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tWe 
ontinue the des
ription of the dynami
s of unstable parti
les within the real-time formulation of nonequilibrium �eld theory initiated in a previous paper [1℄.There we suggest to use Baym's �-fun
tional method in order to a
hieve approx-imation s
hemes with 'built in' 
onsisten
y with respe
t to 
onservation laws andthermodynami
s even in the 
ase of parti
les with �nite damping width. Startingfrom Kadano�{Baym equations we dis
uss a 
onsistent �rst order gradient approa
hto transport whi
h preserves the �-derivable properties. The validity 
onditionsfor the resulting quantum four-phase-spa
e kineti
 theory are dis
ussed under theperspe
tive to treat parti
les with broad damping widths. This non-equilibriumdynami
s naturally in
ludes all those quantum features already inherent in the
orresponding equilibrium limit (e.g. Matsubara formalism) at the same level of�-derivable approximation. Various 
ollision-term diagrams are dis
ussed in
ludingthose of higher order whi
h lead to memory e�e
ts. As an important novel part wederive a generalized nonequilibrium expression for the kineti
 entropy 
ow, whi
hin
ludes 
ontributions from 
u
tuations and mass-width e�e
ts. In spe
ial 
ases anH-theorem is derived implying that the entropy 
an only in
rease with time. Mem-ory e�e
ts in the kineti
 terms provide 
ontributions to the kineti
 entropy 
owthat in the equilibrium limit re
over the famous bosoni
 type T 3 lnT 
orre
tion tothe spe
i�
 heat in the 
ase of Fermi liquids like Helium-3.1 Introdu
tionThe appropriate frame for the des
ription of nonequilibrium pro
esses is the real-time for-malism of quantum �eld theory, developed by S
hwinger, Kadano�, Baym and Keldysh[2{4℄. This formalism �nds now appli
ations in various �elds, su
h as quantum 
hro-modynami
s [5,6℄, nu
lear physi
s [7{13℄, astrophysi
s [11,14,15℄, 
osmology [16℄, spinsystems [17,18℄, lasers [19℄, physi
s of plasma [20{22℄, physi
s of liquid 3He [23℄, 
riti
alphenomena, quen
hed random systems and disordered systems [24℄, normal metals andPreprint submitted to Elsevier Preprint 7 Mar
h 2000



super-
ondu
tors [14,25,26℄, semi
ondu
tors [27,28℄, tunneling and se
ondary emission[29℄, et
.The Green's fun
tion te
hnique provides des
riptions in terms of one- and two-point fun
-tions. Compared to the various equal-time operator formulations of transport theories, 
.f.[30℄, and within the path-integral formulation [31℄, the Green's fun
tion approa
h withits non-lo
alities in time o�ers probably the only 
onvenient way for a dynami
al des
rip-tion of spe
tral information of unstable parti
les. The 
orresponding mass-width e�e
tsbe
ome in
reasingly important espe
ially in the realm of high-energy nu
lear 
ollisions,where one deals with resonan
es, like the delta resonan
e and rho meson, with va
uumde
ay widths whi
h are even larger than the system's temperature. In spite of 40 yearsof work of many authors a proper dynami
al s
heme for su
h situations is still la
king.Rather ad-ho
 re
ipes are in use that sometimes violate basi
 requirements as given byfundamental symmetries and 
onservation laws, detailed balan
e or thermodynami
 
