�Epot(X): (3.38)In partiular, for two-body interations one has � = 4 and thus 2E int = Epot whihprovides the energy momentum tensor as a simple trae over F (X; p)���(two�body)(X)=Tr Z d4p(2�)4 �v�p� � 12g�� �p0 � �0(p)��A(X; p)f(X; p); (3.39)with the free energy �0(p) from (3.37). a form ommonly used in extended quasipartileapproximations, e.g. [38℄. Please, also notie from (3.35) that the speial ombination�00(X) + 13 3Xi=1�ii(X) = Tr Z d4p(2�)4A(X; p)f(X; p)�p0 + 23�0(p)� (3.40)depends on the spei� form of the interation only via the spetral funtion. As we willsee below, in loal thermodynami equilibrium this ombination simply relates to theentropy density.2 For the KB hoie it takes the formEpot(X) = TrZ d4p(2�)4 �Re�RF +ReGR�in� :
14



The onservation laws only hold, if all the self-energies are �-derivable. In ref. [1℄, it hasbeen shown that this implies onsisteny relations, Eqs. (6.5) and (6.9) in [1℄, whih afterWigner transformation and �rst-order gradient expansion lead toiTr Z d4p(2�)4 �nRe�R; Fo� �ReGR; �AF�+ C� = 0; (3.41)for the onserved urrent and�� �E int � Epot� = Tr Z p�d4p(2�)4 �nRe�R; Fo� �ReGR; �AF�+ C� : (3.42)for the energy-momentum tensor. The ontributions from the Markovian ollision termC drop out in both ases, f. Eq. (4.8) below. The �rst term in eah of the two relationsrefers to the hange from the free veloity v to the group veloity vg, f. Eq. (3.31), in themedium. It an therefore be assoiated with a orresponding drag{ow ontribution of thesurrounding matter to the urrent or energy{momentum ow. The seond (utuation)term ompensates the former ontribution and an therefore be assoiated with a bak{ow ontribution, whih restores the Noether expressions (3.34) and (3.35) to be indeedthe onserved quantities. In this ompensation we see the essential role of the utuationterm (3.29) in the quantum four-phase-spae kineti equation. Dropping this term wouldspoil the onservation laws.Expressions (3.34) and (3.35) for the onserved urrent and energy{momentum tensor,as well as self-onsisteny relations (3.41) and (3.42) are written expliitly for the ase ofnon-relativisti partiles with �xed partile number. This follows from the onventionalway of non-relativisti renormalization for suh partiles based on normal ordering. Whenthe number of partiles is not onserved (e.g., for phonons or a system of relativistipartiles), one should replae F (X; p) ! 12 �F (X; p)� eF (X; p)� in all above formulas inorder to take proper aount of zero point vibrations (e.g., of phonons) or of the vauumpolarization in the relativisti ase. These symmetrized equations, derived from speial(�) ombinations of the transport equations (3.26) and (3.27), are generally ultra-violetdivergent, and hene, have to be properly renormalized at the vauum level.3.4 Positive De�niteness of Kineti QuantitiesFor a semi-lassial interpretation one likes to have the Wigner distributions F (X; p) andeF (X; p) to be positive semi-de�nite, hereto after just alled \positive". Using the operatorde�nition for the Green funtions (2.1) and integrating it over a large spae-time volume,one arrives at, e.g.,Z dXF (X; p) = ��Z dyeipy b'y(y)��Z dxe�ipx b'(x)�� ; (3.43)15



and similarly for self-energies � expressed through the urrent{urrent orrelator. It indi-ates that the r.h.s. of suh equality is real and non-negative. Thus, we get the followingset of onstraintsZ dX eF (X; p) � 0; Z dXF (X; p) � 0; Z dX�out(X; p) � 0; Z dX�in(X; p) � 0: (3.44)Similar relations are obtained for the integration over four-momentum spae rather thanspae and time. As a result, in stationary and spatially homogeneous systems, in partiularin equilibrium systems, the quantities F , eF , �in and �out are real and non-negative 3 , i.e.F (p) � 0; eF (p) � 0; �in(p) � 0; �out(p) � 0: (3.45)In deriving onstraints (3.44) and (3.45), we did not use the fat that the Green fun-tions are solutions of the Dyson's equation. However, we used the operator piture. Anyapproximation, in partiular, if formulated in the spae of Green funtions, may spoilsuh rigorous statements like (3.43). Nevertheless, both the �-derivable sheme and thegradient approximation preserve the retarded relations (A.6) among the di�erent on-tour omponents and the retarded and advaned funtions of any ontour funtion, withde�nite values for the imaginary parts of the orresponding retarded Wigner funtions�2ImGR(X; p) = A(X; p) � 0; �2Im�R(X; p) = �(X; p) � 0; (3.46)whih even hold loally. In partiular, solution (3.21) for the retarded Green funtionshows that all retarded relations hold loally: the momentum part is the same as thatin the homogeneous ase with the spae-time oordinate X as a parameter. Under theondition jf � j � 1, f. the disussion around Eq. (3.24), one �nds that�out(X; p) � f�(X; p) > 0; �in(X; p) � (1� f)�(X; p) > 0 (3.47)as long as the Wigner densities f and 1�f are positive. As the gradient approximation isa quasi-homogeneous approximation, one may therefore expet the positivity of �in and�out to be preserved even in the self-onsistent treatment disussed here. Diagrammatirules may also orroborate this, sine diagrams for �in and �out are alulated like in thehomogeneous ase.We now like to show that, if �in and �out are positive, also under minor restritions thekineti equation (3.28) preserves the positivity of f , one initially started from a positive f .This equation is of integro-quasi-linear �rst-order partial di�erential type in 8 dimensionswith all derivatives plaed on the l.h.s. and the ollision termC = A(�in � �f) (3.48)3 In relativisti desriptions one has appropriately to separate partiles from anti-partiles.16



provides a term linear in f with a negative oeÆient. Therefore overall stability requiresthe oeÆient in front of the time derivative term in Eq. (3.28) to be positive 4 . Giventhe solution of (3.28), let us then disuss properties of f along the harateristi urvesdetermined by the quasi-linear drift operator on the l.h.s. of (3.28) with a urve parameters growing monotonially with time. Assuming f positive initially, the ourrene of anegative value at some later time requires the �rst zero value to our at one of theharateristi urves. Be s0 suh a plae, one �nds12A� dds f(s)����s = s0 = [A�in℄s = s0 > 0: (3.49)If the r.h.s. is positive, one omes to a ontradition, as the approah from some positivevalue to a zero value whih then beomes negative would require a non-positive derivativeat s0. Thus, the overall stability requirement of the equations is suÆient to preservepositive distribution funtions.4 Collision TermTo further disuss the transport treatment we need an expliit form of the ollision term(3.16), whih is provided from the � funtional in the �+matrix notation via the variationrules (A.8) asC(X; p) = Æi�Æ eF (X; p) eF (X; p)� Æi�ÆF (X; p)F (X; p): (4.1)Here we assumed � be transformed into the Wigner representation and all �iG�+ andiG+� to be replaed by the Wigner-densities F and eF . Thus, the struture of the ollisionterm an be inferred from the struture of the diagrams ontributing to the funtional �.To this end, in lose analogy to the onsideration of ref. [13℄, we disuss various deomposi-tions of the �-funtional, from whih the in- and out-rates are derived. This onsiderationis based on the standard real-time diagrammati rules, where the ontour integrations aredeomposed into two branhes with � and + verties for the time- and anti-time-orderedbranhes, f. Appendix A. For the sake of physial transpareny, we on�ne our treatmentto the loal ase, where in Wigner representation all the Green funtions are taken at thesame spae-time oordinate X and all non-loalities, i.e. derivative orretions, are disre-garded. Derivative orretions give rise to memory e�ets in the ollision term, whih willbe analyzed separately for the spei� ase of triangle diagram (see subset. 4.4).4 If the physial situation allows for instabilities, the dynamis will arry the system over intonew regime of stability, like for phase transitions. In the latter ase the kineti equation hasto be supplemented by an equation desribing the time evolution of the ondensate (one-pointfuntion) whih ouples to the propagator, f. the general sheme disussed in [1℄.17