on-sisten
y. The question of 
onservation laws be
ome espe
ially vital for the dynami
s ofbroad resonan
es. In the 
ontext of Green's fun
tions the problem of 
onserving approxi-mations has �rst been addressed by Baym and Kadano� [32,33℄ on very general groundswithin the imaginary time formalism. Baym, in parti
ular, showed [33℄ that so-
alled �-derivable approximations are 
onserving. It turned out that the � fun
tional required ispre
isely the auxiliary fun
tional introdu
ed by Luttinger and Ward [34℄ (see also ref. [35℄)in 
onne
tion with the thermodynami
 potential at the two-parti
le irredu
ible level.The 
on
ept of generating fun
tionals on the S
hwinger{Keldysh 
ontour has been ex-plored by many authors, e.g. see refs. [16,24,28,36℄. In our previous paper [1℄ we havemade a step further in these fun
tional methods, i.e. we reinvestigated the � fun
tionalon the real-time 
ontour. The � fun
tional is determined by 
losed va
uum skeleton dia-grams in terms of full 
lassi
al �elds and full Green fun
tions. All important dynami
alquantities up to the two-point fun
tion level, su
h as the sour
es of 
lassi
al �elds, self-energies, intera
tion energy, et
. are derived from � by fun
tional variations with respe
tto its arguments. The advantage of the � fun
tional is that one may formulate variousapproximations in terms of approximate � (so 
alled �-derivable approximations), whi
hpreserve the 
onservation laws related to global symmetries of the underlying theory andthermodynami
 
onsisten
y. Thereby, one may restri
t oneself to either a few diagramsonly or to some sub-set of diagrams for �. The basi
 terms of this s
heme are summarizedin se
t. 2.In se
t. 3 the steps towards quantum kineti
 equations are summarized. They involvethe Wigner transformation of the 
ontour Dyson equation together with the �rst-ordergradient approximation. The former formulates all quantities in terms of phase-spa
e dis-tribution fun
tions in four dimensions, i.e. as a fun
tion of energy and momentum for anyspa
e-time 
oordinate. The gradient approximation leads to Poisson-bra
ket expressionswhi
h permit a 
lassi
al interpretation. Thereby the standard quasiparti
le approximationis not required at any step.It should be noted though that there were many attempts in the literature to improve the2



standard quasiparti
le approximation and to dis
uss small damping width and retardatione�e
ts on di�erent model examples, see [21,22,27,36{42℄ and refs. therein. However, allthese derivations lose some information on �nite width e�e
ts due to the inherent redu
-tion to a 3-momentum representation of the distribution fun
tions by some spe
i�
 ansatz.With the aim to develop a self-
onsistent approa
h we defer to use su
h kind of redu
tions.Thus we'll treat the spe
tral information 
ontained in the spe
tral fun
tions dynami
ally,i.e. on the four-phase-spa
e level. We show that this 
an 
onsistently be a
hieved in thelimit of slow spa
e-time variations of the distribution fun
tions thereby preserving all theinvarian
es of the �-derivable approximation, employing the standard Kadano�{Baymequations right after gradient expansion. We reinvestigate the validity 
ondition of theresulting set of equations and in parti
ular show that the generalization of the so 
alledmass-shell equation loses its quasiparti
le sense and be
omes equivalent to the quantumfour-phase-spa
e kineti
 equation within the validity of the gradient approximation. Thephysi
al meaning of the di�erent terms in the quantum four-phase-spa
e kineti
 equation,espe
ially the role of damping and 
u
tuation terms leading to a ba
k-
ow response, aredis
ussed. The properties of � determine the 
onservation laws in terms of 
onservedNoether 
urrents. For the 
onserved energy-momentum tensor we derive a 
losed expres-sion whi
h also in
ludes terms arising from the the �nite mass width of the parti
lesand from 
u
tuations. Arguments are given that the generalized distribution fun
tionsremain positive during the time evolution thus permitting a probabilisti
 interpretationin four-momentum spa
e at ea
h spa
e-time point.In se
t. 4 further properties are exploited with the help of the de
omposition rules forthe diagrams of � formulated in terms of full Green fun
tions [13℄. These rules lead toa multi-pro
ess de
omposition of a �-derivable 
ollision term, whi
h 
ontains spa
e-timelo
al and nonlo
al parts, the latter representing memory e�e
ts. We demonstrate how one
an systemati
ally treat su
h e�e
ts in self-
onsistent kineti
s.The se
ond main issue of this paper is the role of entropy. Although the entropy is a 
entralquantity in thermodynami
s and statisti
al me
hani
s, many problems 
onne
ted with it,in parti
ular, its des
ription in terms of Green fun
tions in the nonequilibrium 
ase, isstill open. One 
an �nd related dis
ussions in many textbooks and reviews, e.g., in refs.[43,45{48℄. The thermodynami
 entropy has extensively been dis
ussed in the literatureat the end of the sixties and beginning of the seventies also within the �-derivable s
hemefor the thermodynami
 potential, 
f. refs. [49{51℄ and referen
es therein. The fa
t thatthe quantum four-phase-spa
e kineti
 equation possesses a proper thermodynami
al limit,does not yet imply that this limit will be approa
hed during the evolution. The latter isensured however, if one 
an prove an H-theorem for the equations of motion. In spite ofmany attempts so far, H-theorem has not yet been proven even for the 
lassi
al kineti
equation in
luding triple 
ollision term, 
f. ref. [48℄. Therefore, up to now there exists noappropriate kineti
 entropy expression (derived from a quantum four-phase-spa
e kineti
des
ription). Using the �-derivable properties we are able to get an expression, whi
htakes the sense of a nonequilibrium kineti
 entropy expressed in terms of Green fun
tionsand self-energies (se
t. 5). For spe
i�
 forms of the �-derivable self-energies, relevantfor the majority of 
ases dis
ussed in transport problems, the quantum four-phase-spa
e3



kineti
 s
heme provides us with an H-theorem. Our expressions for the kineti
 entropy 
owapply beyond the quasiparti
le limit a

ounting for 
u
tuation and memory e�e
ts (thelatter have to be established for ea
h parti
ular 
ase). Thus the well known equilibriumexpression [50℄ obtained in Matsubara formalism within the �-fun
tional s
heme is nowgeneralized to the genuine nonequilibrium 
ase (se
t. 6). Some formal details are deferredto Appendi
es.To be spe
i�
, we 
on
entrate on systems of non-relativisti
 parti
les. Bosoni
 mean �eldsare not treated in this paper; they 
an however be in
luded along the lines given in ref.[1℄.2 Generating Fun
tional � on Real-Time ContourWe assume the nonequilibrium system to be prepared at some initial time t0 in termsof a given density operator b�0 = P� P� j�i h�j, where the j�i form a 
omplete set ofeigenstates of b�0, and formulate all expe
tation values on a spe
ial time 
ontour, the
losed real-time 
ontour (see �gure 1) with the time arguments running from t0 to 1along the time-ordered bran
h and ba
k to t0 along the anti-time-ordered bran
h.
t0 t-�� �1t+xt�y tt

Figure 1: Closed real-time 
ontour with two external points x; y on the 
ontour.Multi-point 
ontour fun
tions like the free (thin line) and full (thi
k line) propagators�x y = iG0(x; y) = DTC b' I(x) b'yI(y)E= Tr h b�0TC b' I(x) b'yI(y)i (2.1)�x y = iG(x; y) = DTC b'(x) b'y(y)E = Tr � b�0TC b' I(x) b'yI(y) exp�� i ZC bH intI dt�� ; (2.2)are de�ned as the expe
tation values of 
ontour-ordered produ
ts of �eld operators with�0, where b'(y) and b' I(y) denote the full and intera
tion pi
ture �eld operators with theintera
tion Hamiltonian bH intI , while TC spe
i�es the spe
ial time-ordering, whi
h ordersthe operators a

ording to a time parameter running along the time 
ontour C.With the aim to 
ome to a self-
onsistent and 
onserving treatment on the two-pointfun
tion level, we use the �-fun
tional method [34,33℄ generalized to the real-time 
ontourin our previous paper [1℄. It is based on a de
omposition of the generating fun
tional �with bilo
al sour
es into a two-parti
le redu
ible part and an auxiliary fun
tional � whi
h
ompiles all two-parti
le-irredu
ible (2PI) va
uum diagrams4



i� fG; �g= i�0 nG0o
+8>>>>><>>>>>:Xn� 1n� �� ���i� �� ���i��� ���i�. . . . . .� �� �| {z }� ln �1��G0 � �� ��� ���i�� �� �| {z }��G� �

9>>>>>=>>>>>;+Xn� 1n� ����2PI| {z }+ i� fG; �g : (2.3)
Here upper signs relate to fermion quantities, whereas lower signs, to boson ones, whilen� and n� 
ount the number of self-energy insertions in the ring diagrams and the numberof verti
es in the diagrams of �, respe
tively. The stationarity 
onditionÆ� fG; �g =ÆG = 0 (2.4)provides the 
ontour Dyson equation of motion for the two-point Green fun
tionsSxG(x; y)= ÆC(x; y) + ZC dz�(x; z)G(z; y); (2.5)SxG0(x; y)= ÆC(x; y); where Sx = i�t + 12m�2x; (2.6)the latter in non-relativisti
 kinemati
s. Here ÆC(x; y) is Æ-fun
tion on the 
ontour and RCdenotes the 
ontour integration.The fun
tional �fGg a
ts as the generating fun
tional for the self-energy � via the fun
-tional variation�i�(x; y) = �Æi�=ÆiG(y; x): (2.7)The 
losed diagrams of � are expressed in terms of full propagators and therefore haveto be of two-parti
le irredu
ible (2PI) topology. In graphi
al terms, the variation (2.7)is realized by opening a propagator line in any diagram of � providing proper skeletondiagrams for � in terms of full propagators, i.e. void of any self-energy insertions.The advantage of this formulation is that � 
an be trun
ated at any level, thus de�ningapproximation s
hemes with built in internal 
onsisten
y with respe
t to 
onservationlaws and thermodynami
 
onsisten
y. For details we refer to the original literature [33,34℄and our previous paper [1℄. Thus restri
ting the in�nite set of diagrams for � to eitheronly a few of them or some sub-series of them de�nes a �-derivable approximation. Notethat � itself is 
onstru
ted in terms of \full" Green fun
tions, where \full" now takes thesense of solving self-
onsistently the Dyson equation with the driving term derived fromthis approximate � through relation (2.7). It means that even restri
ting ourselves to a5



single diagram in �, in fa
t, we deal with a whole sub-series of diagrams in terms of freepropagators, and \full" takes the sense of the sum of this whole sub-series. The Wi
kde
omposition, the trun
ation in � together with the gradient approximation, may leadto a s
heme whi
h generally is time-irreversibe [3,7,52,53,43,44℄, as dis
ussed in se
t. 5.
3 Quantum Four-Phase-Spa
e Kineti
s3.1 Gradient Expansion S
hemeFor slightly inhomogeneous and slowly evolving systems, the degrees of freedom 
an besubdivided into rapid and slow ones. Any kineti
 approximation is essentially based onthis assumption. Then for any two-point fun
tion F (x; y), one separates the variable� = (t1 � t2; r1 � r2), whi
h relates to rapid and short-ranged mi
ros
opi
 pro
esses, andthe variableX = 12(t1+t2; r1+r2), whi
h refers to slow and long-ranged 
olle
tive motions.The Wigner transformation, i.e. the Fourier transformation in four-spa
e di�eren
e � =x � y to four-momentum p leads to the 
orresponding Wigner densities in four-phase-spa
e. Sin
e the Wigner transformation is de�ned for physi
al spa
e-time 
oordinatesrather than for 
ontour 
oordinates one has to de
ompose the 
ontour integrations intoits two bran
hes, the time-ordered f�g bran
h and the anti-time ordered f+g bran
h,
f. Appendix A. Two-point fun
tions then be
ome matri
es of the 
ontour de
omposedf�+g 
omponents with physi
al spa
e-time arguments. ThusF ij(X; p) = Z d�eip�F ij (X + �=2; X � �=2) ; i; j 2 f�+g (3.1)leads to a four-phase-spa
e representation of two-point fun
tions, whi
h obey retardedor advan
ed relations, presented in Appendix A. The gradient expansion 
onverts theWigner transformation of any 
onvolution of two-point fun
tions into a produ
t of the
orresponding Wigner fun
tions plus higher order gradient termsZ d�eip� �Z dzf(x; z)'(z; y)�= exp " i~2 (�p�X0 � �X�p0)# f(X; p)'(X 0; p0)!p0=p;X0=X(3.2)' f(X; p)'(X; p) + i~2 ff(X; p); '(X; p)g ; (3.3)where the �rst order terms are given by Poisson bra
ketsff(X; p); '(X; p)g = �f�p� �'�X� � �f�X� �'�p� (3.4)6