4.1 Diagrammati Deomposition into Physial Sub-ProessesConsider a given losed diagram of �, at this level spei�ed by a ertain number n� ofverties and a ertain ontration pattern whih links all verties with lines of ertainarrow sense for omplex �elds. This �xes the topology of suh a ontour diagram. Itleads to 2n� di�erent diagrams in the �+ notation from the summation over all �+ signsattahed to eah vertex. Thus for any �+ type diagram of � also the diagram, where all +and � vertex signs are interhanged, ontributes to �. Furthermore, for any diagram withgiven line senses the diagram with all line senses reversed also is a valid diagram of �. Weshall exploit these two disrete symmetry operations to further determine the propertiesof �. The simultaneous appliation of the interhange of all vertex signs and the reversionof the line sense leads to the adjoint expressions, sine in the underlying operator pitureit adjungates all operators and inverts the operator ordering. The orresponding valuesare then omplex onjugate to one another, f. (A.7).Using these symmetries one an onvert the funtional � into the following general formi�loal= 12 Z dX Xm;m0 [i�m;m0(X) + i�m0;m(X)℄ ; (4.2)i�m;m0 = Z d4p1(2�)4 � � � d4pm(2�)4 d4p01(2�)4 � � � d4p0m0(2�)4 (2�)4Æ40� mXi=1 pi � m0Xi=1 p0i1A�Rm;m0(X; p1; : : : ; pm; p01; : : : ; p0m0) F1 � � �Fm eF 01 � � � eF 0m0 ; (4.3)where in view of the loal approximation the four momentum onservation has beenextrated. While �00 ompiles with terms void of any Wigner densities, i.e. from diagramswhere all verties have the same sign and whih do not ontribute to the ollision term,the nontrivial �m;m0 terms sum the sub-lass of diagrams of � with preisely m + m0Wigner densities Fi = F (X; pi) and eF 0i = eF (X; p0i), respetively. Aording to Eq. (4.1)eah �m;m0 in (4.3) generates multi-partile gain or loss ontributions expressed in termsof integrals over produts of generalized distribution funtions F , and Fermi/Bose fatorseF . Every term in the sum (4.2) has been dupliated, repeating eah term in its linereverse form. The orresponding transition rates Rm;m0(X; p1; : : : ; pm; p01; : : : ; p0m0) are realdue to the adjungation symmetry. As explained below, they result from the produt ofhronologial Feynman amplitudes, given by the sub-diagram ompiled from all � vertieslinked by iG�� Green funtions times that of the anti-hronologial part ontaining theiG++ funtions.The generi form (4.3) of �m;m0 an be illustrated diagrammatially. For this purposeonsider a �+ notation diagram ontributing to �m;m0 , whih ontains verties of eithersign. It an be deomposed into two piees, denoted by a ompat bra-ket notation, say(�j and j�), in suh a way that eah of the two sub-piees ontains verties of only one18



type of sign 5
i�+��� = 1n�� ��� ���---��� = 1n�� �� ���F1 � � �Fm eF 01 � � � eF 0m0 ��� ��= 1n�� Z d4(m+m0)pmm0(2�)4(m+m0) (2�)4Æ40� mXi=1 pi � m0Xi=1 p0i1A� V �� (X; pmm0) F1 � � �Fm eF 01 � � � eF 0m0 V�(X; pmm0); (4.4)where n�� ounts the number of verties in the losed diagram (�j�). The short-handnotation pmm0 = fp1; : : : ; pm; p01; : : : ; p0m0g summarizes the momenta, type and internalquantum numbers of the set of ordered valenes, to be joint to the produt of m + m0Wigner densities 6 F1 � � �Fm eF 01 � � � eF 0~m linking the two amplitudes. The \end-aps" (�j andj�) represent multi-point vertex funtions, in simple ases of tree type, of only one signfor the verties, i.e. they are either entirely time ordered (� verties) or entirely anti-timeordered (+ verties). Eah suh vertex funtionj�)= V�(X; pmm0); (�j= V �� (X; pmm0); (4.5)to be determined by normal Feynman diagram rules, hasm F -valenes andm0 eF -valenes,respetively. In (4.5) we used the fat that adjoint expressions are omplex onjugate toeah other, f. (A.7). Aumulating all diagrams of � that lead to the same set of Wignerdensities F1 � � �Fm eF 01 � � � eF 0~m provides us with the generi form (4.3) with the partial proessrates Rm;m0(X; pmm0) = X(��)2�m;m0 1n��Re fV �� (X; pmm0)V�(X; pmm0)g : (4.6)The restrition to the real part arises, sine with (�j�) also the adjoint (�j�) diagramontributes to the sublass �m;m0 . However these rates are not neessarily positive as inperturbation theory 7 . In this point, the �-derivable sheme di�ers from the onventional5 To onstrut the deomposition, just deform a given mixed-vertex diagram of � in suh a waythat all + and � verties are plaed left and respetively right from a vertial division line andthen ut along this line.6 This produt of Wigner-densities originates from the �iG�+ and iG+� Green funtions, (f.Eq. (3.7)). In losing the diagram by these Wigner densities extra fermion loops may appearbesides the ones aounted for in the amplitudes � and �. Using the produt F1 � � �Fm eF 01 � � � eF 0m0just take are of the additional (�1) fators arising from this losing of the diagram.7 In perturbation theory they are positive, sine there the sum in (4.6) leads to absolute squares.In the general ase with resummed propagators this positivity may be lost due to the restritionto diagrams of � whih are globally two-partile irreduible. The latter exludes ertain ombi-nations of amplitude diagrams, implying that the rates of genuine multi-partile proesses are19



Boltzmann kinetis. Even the two rates, Rmm0 and its line sense reverse Rm0m, have not tobe neessarily idential to eah other. Still Eq. (4.3) represents the most general form of �expressed through the Wigner densities F (X; p) and eF (X; p) in the loal approximation. Itis however important to realize that in many physially relevant ases, e.g. those disussedbelow, one indeed �nds thatRm;m0 = Rm0;m: (4.7)This property will be used as a suÆient ondition for the derivation of the H-theorem. Inthe following we will restrit the disussion to ases where (4.7) is assumed. The treatmentof more general ases, in partiular in onnetion with the H-theorem, will be deferred toanother publiation.Sine � is two-line irreduible, there are at least three lines onneting (�j and j�) and inmany ases (�j and j�) are onneted by, at least, four lines, like in the ase of two-bodyinterations. In suh diagrams eah of the amplitudes � or � neessarily form a onneteddiagram for the omplex �eld ase for binary (m = m0 = 2) and for triple sattering(m = m0 = 3) ase, while in the general ase of multi-partile (more than triple) proessessuh amplitudes may be disonneted.No further symmetry an be spei�ed at this level without additional knowledge on possi-ble topologial and other symmetries of � and the di�erent partile speies involved. Thedeomposition disussed here solely relies on a straightforward appliation of the ontourrules for multi-point funtions. They di�er from other utting rules like those derived byDanielewiz [8℄, whih represent the result in terms of generalized retarded funtions.4.2 Loal Collision Term and Memory CorretionsThe gradient orretions to the folding of the self-energies with the propagators in theollision term essentially give rise to in-medium orretions of the onvetive part (l.h.s)of the quantum four-phase-spae kineti equation (3.26). Within the spirit of the gradientapproximation one also likes to express the self-energies themselves by spae-time loalquantities. Thus, for a onsistent gradient approximation further gradient orretions areadmissible one the self-energy diagrams and thereby the diagrams of � onsist of morethan 2 verties. We all the ollision term, evaluated with all Green funtions in theWigner representation taken at the same spae-time point X, the loal ollision term.In terms of the representation (4.3) of � and implying line-sense reversal symmetry forthe rates (4.7) the matrix variation rules (4.1) determine the following loal part of theollision term (3.16) for a partile of avor "a" asnot neessarily positive. 20



C loa (X; p) = 12 Xm;m0 Z d4p1(2�)4 � � � d4pm(2�)4 d4p01(2�)4 � � � d4p0m0(2�)4� Rm;m0(X; p1; � � � ; pm; p01; � � � ; p0m0) n eF1 � � � eFmF 01 � � �F 0m0 � F1 � � �Fm eF 01 � � � eF 0m0o� 24 mXi=1 Æaai(2�)4Æ4(pi � p)� m0Xi=1 Æaai(2�)4Æ4(p0i � p)35 (2�)4Æ40� mXi=1 pi � m0Xi=1 p0i1A : (4.8)The funtional variations of � with respet to Fa and eFa are expressed in terms of the four-momentum projetors Æaai(2�)4Æ4(pi� p), f. eq. (A.9), whih in ase of multi-omponentsystems of partiles with di�erent avors and internal quantum numbers "a" also inludethe proper projetions onto the di�erent avors ai = a. This expression niely visualizesthe detailed balane property namely that the same multi-partile rate determines boththe forward and the bakward proesses.The �rst-order gradient orretions to the loal ollision term (4.8) are alled memoryorretions. Nonloal ollision terms have been already studied by many authors, in par-tiular, within the nonequilibrium Green's funtion tehnique,e.g., f. refs [37,38,58{63℄.Only reently it was realized [63℄ that within the �rst-order gradient expansion we mustkeep the linear gradient orretions to the ollision term. Therefore, memory e�ets are,in general, unavoidable within kineti treatment. However, memory e�ets are quite om-monly negleted in transport models. Indeed, only self-energy diagrams of third and higherorder in the number of verties give rise to memory e�ets, as it is disussed below (set.4.4) within a simple model example. In partiular, it means that the popular Born (orself-onsistent Born) approximation does not involve any memory orretions. Until re-ently this property of the Born approximation was not that obvious within the equal-timeformalism beause of ompliations resulting from redution shemes. Spika et al. [62℄showed that a proper equal-time redution really maintains this property.Memory orretions are linear in the time-spatial gradients of Wigner funtions and thedisplaement fators in front of these Taylor expansions give momentum gradients ofassoiated other multi-point funtions. Sine our prime goal here is only to demonstratehow memory orretions arise within our method of deomposing the � funtional, werefrain from speifying them in general terms. To this end only a simple model exampleis onsidered below (set. 4.4).4.3 �-Derivable Collision Terms4.3.1 Two-body Potential InterationTo be spei� we onsider a system of fermions interating via a zero-range two-bodypotential V = V0Æ(x � y), and, for the sake of simpliity, disregard its spin struture,by relating spin and anti-symmetrization e�ets to a degeneray fator d. To derive thedeomposition of a �-derivable ollision term, we employ the rules as desribed in subset.21



4.1.In the �rst example, we onsider the generating funtional � to be approximated by thefollowing two diagramsi� = 12 r-� + 14 r r--�� (4.9)with the dashed line illustrating the deomposition aording to (4.4). Here the 1=n�fators start with 1=2; 1=4; : : : aording to the non-relativisti diagram rules for two-body interation, f. Appendix C, i.e. the vertex dots are onsidered as the zero rangelimit of a �nite range interation. In the f�+g matrix notation of the Green funtions,one an easily see that the one-point diagram does not ontribute to the ollision term,while deomposing the seond diagram along the dashed line leads to a purely loal resultC(2)= d2 Z d4p1(2�)4 d4p2(2�)4 d4p3(2�)4 ��� q���wR ���2�(2�)4Æ4 (p+ p1 � p2 � p3) �F2F3 eF eF1 � eF2 eF3FF1� ; (4.10)where the brief notation of the previous subset. is used for Fi and eFi. This ollision inte-gral has preisely the form of the binary ollision term of Boltzmann{Uehling{Uhlenbek(BUU), exept for the fat that distribution funtions are not onstrained to the massshell. The binary transition rateR(2)2 = V 20 = ��� q���wR ���2 (4.11)is non-negative in this ase. Here and below, the supersripts in brakets (2) (or (3)) pointout the origin of the quantity (C, R, et.) from the seond (or third) diagram of �. Thesubsript 2 in the transition rate of Eq. (4.11) indiates the binary-ollision nature of thistransition rate. Note that external 4-momenta (in-going and out-going) of the satteringamplitude q���wR are not on�ned to the mass shell. For the trivial ase under onsideration,this fat does not give rise to any important onsequenes. However, for more ompliatedexamples below, it means that the ollision term is determined by o�-shell satteringamplitudes.The piture beomes more ompliated, if � involves diagrams of higher orders. For in-stane, let us add the three point diagram to �, i.e.i�= i ��(1) + �(2) + �(3)� 22



= 12 r-� + 14 r r--�� + 16 r rr�� ^- ℄�

 

 

 ; (4.12)where one possible deomposition is illustrated by dashed lines. The orresponding self-energy beomes�i�=�i ��(1) + �(2) + �(3)� == r--- + r r-�-- - + r rr� ^℄�-- -: (4.13)Now the ollision term ontains a nonloal part due to the last diagram. This nonloalontribution is disussed in the next subset. in detail. The loal part an easily be derivedin the formC(2) + C(3)lo = d2 Z d4p1(2�)4 d4p2(2�)4 d4p3(2�)4 0������ q���wR + qq��6?---- �����2 � ����� qq��6?---- �����21A�(2�)4Æ4 (p+ p1 � p2 � p3) �F2F3 eF eF1 � eF2 eF3FF1� ; (4.14)where all the verties in the o�-shell sattering amplitudes are of the same sign, say "� "for de�niteness, i.e. there are no " + �" and " � +" Green funtions left. The quantityC(2) + C(3)lo is again of the Boltzmann form with the transition rateR(2)2 +R(3)2 = ����� q���wR + qq��6?---- �����2 � ����� qq��6?---- �����2 : (4.15)At the �rst glane, one may argue that this rate is not neessarily positive in the limitof strong oupling. Indeed, the �rst term in Eq. (4.15), i.e. �iV0, is purely imaginary,whereas the seond one|the loop|given byloop = �d Z d4p1(2�)4 j V0 j2 iG��(x; p+ p1)iG��(x; p1);has both real and imaginary parts. Hene, the real part of this loop is aneled out in Eq.(4.15). If j Im(loop) j>j V0 j, the rate (R(2)2 + R(3)2 ) may beome negative, depending onsigns of V0 and Im(loop). However, one has to keep in mind that the Green funtions in theloop annot be hosen arbitrarily. Rather in a onsistent treatment, as shown in Eq. (80)of ref. [13℄, the loop reveals a fator / j1=�j / j1=V 20 j resulting from the imaginary part23



of the retarded self-energy in the propagators, whih balanes the total value of the loop.Indeed, in equilibrium the gain part of ollision term and thus (R(2)2 + R(3)2 ) is positive.This illustrates that the question of positive de�niteness is quite subtle.4.3.2 Bosonization of the InterationIt is obvious that the situation beomes ompliated one one extends the piture toring diagrams with more than three verties. Yet, there is a simple (however, not general)strategy to proeed. We may avoid the two-partile potential interation from the very be-ginning and rather introdue an interation mediated by an arti�ially introdued neutralheavy salar boson (h.b.) of mass mh.b. muh larger than any harateristi momentumtransfers in the system. Then the free retarded Green funtion of the boson approximatelyequals�0Rh.b. ' �1m2h.b. � i0 ; (4.16)and the vertex of fermion{heavy-boson interation being g = qjV0jmh.b.. Moreover, by thesame reason the heavy-boson oupation numbers may be put to zero, �0�+h.b. = 0, sinetypial exitation energies are muh less than the boson mass. The fat that this bosonis very heavy makes the fermion{fermion interation almost point-like. To be spei�, weassume that V0 < 0, i.e. attrative, whih an be mediated by a salar boson. In ase ofrepulsive interations, a vetor boson would be an appropriate hoie.Thus, from now on, we deal with a system of interating fermions and heavy bosons. Letus take the following approximation for the orresponding � funtional (we all it �h.b.)i�h.b. = 12 r r-� (4.17)in terms of full Green funtions of fermions (the bold solid lines) and bosons (the boldwavy line). In this approximation, the boson self-energy is given by (f. Eq. (2.7)) 8
�i12�h.b. = Æi�h.b.ÆiGh.b. = r r-� (4.18)8 Note that for neutral bosons, whih number is not onserved, the additional fator 1=2 appearsin Eq. (2.7), f. ref. [1℄. 24



and the heavy-boson Green funtion is de�ned by the standard Dyson's equationiGh.b. = = + r r-� : (4.19)We would like to ompare this model with the model desribed in subsetion 4.3.1. Elim-inating the arti�ial heavy boson one e�etively sums up all ring diagrams of the typei�ring = 12 r-� + 14 r r--�� + 16 r rr�� ^- ℄� + 18 r r- r-�� r-�-
� + :::(4.20)Note that �ring 6= �h.b., sine the summations of loops in Eq. (4.17) and Eq. (4.20) havedi�erent sense. In Eq. (4.19) we have the onventional diagrammati summation, while inEq. (4.20) the summation is logarithmi, i.e. with the fators 1=n, where n is the numberof verties in the diagram. However, this di�erene in summations is ompensated forby the heavy-boson ontribution to the generating funtional (2.3). The equivalene ofapproximations (4.20) and (4.17) an be atually seen, e.g., from the fat that they resultin the same approximation for the fermion self-energy i�f = Æ�ring=ÆGf = Æ�h.b.=ÆGf (f.Eq. (2.7)) after substituting Eq. (4.19) for the heavy-boson propagator. Here and below,the sub-label "f" denotes fermion quantities.In the heavy-boson piture we have to deal with two oupled transport equations|fornon-relativisti fermions and for heavy bosons|with the following ollision termsCf(X; p)= Z d4p1(2�)4 d4p2(2�)4g2(2�)4Æ4 (p� p1 � p2)� h eFf(X; p)Ff(X; p1)Fh.b.(x; p2)� Ff(X; p) eFf(X; p1) eFh.b.(x; p2)i ; (4.21)for fermions andCh.b.(X:p)= d Z d4p1(2�)4 d4p2(2�)4g2(2�)4Æ4 (p + p1 � p2)� h eFh.b.(X; p) eFf(X; p1)Ff(X; p2)� Fh.b.(X; p)Ff(X; p1) eFf(X; p2)i ; (4.22)for heavy bosons, where g2 = �V0m2h.b. > 0 is de�ned in terms of two-partile interationstrength V0 < 0 and the heavy boson mass mh.b..The ollision terms (4.21) and (4.22) are very simple in spite of the fat that they involvethe whole series of ring diagrams. The orresponding gain and loss terms are positive and25



ontain no memory e�ets, as they are hidden in the boson, while in the pure fermioni asealready the triangle diagram gives rise to memory e�ets. Indeed, there is no ontraditionhere. If one wants to eliminate the bosoni degree of freedom, one has to resolve thebosoni transport equation with respet to the bosoni generalized distribution funtionFh.b. for the entire past and substitute this into the fermioni ollision term. In this way,the resulting ollision term beomes highly ompliated and nonloal and thus ontainsmemory e�ets.Hene, we have demonstrated that sometimes it is useful to introdue new degrees offreedom in order to ahieve a reasonable ollision term. Of ourse, all the onsiderationsabove remain valid also for partile{partile interation mediated by a real boson ratherthan only by the arti�ially introdued one.4.4 Memory E�ets in Collision TermA general treatment of memory e�ets in the ollision term is a umbersome task. In thissubsetion we ontinue to onsider a system of non-relativisti fermions interating viathe ontat two-body potential and onentrate on the third diagram in Eq. (4.12), whihhas already been onsidered in a �-derivable sheme for the thermodynami potentialand entropy in refs. [49,50℄. This is the �rst ring diagram to ontribute to memory e�ets.The orresponding self-energy diagram reads
�i�(3)jk (x; y)= r rr� ^℄�--yk xj

zl - ; j; k 2 f+;�g: (4.23)Standard diagrammati rules in the matrix representation present �(3)ij in analyti formas �i�(3)jk (x; y) = Z dz � iV0�jj0�kk0iGj0k0(x; y)Lk0l(y; z)�ll0Ll0j0(z; x); (4.24)where we have introdued the loop funtionLjk(x; y) = r r-�yk xj= diV0iGjk(x; y)iGkj(y; x); (4.25)and �ij are given by Eq. (A.2). As above, the fator d results from the trae over spin. Inthe Wigner representation, Ljk takes the form26