here in 
ovariant notation. We would like to stress that the smallness of the ~�X ��p 
omessolely from the smallness of spa
e{time gradients �X , while momentum derivatives �p arenot assumed to be small! This point is sometimes in
orre
tly treated in the literature.The Wigner transformation of the Dyson equation (2.5) leads to the following set ofequations [3℄iv���XGij(X; p)= Z d�eip� ZC dz ��(xi; z)G(z; yj)�G(xi; z)�(z; yj)� ; (3.5)bQXGij(X; p)=�ij + 12 Z d�eip� ZC dz ��(xi; z)G(z; yj) +G(xi; z)�(z; yj)� ; (3.6)where �ij a

ounts for the integration sense on the two 
ontour bran
hes, 
f. Eqs. (A.2),(A.3). For non-relativisti
 kinemati
s v� = (1;p=m), and bQX = p0� p2=2m� �2X=8m. Inthis matrix notation, two of equations (3.5) and (3.6), involving G�+ and G+� on the left-hand side, are known as the Kadano�-Baym equations, here in Wigner representation [3℄.Parti
ular 
ombinations of these equations lead to the retarded and advan
ed equationswhi
h 
ompletely de
ouple and involve only integrations over physi
al times rather than
ontour times.It is helpful to avoid all the imaginary fa
tors inherent in the standard Green fun
tionformulation and introdu
e quantities whi
h are real and, in the quasi-homogeneous limit,positive, 
f. subse
t. 3.4, and therefore have a straightforward physi
al interpretation,mu
h like for the Boltzmann equation. We de�neF (X; p)=A(X; p)f(X; p) = (�)iG�+(X; p);eF (X; p)=A(X; p)[1� f(X; p)℄ = iG+�(X; p); (3.7)for the generalized Wigner fun
tions F and eF and the 
orresponding four-phase-spa
edistribution fun
tions f(X; p) and Fermi/Bose fa
tors [1� f(X; p)℄. HereA(X; p) � �2ImGR(X; p) = eF � F = i �G+� �G�+� (3.8)is the spe
tral fun
tion, where GR is the retarded propagator, 
f. Eq. (A.6). A

ording torelations (A.6) and (A.7) between Green fun
tionsGij, only two independent real fun
tionsof all the Gij are required for a 
omplete des
ription.Likewise the redu
ed gain and loss rates of the 
ollision integral are de�ned as�in(X; p)=�(X; p)
(X; p) = (�)i��+(X; p); (3.9)�out(X; p)=�(X; p)[1� 
(X; p)℄ = i�+�(X; p) (3.10)7



with the damping width�(X; p)��2Im�R(X; p) = �out(X; p)� �in(X; p); (3.11)where �R is the retarded self-energy, 
f. Eq. (A.6). The opposite 
ombinationI(X; p) = [2
 � 1℄� = �in(X; p)� �out(X; p); (3.12)is related to 
u
tuations. The dimensionless quantity 
 is introdu
ed for further 
onve-nien
e.In terms of the new notation (3.7){(3.11) and within the �rst-order gradient approxima-tion, the Kadano�{Baym (KB) equations (3.5) for F and eF take the formDF (X; p)� n�in;ReGRo=C(X; p); (3.13)D eF (X; p)� n�out;ReGRo=�C(X; p); (3.14)whi
h we denote as the quantum four-phase-spa
e transport equations in the KB-
hoi
e.Here the di�erential drift operator is de�ned asD =  v� � �Re�R�p� ! ��X + �Re�R�X� ��p� ; with v� = (1;p=m) (3.15)in non-relativisti
 kinemati
s,C(X; p) = �in(X; p) eF (X; p)� �out(X; p)F (X; p) = A�[
 � f ℄ (3.16)is the 
ollision term with the dimensionless fun
tions f and 
 de�ned in (3.7) and (3.9),while n�in;ReGRo and n�out;ReGRo are 
u
tuation terms. The smallness of jf � 
j � 1indeed provides the validity 
ondition for the gradient expansion, sin
e the gradients onthe l.h.s. of (3.13) are of the order of the 
ollision term. It implies that the ma
ros
opi
time s
ale �ma
ro, 
hara
terizing kineti
 pro
esses, is mu
h larger than the mi
ros
opi
time s
ale �mi
ro, relating to rapid mi
ros
opi
 pro
esses. Eqs. (3.13) and (3.14) wereoriginally derived by Kadano� and Baym [3℄. Here we have just presented them in kineti
notation useful for our further 
onsideration.Within the same approximation level Eq. (3.6) provides us with two alternative equationsfor F and eFMF � ReGR�in= 14 (f�; Fg � f�in; Ag) ; (3.17)M eF � ReGR�out= 14 �n�; eFo� f�out; Ag� (3.18)8