Ljk(X; p0) = Z d4p00(2�)4 eLjk(X; p00 + p0; p00); (4.26)whereeLjk(X; p00 + p0; p00) = diV0iGjk(X; p00 + p0)iGkj(X; p00): (4.27)The loop funtions L possess notable propertiesL++ + L�� = L�+ + L+�; Ljk(x; y) = Lkj(y; x); Ljk(X; p) = Lkj(X;�p): (4.28)The former property follows from the general property (A.6) of the two-point funtionsand holds in both the oordinate and Wigner representations. Proeeding from Eq. (4.24)and with the help of relation (3.3), we an immediately evaluate the Wigner transform of�(3)ij (f. Eq. (3.1)) and perform its gradient expansion�(3)jk ' ��(3)jk �lo + ��(3)jk �mem ; (4.29)where�i ��(3)jk �lo (X; p) = Z d4p0(2�)4 iV0�jj0�kk0�ll0 iGj0k0(X; p0 + p)Lk0l(X; p0)Ll0j0(p0; X) (4.30)is the loal ontribution to �(3)ij , and�i ��(3)jk �mem (X; p)= i2 Z d4p0(2�)4 iV0�jj0�kk0�ll0 iGj0k0(X; p0 + p)� nLk0l(X; p0); Ll0j0(X; p0)op0;X (4.31)is the �rst-order gradient (memory) orretion, whih is of entral interest in this subse-tion. Here, the Poisson braket is taken with respet to the (p0; X) variables indiated inthe subsript.To evaluate the memory orretion for the ollision term (f. Eqs. (3.9) and (3.16)), weneed to onsider the following ombinations of self-energies with Green funtions��(3)+��mem (X; p)G�+(X; p) = i2 Z d4p0(2�)4 1d eL+�(X; p0 + p; p)�ll0 nL�l; Ll0+op0;X ; (4.32)
G+�(x; p) ��(3)�+�mem (X; p) = i2 Z d4p0(2�)4 1d eL�+(X; p0 + p; p)�ll0 nL+l; Ll0�op0;X : (4.33)27



With the symmetry relations�ll0 nL�l; Ll0+op0;X = �ll0 nL+l; Ll0�op0;X = nL+�; L�+op0;X (4.34)dedued from (4.28) one determines the �rst-order gradient orretion to the ollisionterm indued by graph (4.23) asC(3)mem(X; p) = h��(3)+��mem (X; p)G�+(X; p)�G+�(X; p) ��(3)�+�mem (X; p)i= i2 Z d4p0(2�)4 1d h eL+�(X; p0 + p; p)� eL�+(X; p0 + p; p)i nL+�; L�+op0;X : (4.35)The orresponding loal ollision term is given by Eq. (4.14).5 H{Theorem5.1 Time-Irreversibility of the Quantum Four-Phase-Spae Kineti DesriptionCompared to exat desription, whih is time-reversible, redued desription shemesin terms of relevant degrees of freedom have aess only to some limited informationand thus normally lead to irreversibility through the implied oarse graining. Variousredution shemes in partiular at the equal time operator level have been disussed anddeveloped over the years. In the Green's funtion formalism presented here, we have doneonly three kind of approximations. First, we assumed that the Wik theorem holds inour ase. This assumption implies that either the initial state is unorrelated or initialorrelations are quikly dying aording to Bogolyubov's ondition of weakening of initialorrelations [3,7,64℄. We further suggested to trunate the series of skeleton diagrams in the� funtional in order to arrive at tratable �-derivable approximations. This trunation,though not equivalent to the trunation in the Martin-Shwinger hierarhy 9 for multi-point Green's funtions [52,53℄, leads to a loss of higher-order orrelations beyond a ertainlevel. Finally, the gradient approximation brought us to spae time loal expression andgradient orretions implying a further loss of information, f. [44℄ and refs. therein. Allthese three steps lead to a sheme, whih generally is time-irreversible. Retaining diagramsup to two verties in � together with the gradient approximation leads to Markoviantransport equations, void of any memory e�ets whih are time irreversible. However inthe speial ase, when only one-point funtions are retained in �, whih orresponds to theself-onsistent Hatree approximation, transport proesses are dropped and this sheme isexpliitly time-reversible.9 The appropriate lassial limit leads to the Bogolyubov{Born{Green{Kirkwood{Yvon hainof equations. 28



At the operator level the nonequilibrium entropy an be straightforwardly formulated interms of von Neumann's entropy, whih is an entropy in the information theory sense [65℄S = �Tr b� ln b�: (5.1)It is given by the expetation value of the logarithm of the density operator b� itself. Theproblem of the Green funtion formalism is that it does not give a diret aess to thedensity operator itself but rather desribes the spae-time dependene of the expetationvalues of well de�ned operators, say D bA(t)E = Tr bA b�(t). To this extend, there is no imme-diate formulation of the entropy (5.1) in terms of Green funtions for the nonequilibriumase. The situation is di�erent at equilibrium, where with b� = exp(��( bH � � bN ))=Z awell de�ned density operator exists, whih leads to the well known Matsubara or real-timeformulation of the equilibrium entropy, f. set. 6 below. As known sine long time [50℄,even in equilibrium, the entropy expression is not priori given but rather depends on thehoie of � in a �-derivable sheme.In order to aess a nonequilibrium expression relevant for our quantum four-phase-spaetransport equation (3.26), we shall start from this transport equation and derive a owexpression s� with the property that its divergene grows in time, i.e.��s�(X) � 0; (5.2)and whih in the equilibrium limit merges the orresponding equilibrium form of theentropy ow. That is, we expliitly show the existene of an H-theorem for our quantumfour-phase-spae kineti desription and s�(X) is thus identi�ed with the kineti entropyow. Thereby, the validity onditions for the derivation of this kineti entropy ow oinidewith those of the kineti equations themselves.5.2 Markovian Entropy FlowWe start with general manipulations whih lead us to de�nition of the kineti entropyow. We multiply Eq. (3.27) by (�) ln( eF=A), Eq. (3.26) by � ln(F=A), take their sum,integrate it over d4p=(2�)4 and �nally sum the result over internal degrees of freedom likespin (Tr). Using the identity for the Poisson braketsfB;Afg ln f � fB;A(1� f)g ln(1� f) = fB;Af ln f � A(1� f) ln(1� f)g (5.3)for any funtions A;B and positive f and 1� f , one then arrives at the following relation��s�lo(X) = TrXa Z d4p(2�)4 ln eFaFaCa(X; p); (5.4)29



where the quantitys�lo =Xa s�lo;a = TrXa Z d4p(2�)4 " v� � �Re�Ra�p� ! � eFa ln eFaAa � Fa ln FaAa!� ReGRa  � ln eFaAa ��p�  �a eFaAa!� ln FaAa ��p� ��a FaAa�!# (5.5)obtained from the l.h.s. of the kineti equation is interpreted as the loal (Markovian)part of the entropy ow. Here we have restored the summation over "a" denoting thedi�erent partile speies and intrinsi quantum numbers for a multi-omponent system.It illustrates that, although this entropy expression aounts for interations among allpartiles, it an be expressed as a sum of the individual ontributions, eah of whih issolely determined by the partile self-energy Re�Ra and its width �a. Gradient orretionsto the ollision term (i.e. Cmem) give rise to extra memory ontributions to the entropyow.Partial integrations in Eq. (5.5) lead us to a more transparent expression for the entropyow in terms of four-phase-spae distribution funtions fa(X; p) (f. Eq.(3.7))s�lo = TrXa Z d4p(2�)4A�sa(X; p) � �fa(X; p)� ; �(f) = �(1� f) ln(1� f)� f ln f; (5.6)whereA�sa(X; p) = Aa�a2 B�a ; (5.7)the zero omponent of whih A0sa has the meaning of an entropy-ow spetral funtion,while the zero omponent ofB�a = Aa " v� � �Re�R�p� !�Ma��1a ��a�p� # ; (5.8)is the ow spetral funtion, f. the orresponding drift term (proportional to ��f in Eq.(3.28)). These entropy-ow and ow spetral funtions oinide with the orrespondingtwo funtions introdued in refs. [66,67℄ for the ase of equilibrium systems. Moreover,they satisfy the sum rules1Z�1 dp02� A0sa = 1Z�1 dp02� B0a = 1Z�1 dp02� Aa = 1; (5.9)whih an diretly be obtained from the sum rule (3.23) for the spetral funtion A.For the ase of a resonane, like the � or �-meson resonanes in hadron physis, the B030



funtion relates to the energy variations of sattering phase shift of the sattering hanneloupling to the resonane in the virial limit, for details see e.g. refs. [66,67,1℄.In the non-interating limit, the entropy (the zero omponent of s�lo) diretly transformsinto the proper ideal gas expression, f. ref. [68℄. In the quasipartile approximation, the�in and �out terms have an additional smallness, whih allows to neglet these terms.Thus, expression (5.5) for the entropy ow takes the form(s�lo)qp = 0B� s0s 1CA = TrXa Z d3p(2�)3 0BB� 1�"a�p 1CCA�� (1� fqpa ) ln (1� fqpa )� fqpa ln fqpa �(5.10)in the quasipartile limit, whih follows from the substitution of Eqs. (3.32) into Eq. (5.5).From (5.6) Eq. (5.10) is also easily reovered, sine A2�=2 transforms to the orrespondingÆ-funtion in the limit �! 0.To prove expliitly the H-theorem we have to show that the r.h.s. of Eq. (5.4) is non-negative. To this end, we should onsider the onvolution of the ollision term withln( eF=F ). First, we do this for ollision terms in loal approximation. For the speialase of the Hatree approximation (�-diagrams with only one vertex) the ollsion termvanishes and the orresponding entropy is exatly onserved.5.3 Loal Collision Term and H-TheoremUsing the multi-partile proess deomposition (4.8) we arrive at the relationTr Z d4p(2�)4 ln eFF Clo(X; p) = Tr Xm;m0 12 Z d4p1(2�)4 � � � d4pm(2�)4 d4p01(2�)4 � � � d4p0m0(2�)4� nF1 � � �Fm eF 01 � � � eF 0m0 � eF1 � � � eFmF 01 � � �F 0m0o ln F1 � � �Fm eF 01 � � � eF 0m0eF1 � � � eFmF 01 � � �F 0m0�Rm;m0 (2�)4Æ40� mXi=1 pi � m0Xi=1 p0i1A : (5.11)Here we assumed di�erent avors and intrinsi quantum numbers to be absorbed in themomenta p1 and p0i. In the ase when all rates Rm;m0 are non-negative, i.e. Rm;m0 � 0, thisexpression is non-negative, sine (x�y) ln(x=y) � 0 for any positive x and y. In partiular,Rm;m0 � 0 takes plae for all �-funtionals up to two verties. Then the divergene of s�lois non-negative whih proves the H-theorem in this ase with (5.5) as the nonequilibriumentropy ow. 31



5.4 Expliit examples for the H-TheoremWe expliitly disuss the two examples introdued already in set. 4.3 with Markovianollision terms, i.e. with the � funtional onsisting of one- and two-point diagrams only.In the pure fermioni ase with ollision term (4.9), one an state an exat H-theoremTr Z d4p(2�)4 ln eFF C(2) = d3 Z d4p(2�)4 d4p1(2�)4 d4p2(2�)4 d4p3(2�)4 ��� q��wR ���2�(2�)4Æ4 (p+ p1 � p2 � p3) ln eF eF1F2F3FF1 eF2 eF3 � eF eF1F2F3 � FF1 eF2 eF3� � 0: (5.12)Furthermore, it is instrutive to onsider the � approximation (4.17), where a heavy salarboson has been introdued in order to sum up the series of ring diagrams of Eq. (4.20), f.subset. 4.3.2. In this ase, there are two oupled kineti equations with ollision terms(4.21) for fermions and (4.22) for heavy bosons, leading to��s�lo = ��s�f + ��s�h.b. = Z d4p(2�)4  d ln eFfFfCf + 12 ln eFh.b.Fh.b.Ch.b.! ; (5.13)where s�lo is given by the sum of the proper fermion (s�f ) and heavy-boson (s�h.b.) ontri-butions. The thermodynami entropy for this system, i.e. for � given by diagram (4.17),has reently been obtained in ref. [6℄. Here we present the orresponding nonequilibriumentropy ow together with an aÆrmation of the H-theorem also for this ase. The ollisionterm, indeed, beomes��s�lo= d Z d4p1(2�)4 d4p2(2�)4 d4pb(2�)4g2(2�)4Æ4 (p1 � p2 � pb)� ln eF1F2Fh.b.Ff1 eFf2 eFh.b. � eFf1Ff2Fh.b. � Ff1 eFf2 eFh.b.� � 0; (5.14)whih is non-negative.Our representation of the entropy of a system interating via two-body potential (i.e. as asum of a purely fermioni part and that of the arti�ially introdued heavy boson) is alsovery similar to that derived by Riedel [49℄ within the ring-diagram model of �-derivablethermodynamis. In both ases, the bosoni part of the entropy s�h.b. takes aount of thefermion{fermion interation alulated within the ring-diagram approximation (4.20). Inthermodynamis, this interation part of the entropy gives rise to the famous orretionto the spei� heat of liquid 3He [49{51℄: � T 3 lnT , where T is the temperature. As hasbeen found by Carneiro and Pethik [50℄, this orretion to the spei� heat emergesalready solely from the third diagram of the whole ring series (4.20). To demonstratethe same within our kineti approah, we should onsider the �-derivable model (4.12)32



involving only the �rst three ring diagrams. Moreover, sine the loal entropy expression(f. Eq. (5.5)) derived above does not ontain suh kind of orretions, one has to expliitlyonsider memory e�ets in the ollision term (4.35).5.5 Memory E�ets in Entropy Flow and H-TheoremWe assume that the fermion{fermion potential interation is suh that the orrespondingtransition rate (4.15) is always non-negative, so that the H-theorem takes plae in theloal approximation, i.e. when we keep only C(2) + C(3)lo . Our aim now is to derive theentropy, whih takes into aount memory e�ets in the ollision term (C(3)mem).Proeeding similarly to that in subset. 5.2, we multiply Eq. (3.27) by � ln( eF=A), Eq.(3.26) by � ln(F=A), sum and integrate it over d4p=(2�)4. Thus, we arrive at the equation��s�lo(X) = Tr Z d4p(2�)4 ln eFF (C(2) + C(3)lo ) + Tr Z d4p(2�)4 ln eFF C(3)mem; (5.15)where s�lo is still the Markovian entropy ow de�ned by Eq. (5.5). Our aim here is topresent the last term on the r.h.s. of Eq. (5.15) in the form of full x-derivativeTr Z d4p(2�)4 ln eFF C(3)mem = ���s�mem(X) + Æmem(X) (5.16)of some funtion s�mem(X), whih we then interpret as a non-Markovian orretion to theentropy ow of Eq. (5.5), plus a orretion (Æmem) whih is small in some sense. Indeed,this term on the r.h.s. of Eq. (5.16) is linear in X- and p-derivatives. Hene, it annot betransformed into sign-de�nite form. The only possibility whih is left is to onstrut a fullderivative out of it. If we sueed to �nd a proper s�mem(X), then relying on smallness ofÆmem we obtain �� (s�lo + s�mem) ' Tr Z d4p(2�)4 ln eFF (C(2) + C(3)lo ) � 0; (5.17)whih is the H-theorem for the non-Markovian kineti equation under onsideration withs�lo + s�mem as the proper entropy ow. The r.h.s. of Eq. (5.17) is non-negative due to ourassumption that the orresponding transition rate (4.15) is always non-negative.Hene, onsidering the last term on the r.h.s. of Eq. (5.15) we substitute expression (4.35)for C(3)mem, shift the integration variable p! p� p0=2 and arrive atTr Z d4p(2�)4 ln eFF C(3)mem= i2 Z d4p(2�)4 d4p0(2�)4 "eL+�(X; p+ p02 ; p� p02 )� eL�+(X; p+ p02 ; p� p02 )#33



� nL+�(X; p0); L�+(X; p0)op0;X ln eF (X; p� p0=2)F (X; p� p0=2) : (5.18)By taking the average of Eq. (5.18) with that with p0 and �p0 interhanged we arrive atthe symmetri form of this equationTr Z d4p(2�)4 ln eFF C(3)mem= i4 Z d4p(2�)4 d4p0(2�)4 "eL�+(X; p+ p02 ; p� p02 )� eL+�(X; p+ p02 ; p� p02 )#�fL�+(X; p0); L+�(X; p0)gp0;X ln eL+�(X; p+ p0=2; p� p0=2)eL�+(X; p+ p0=2; p� p0=2) ; (5.19)whih after simple algebrai transformations an be deomposed into two termsTr Z d4p(2�)4 ln eFF C(3)mem = mem + Æmem; (5.20)withmem(X)= i2 Z d4p(2�)4 d4p0(2�)4 (L�+(X; p0); L+�(X; p0)eL�+  X; p+ p02 ; p� p02 !� "ln eL+�(X; p+ p0=2; p� p0=2)eL�+(X; p+ p0=2; p� p0=2) � 1#)p0;X ; (5.21)
Æmem(X)= i2 Z d4p(2�)4 d4p0(2�)4 "nL�+(X; p0); L+�(X; p0)op0;X eL�+  X; p+ p02 ; p� p02 !� (L�+(X; p0); eL�+  X; p+ p02 ; p� p02 ! ln eL+�(X; p+ p0=2; p� p0=2)eL�+(X; p+ p0=2; p� p0=2))p0;X� L+�(X; p0)# : (5.22)Using partial integration, we have subdivided the quantities in Eq. (5.20) in suh a waythat the �rst term mem takes the form of the full divergene, and thus de�nes the non-Markovian ontribution to the entropy ow (f. Eq. (5.16))s�mem(X)=� i2 Z d4p(2�)4 d4p0(2�)4 eL�+  X; p+ p02 ; p� p02 !L+�(X; p0)� "ln eL+�(X; p+ p0=2; p� p0=2)eL�+(X; p+ p0=2; p� p0=2) � 1# �L�+(X; p0)�p0� : (5.23)34



This mem-term remains non-zero even in loal thermal equilibrium, whih is de�ned by theformer equilibrium relations (B.1){(B.4) but with temperature T (X), 4-veloity U�(X)and hemial potential �(X) depending on the oordinate X. On the other hand, as weshow below, the seond term Æmem vanishes in the limit of loal thermal equilibrium.In loal thermal equilibrium the Kubo-Martin-Shwinger ondition (B.1) provides thefollowing relations eL+�(X; p+ p0=2; p� p0=2)eL�+(X; p+ p0=2; p� p0=2)!lo.Eq. =  L+�(X; p0)L�+(X; p0)!lo.Eq. = exp p0�U�(X)T (X) ! ; (5.24)whih an also be derived from (B.2){(B.5) proeeding from de�nitions of Lij (4.26) andeLij (4.27). Guided by (5.24) we write the eLij ratio in the ln-term of (5.22) aseL+�(X; p+ p0=2; p� p0=2)eL�+(X; p+ p0=2; p� p0=2) = L+�(X; p0)L�+(X; p0) (1 + �); (5.25)where � is expeted to be small within the validity range of the quantum four-phase-spaekineti equation (3.26), i.e. j�j � jf�j. Substituting this into expression (5.22) for Æmem,the ln(L�+=L�+)-term in the seond Poisson braket anels against the �rst term, sinethe p-integration onverts the linear eLij fator into Lij. Thus one obtainsÆmem=� i2 Z d4p(2�)4 d4p0(2�)4 nL�+; eL�+ ln(1 + �)op0;X L+�' i2 Z d4p(2�)4 d4p0(2�)4 �L�+; eL�+ 12�2�p0;X L+�; (5.26)where also the term linear in � exatly anels out, sine� i2 Z d4p(2�)4 d4p0(2�)4 nL�+; eL�+�op0;X L+�=� i2 Z d4p(2�)4 d4p0(2�)4 (L�+; L�+L+� eL+� � eL�+!)p0;X L+� = 0: (5.27)As above, the eLij an be readily integrated over p to produe Lij, revealing a anelation ofthe terms in the Poisson braket in (5.27). Thus, Æmem is not only zero in loal equilibrium(� = 0). It is of the seond-order in the small parameter j�j � jf � j times gradients andtherefore negligible ompared to mem in (5.21) whih is of linear order in j�j � jf � jtimes gradients. Thus within the validity of the quantum four-phase-spae kineti equation(3.26) s�mem(X) as given in (5.23) represents the appropriate non-Markovian memory35



orretion to the entropy ow. In loal equilibrium this term an be further simpli�ed to(s�mem)eq = i2 Z d4p0(2�)4L�+(X; p0)L+�(X; p0) "lnL+�(X; p0)L�+(X; p0) � 1# �L�+(X; p0)�p0� (5.28)by means of relation (5.24).6 Thermodynami Limit of Entropy6.1 Thermodynami EntropyIn the Matsubara tehnique the thermodynami potential 
 (see, e.g., ref. [35℄) is a fun-tional of Matsubara Green funtions G(i"n;p). Its important property is that in the formanalogous to (2.3) it is stationary under variations of G(i"n;p) at �xed free MatsubaraGreen funtion G0(i"n;p)  Æ
ÆG(i"n;p)!G0 = 0: (6.1)Sine G(i"n;p) has the spetral representationG(i"n;p) = 1Z�1 d"02� A("0;p)i"n � "0 ; (6.2)property (6.1) implies that 
 is stationary under variations of the spetral density A(";p)keeping the Matsubara frequenies "n and, thus, the free Matsubara Green funtionG0(i"n;p) unaltered.In the standard way, f. (B.8){(B.10), the Matsubara sum over "n is onverted into anenergy integral over the distribution funtions n(" � �), f. (B.4). The thermodynamipotential expressed in terms of the real-time Green funtions and self-energies (f. Eqs.(B.2) and (B.3)) then beomes [50,1℄
 = Tr Z d3x d4p(2�)4n("� �) h�2Im ln ��GR�� ReGR�� ARe�Ri + �T (6.3)where " = p0 in the rest frame of the equilibrated system and �T is represented by thesame set of losed diagrams as �. Due to the stationarity property of 
, only the expliit36



T -dependenes of the Matsubara frequenies or in the oupations n("��) in the integralformulation (6.3) are to be taken into aount in alulating the entropy fromS = � (�
=�T )� =V; (6.4)where V is the volume of the system. Thus one �ndsS = �Tr Z d4p(2�)4 �n("� �)�T h�2Im ln ��GR�� ReGR�� ARe�Ri� ��T�T (6.5)for the entropy density. With the help of the identity (B.6) we replae �n("� �)=�T inEq. (6.5) and then perform partial integration over p0 and obtainS=Slo + Smem; where (6.6)Slo=�Tr Z d4p(2�)4 � �n("� �)� ��p0 h�2Im ln(�GR)� ReGR�i ; (6.7)Smem=����T + Tr Z d4p(2�)4 � �n("� �)� � �ARe�R��p0 ; (6.8)�(n)=�(1� n) ln(1� n)� n lnn: (6.9)We have used subsripts \loal" and \memory" to denote these two di�erent ontributions,beause below we demonstrate that they are indeed assoiated with the loal (Markovian)s0lo, f. Eq. (5.5), and the memory (non-Markovian) s0mem, f. Eq. (5.23), parts of thekineti entropy. Taking derivatives in Eq. (6.7), we readily getSlo = Tr Z d4p(2�)4 � �n("� �)�A0s(p) (6.10)with A0s de�ned in Eq. (5.7). Thus, Slo, indeed, oinides with 0-omponent of the kinetientropy ow (5.6).In order to larify the meaning of the values Slo and Smem we �rst inspet the quasipartilelimit, in whih the spetral funtion redues to a delta-funtion. In this limit, the value(6.10) for Slo is given bySqplo = Tr Z d3p(2�)3 � �n �"(p)� ��� ; (6.11)where the quasipartile energy "(p) is determined by solution of the dispersion equation(3.33). The full Sqplo is just the sum of single-partile ontributions, as if one deals with anon-interating ideal gas of quasipartiles. This is the standard piture in the quasipartileapproximation. Corretions to Sqplo, resulting from Slo, are of higher order in the width37



�. At the same time, Smem provides orretions to Sqplo even at the zero-order level in �,whih are assoiated with real resatterings of on-mass-shell quasipartiles. This fat wasdemonstrated by Carneiro and Pethik in ref. [50℄. For Fermi liquids, they showed thatthe �rst � diagram ontributing to Smem is the triangle �(3) of (4.12). Contributions from�(1) and �(2) are zero. In the quasipartile approximation, the ontribution from �(3) is(f. Eqs. (45) and (72) of ref. [50℄)Sqpmem = 112 Z d4p(2�)4 ��qpb (p)�3 �nb(p0)�T ; (6.12)where nb is the thermal oupation (B.4) number of the arti�ial boson. The width �b =�2ImLR of the bosoni loop (4.25) is given by�b(p) = V0d Z d4p0(2�)4 �nf �"0 � 12p0�nf �"0 + 12p0��Af �p0 � 12p�Af �p0 + 12p� (6.13)with "0 = p00 � � and the nf are the thermal fermion oupations (B.4). As above, V0stands for the strength of the two-body potential. To get the quasipartile approximationto this width (�qpb ), one should replae the exat spetral funtion Af in (6.13) by itsquasipartile approximation Aqpf . Note that now Sqpmem is expressed in terms of bosoniquantities nb and �b, although initially we have started with a purely fermioni systemwith two-body interation. This fat provides the link to the thermodynami alulationof Riedel [49℄, where the orretion to the standard quasipartile entropy of Fermi liquidsis presented in the form of an e�etive boson ontribution re-summing the entire seriesof ring diagrams rather than onsidering only the �rst three of them as in Eq. (4.12).At low temperatures, Sqpmem � T 3 lnT [50℄ gives the leading orretion to the standardquasipartile entropy. This is the famous orretion to the spei� heat of liquid 3He[51,49,50℄. Sine this orretion is quite omparable (numerially) to the leading termin the spei� heat (� T ), one may laim that liquid 3He is a liquid with quite strongmemory e�ets from the point of view of kinetis.Note that using the thermodynami relation E + PV � �N = TSV for homogenoussystems a di�erent but even simpler form of the thermodynami entropy inluding memoryorretions follows from Eq. (3.40)TS = Tr Z d4p(2�)4A(p) n(p0 � �)�p0 + 23�0(p)� �� (6.14)with the free single-partile energy �0(p) = p2=(2m) in non-relativisti kinematis.38



6.2 Non-Markovian Entropy in EquilibriumWe now evaluate the memory orretion (s�mem)eq to the kineti entropy ow (see Eq.(5.28)) in thermal equilibrium. Proeeding from the de�nition of Lij (4.26), as well asfrom equilibrium relations (B.2){(B.4), and identity (B.5), we present Lij in the formL�+(p) = inb(!)�b(p); L+�(p) = i [1 + nb(!)℄ �b(p); (6.15)where ! = p�U� , �b is de�ned by Eq. (6.13), and nb is the bosoni oupation number.Now, (s�mem)eq of Eq. (5.28) takes the form(s�mem)eq=�12 Z d4p(2�)4nb(!) [1 + nb(!)℄ �2b(p)�!T � 1� ��p� [nb(!)�b(p)℄ (6.16)=�12 Z d4p(2�)4nb (1 + nb)�!T � 1� �3b�nb�p� + 13 ��3b�p� nb!= 16U� Z d4p(2�)4�3b �n2b (1 + nb) !T 2 � : (6.17)The last line is obtained through partial integration, expliitly taking the derivatives ofthe bosoni oupations and using the equilibrium property dnb=d! = �nb(1 + nb)=T .Now, we hange the integration variable p! �p in the last line of Eq. (6.17) and use theparity properties valid for bosoni loops, phonons or relativisti bosons�b(�!) = ��b(!); nb(�!) = � [1 + nb(!)℄ ; (6.18)and arrive at(s�mem)eq=�16U� Z d4p(2�)4�3b �nb (1 + nb)2 !T 2 � : (6.19)Taking the average of the r.h.s. in (6.19) and the last line of Eq. (6.17) and using theidentity (B.7) we �nally arrive at(s�mem)eq= 112U� Z d4p(2�)4�3b�nb�T : (6.20)The 0-omponent of (6.20) preisely oinides with the thermodynami quantity Sqpmemgiven by Eq. (6.12) in the quasipartile approximation, provided we onsider it in the restframe of the matter, i.e. at U� = f1; 0g . This fat again justi�es the label \memory" forthe thermodynami quantity Smem. 39



Thus, we have demonstrated that our kineti entropy, inluding memory ontributions,oinides with the thermodynami entropy in thermal equilibrium.7 Conlusion and ProspetsWe suggested to follow Baym's �-derivable priniple to onstrut onsistent transporttheories whih also apply to unstable partiles. The �-derivable sheme has a ouple ofimportant oneptual advantages [33℄. First, it leads to losed, i.e. self-onsistent equationswhih an be losed at any order or loop level of the diagrams of �, this way de�ning ane�etive theory. We showed in ref. [1℄ that the original properties of � are also valid forgenuine nonequilibrium systems desribed within the real-time formalism, namely thatthe so onstruted approximation is onserving and at the same time thermodynamiallyonsistent. The �-derivable energy momentum tensor has expliitly been onstruted forthe ontour Dyson equation. As further shown in ref. [1℄ the sheme an be easily extendedto inlude relativisti kinematis and dynamial lassial boson �elds, suh as mean �eldsor ondensates. The latter permit to inlude soft modes in terms of suh lassial �elds,muh in the spirit of the kineti piture [69,70,13℄ of hard thermal loop approximations[71℄.In this paper we showed that the onserving properties of a �-derivable sheme also holdfor the quantum four-phase-spae kineti equations, if all phase-spae distribution fun-tions vary slowly aross the spae-time region. The usual restrition to small mass widths(mass-shell ondition) for the partiles involved was avoided. We demonstrated that themass-shell equation is exatly equivalent to the quantum four-phase-spae kineti equa-tion in the BM-hoie while deviates from that of the KB-hoie in seond-order gradientterms. Besides the usual drift and ollision terms, present in any transport equation, likein Landau's Fermi liquid theory [56,35,51℄, a genuine width and a utuation-dependentterm appear in the quantum four-phase-spae kineti equation. The latter term, normallydropped within the quasipartile approximation, gives rise to a bak-ow ontribution inthe urrents and produes width and utuation dependent ontributions to the energymomentum. This term is indeed essential in order to preserve the onservation laws in thease of broad damping widths. Along with the kineti equation a loal retarded equationhas to be solved whih provides the dynamial information about the spetral funtionsof the partiles.The struture of the ollision term was studied by means representing the � funtional interms of \�+" and \+�" Green funtions whih represent Wigner phase-spae densities[13℄. The advantage of the \�+" and \+�" representation is that it leads to a naturaldeomposition of the ollision term into multi-partile proesses with Feynman transitionamplitudes whih determine the partial rates. Furthermore, it has been disussed thatsometimes it appears advantageous to aount for suh memory e�ets by inluding new\arti�ial" partiles (e.g. bosonization of partile-hole exitations) whih then lead toloal ollision terms. 40



We also addressed the question whether a losed nonequilibrium system approahes thethermodynami equilibrium during its evolution. Investigating the struture of the olli-sion term in the �-derivable sheme we obtained de�nite expressions for a loal (Marko-vian) entropy ow and were able to expliitly demonstrate the H-theorem for some of theommon hoies of � approximations. The expression for the loal entropy ow holds be-yond the quasipartile piture, and thus generalizes the well-known Boltzmann expressionfor the kineti entropy. To demonstrate memory e�ets in the quantum four-phase-spaekinetis, we onsidered a partiular ase of a system of fermions interating via two-bodyzero-range potential. We alulated the memory (non-Markovian) ontribution to the ki-neti entropy, whih merges the equilibrium limit with its famous orretion to the spei�heat of liquid 3He [49{51℄: � T 3 lnT .Mass-width e�ets are important for desription of various physial systems. As for imme-diate appliations of the developed formalism, we see the desription of wide resonanes(suh as �-meson, �-resonane, et.) in nonequilibrium hadron matter produed in heavy-ion ollisions. Sine the widths of these resonanes are of the order (or even larger) thanthe mean exitation energy per partile, a self-onsistent treatment of suh widths ef-fets is required. Up to now, width e�ets were onsidered either within some simpli�eddynamis with phenomenologial Landau{Migdal residual interation [11,12℄ or within asimple �-derivable approximation at thermal equilibrium and in the dilute gas limit [66℄.In partiular, it was demonstrated in ref. [13℄, that the soft-photon prodution is sensi-tive to dynamial and width e�ets. The interplay between the width and the in-mediumpopulation of �-mesoni states may also simulate a shift of the �-meson mass in the nu-lear medium, and thus may a�et the prodution of di-leptons in relativisti heavy-ionollisions. It is of interest to study these e�ets within a dynamial approah, suh as thesheme presented here.Further appliations onern relativisti plasmas, like QCD and QED plasmas. The plasmaof deon�ned quarks and gluons was present in the early Universe, it may exist in oresof massive neutron stars, and may also be produed in laboratory in ultra-relativistinuleus{nuleus ollisions. All these systems need a proper treatment of partile transport.Perturbative desriptions of soft-quanta propagation su�ers from infrared divergenes andone needs a systemati study of the mass-width e�ets in order to treat them, f. ref.[13℄. A thermodynami �-derivable approximation for hot relativisti QED plasmas|agas of eletrons and positrons in a thermal bath of photons|was reently onsidered byVanderheyden and Baym [6℄. Their treatment may also be applied to the high-temperaturesuper-ondutors and the frational quantum Hall e�et [72,73℄. Our approah allows fora natural generalization of suh a �-derivable shemes to the dynamial ase.Another appliation, as we see it, onerns the desription of the neutrino transport insupernovas and hot neutron stars during �rst few minutes of their evolution. At an initialstage, neutrinos typially of thermal energy, produed outside (in the mantel) and insidethe neutron-star ore, are trapped within the regions of prodution. However, oherente�ets in neutrino prodution and their resattering on nuleons [13℄ redue the opaityof the nulear-medium and may allow for soft neutrinos to esape the ore and ontribute41



to the heating of the mantle. The extra energy transport may be suÆient to blow o�the supernova's mantle in the framework of the shok-reheating mehanism [74℄. Thedesription of the neutrinos transport in the semi-transparent region should therefore betreated with the due aount of mass-widths e�ets.AknowledgmentsWe are grateful to G. Baym, G.E. Brown, P. Danielewiz, H. Feldmeier, B. Friman, H.van Hees, and E.E. Kolomeitsev, for fruitful disussions and suggestions. We further a-knoledge stimulating disussions with C. Greiner, S. Leupold, P. Lipavsky, D. Kremp andP.C. Martin during the revision stage of this paper. Two of us (Y.B.I. and D.N.V.) highlyappreiate the hospitality and support rendered to us at Gesellshaft f�ur Shwerionen-forshung and thank the Niels Bohr Institute for hospitality and partial support duringthe ompletion of this work. This work has been supported in part by BMBF under theprogram on sienti�-tehnologial ollaboration (WTZ projet RUS-656-96).APPENDICESA Matrix NotationIn alulations that apply the Wigner transformations, it is neessary to deompose thefull ontour into its two branhes|the time-ordered and anti-time-ordered branhes. Onethen has to distinguish between the physial spae-time oordinates x; : : : and the or-responding ontour oordinates xC whih for a given x take two values x� = (x�� ) andx+ = (x+� ) (� 2 f0; 1; 2; 3g) on the two branhes of the ontour (see �gure 1). Closedreal-time ontour integrations an then be deomposed asZC dxC : : : = 1Zt0 dx� : : :+ t0Z1 dx+ : : : = 1Zt0 dx� : : :� 1Zt0 dx+ : : : ; (A.1)where only the time limits are expliitly given. The extra minus sign of the anti-time-ordered branh an onveniently be formulated by a f�+g \metri" with the metritensor in f�+g indies��ij�= ��ij� = 0B� 1 00 �11CA (A.2)42



whih provides a proper matrix algebra for multi-point funtions on the ontour with \o"-and \ontra"-ontour values. Thus, for any two-point funtion F , the ontour values arede�ned asF ij(x; y) :=F (xi; yj); i; j 2 f�;+g; withF ji (x; y) :=�ikF kj(x; y); F ij(x; y) := F ik(x; y)�kiFij(x; y) :=�ik�jlF kl(x; y); �ki = Æik (A.3)on the di�erent branhes of the ontour. Here summation over repeated indies is implied.Then ontour folding of ontour two-point funtions, e.g. in Dyson equations, simplybeomesH(xi; yk) = H ik(x; y) = ZC dzCF (xi; zC)G(zC; yk) = Z dzF ij(x; z)Gjk(z; y) (A.4)in the matrix notation.For any multi-point funtion the external point xmax, whih has the largest physial time,an be plaed on either branh of the ontour without hanging the value, sine theontour-time evolution from x�max to x+max provides unity. Therefore, one-point funtionshave the same value on both sides on the ontour.Due to the hange of operator ordering, genuine multi-point funtions are, in general,disontinuous, when two ontour oordinates beome idential. In partiular, two-pointfuntions like iF (x; y) = DTC bA(x) bB (y)E beome
iF (x; y)=0BB� iF��(x; y) iF�+(x; y)iF+�(x; y) iF++(x; y)1CCA = 0BBB�DT bA(x) bB (y)E � D bB (y) bA(x)ED bA(x) bB (y)E DT �1 bA(x) bB (y)E1CCCA ; (A.5)where T and T �1 are the usual time and anti-time ordering operators. Sine there arealtogether only two possible orderings of the two operators, in fat given by the Wightmanfuntions F�+ and F+�, whih are both ontinuous, not all four omponents of F areindependent. Eq. (A.5) implies the following relations between nonequilibrium and usualretarded and advaned funtionsFR(x; y) = F��(x; y)� F�+(x; y) = F+�(x; y)� F++(x; y):=�(x0 � y0) �F+�(x; y)� F�+(x; y)� ;FA(x; y) = F��(x; y)� F+�(x; y) = F�+(x; y)� F++(x; y):=��(y0 � x0) �F+�(x; y)� F�+(x; y)� ; (A.6)43



where �(x0 � y0) is the step funtion of the time di�erene. The rules for the o-ontourfuntions F�� et. follow from Eq. (A.3).For suh two point funtions omplex onjugation implies�iF�+(x; y)��= iF�+(y; x) ) iF�+(X; p) = real;�iF+�(x; y)��= iF+�(y; x) ) iF+�(X; p) = real;�iF��(x; y)��= iF++(y; x) ) �iF��(X; p)�� = iF++(X; p);�FR(x; y)��=FA(y; x) ) �FR(X; p)�� = FA(X; p); (A.7)where the right parts speify the orresponding properties in the Wigner representation.Diagrammatially these rules imply the simultaneous swapping of all + verties into �verties and vie versa together with reversing the line arrow-sense of all propagator linesin the diagram.In omponents the determination of the self-energy from the funtional variation of � (f.Eq. (2.7)) reads�i�ik(x; y) = � Æi�ÆiGki(y; x) ) �i�ik(X; p) = � Æi�ÆiGki(X; p) ; i; k 2 f�+g (A.8)the right expression given in the Wigner representation. Note that the variation over af+�g-\ontra-variant" Green funtion Gki produes a f+�g-\ovariant" self-energy �ik,f. (A.3). This ours due to the same reason disussed above, f. Eq. (A.1), when dealingwith f+�g matrix notation with integrations over physial times, rather than ontourtimes. The extra minus signs ourring for the anti-time ordered branhes are preiselytaken into aount by the \ovariant" notation (A.3). Futional variation, e.g. in Eqs.(A.8), di�er for funtions in oordinate and momentum spaeÆf(x0)Æf(x) = Æ4(x� x0); Æf(p0)Æf(p) = (2�)4Æ4(p� p0); (A.9)beause of di�erent integration measures d4x and d4p=(2�)4, respetively.B Equilibrium RelationsFor ompleteness of the thermodynami onsideration, we expliitly present here equilib-rium relations between quantities on the real-time ontour. Basially, they follow fromthe Kubo{Martin{Shwinger ondition [75℄44



G�+(p) = �G+�(p)e�("��)=T ; ��+(p) = ��+�(p)e�("��)=T ; (B.1)where " = p�U� , while U� and � are a global 4-veloity of the system and a hemi-al potential related to a onserved harge, respetively. All the Green funtions an beexpressed through the retarded and advaned Green funtionsGik(p) = 0BB�GR(p)� inA(p) �inA(p)�i [1� n℄A(p) �GA(p)� inA(p)1CCA ; (B.2)i; k mean + or �, and the self-energies take a similar form�ik(p) = 0BB��R(p)� in�(p) �in�(p)i [1� n℄ �(p) ��A(p)� in�(p)1CCA : (B.3)Here n = n("� �) = [exp(("� �)=T )� 1℄�1 (B.4)are thermal Fermi/Bose{Einstein oupations. They obey some useful relations betweenfermion nf and boson nb oupation numbers, likenf;b(�+ !=2) [1� nf;b(�� !=2)℄ = [nf;b(�� !=2)� nf;b(�+ !=2)℄nb(!); (B.5)or derivatives with respet to T�n("� �)�T =��� �n("� �)��" ; �(n) = �[1� n℄ ln[1� n℄� n lnn; (B.6)�n("� �)�T = "� �T 2 n (1� n) : (B.7)The link between the Matsubara tehnique and the real-time formulation used here anbe provided by extending the real time ontour by an imaginary tail going to �i�, � =1=T , this way de�ning the equilibrium density operator exp[��( bH � � bN )℄. Thus, thelink is provided by onsidering analyti expressions like the \ontour trae" of two-pointfuntions iFeq(x; y) = DTC bA(x) bB (y)EZCfeqg Feq(t; t+ 0)dt= �i�Z0 F�+eq (t; t)dt = �i� 1Z�1 d"2� n("� �) �FAeq(")� FReq(")�45



= 1Xm=�1 1Z�1 d"2� F Seq(")i"m + �AB � " = 1Xm=�1FMatsubara(i"m): (B.8)Here the ontour time t + 0 is plaed in�nitesimally behind t on the ontour in order tospeify a �xed operator ordering of the two external operators of F , �AB is the hemialpotential assoiated to D bA(x) bB (y)E, and �AB = ��BA. The step towards the disreteMatsubara sum is provided by standard residue tehnique, f. ref. [76℄, �g. 25.4 �. Thesum runs over the Matsubara energies"m = 8><>: (2m+ 1)�T for fermions2m�T for bosons. (B.9)Thereby, the Matsubara form of the two-point funtion Feq has the spetral representationFMatsubara(z) = 1Z�1 d"2� F Seq(")z + �AB � " = 8>><>>:FReq(z + �AB) for Im z > 0FAeq(z + �AB) for Im z < 0 (B.10)in terms of the real time ontour spetral funtion F Seq = �2ImFReq.C Diagram rulesFor relativisti theories with loal verties the diagrammati rules on the ontour areidential to the standard Feynman rules exept that all time integrations are to be replaedby ontour integrations. The diagrams ontributing to � are alulated as diagrams withone external point, namely the interation part of the Lagrangian D bLint(x)E, then ontourintegrated over x and weighted with 1=n�, where n� ounts the number verties in thediagram. These diagrams have to be two-partile irreduible with all lines representingfull propagators. For details about the orresponding diagrammati rules on the ontoursee ref. [1℄.The rules for non-relativisti two-body interations are also naturally extended to theontour C withbH int(t1)= 12 Z d3x1 ZC d4x2 b	y(x1) b	y(x2)V (x1 � x2) b	(x2) b	(x1) (C.1)with V (x1 � x2) = U(x1 � x2) ÆC(t1 � t2) now de�ned for ontour times t1, t2. One hashowever to observe that for the instantaneous two-body interations the diagrammati46
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