with the \mass" fun
tionM(X; p) = p0 � 12mp2 � Re�R(X; p) (for non-relativisti
 kinemati
s); (3.19)whi
h relates to the drift operator via Df = fM; fg for any four-phase-spa
e fun
tion f .Eqs. (3.17), (3.18) 
an be 
alled the four-phase-spa
e mass-shell equations, sin
e in thequasiparti
le limit they provide the mass-
ondition M = 0. Appropriate 
ombinations ofthe two sets of equations (3.13){(3.14) and (3.17){(3.18) provide us with the retardedequations DGR(X; p) + i2 n�; GRo=0; (3.20)�M(X; p) + i2�(X; p)�GR(X; p)= 1; (3.21)whi
h are simultaneously solved by algebrai
 inversion of (3.21) [3,10℄, i.e.
GR = 1M(X; p) + i�(X; p)=2 ) 8>>>><>>>>: A(X; p) = �(X; p)M2(X; p) + �2(X; p)=4 ;ReGR(X; p) = M(X; p)M2(X; p) + �2(X; p)=4 : (3.22)The spe
tral fun
tion satis�es the sum{rule1Z�1 dp02� A(X; p)= 1; (3.23)whi
h follows from the 
anoni
al equal-time (anti) 
ommutation relations for (fermioni
)bosoni
 �eld operators.With the solution (3.22) for GR equations (3.13) and (3.17) be
ome identi
al to (3.14) and(3.18), respe
tively su
h that one is altogether left with three di�erent equations ratherthan two. These relations are known sin
e the original text-book by Kadano� and Baym[3℄, here presented in a form 
onvenient for our further 
onsiderations. Now we like to
ome to some new 
onsiderations.At �rst glan
e equations (3.13) and (3.17) are not identi
al, while they were identi
albefore the gradient expansion. However, even for �nite values of � the equivalen
e ofthese two equations 
an be assured within the validity range jf(X; p)�
(X; p)j � 1 of thegradient approximation. Using this limit and writing all �in = 
� terms as (f +(
�f))�,the four-phase-spa
e transport and mass-shell equations, (3.13) and (3.17), take the forms9



A22 (� fM; fg �M f�; fg)=�A(
 � f)� rkin; (3.24)AReGR2 (� fM; fg �M f�; fg)=MA(
 � f)� rmass�eq; (3.25)where the remaining terms rkin and rmass�shell are seen to be of order (
�f) times gradientterms, i.e. of se
ond order in the gradient expansion 1 . >From Eq. (3.22) one has �ReGR =MA. Using this we 
ome to the observation that the four-phase-spa
e mass-shell equationloses its original quasiparti
le-like sense, sin
e to leading order in the gradient expansionrelation (3.25) is indeed equivalent to the four-phase-spa
e transport equation (3.24).However, the still remaining di�eren
e in the se
ond-order terms is in
onvenient from thepra
ti
al point of view. Besides the retarded relations (3.20) whi
h are to be used in any
ase, Kadano� and Baym have 
hosen equation (3.13) as the quantum four-phase-spa
ekineti
 equation. This has the property of providing a 
onserved energy momentum tensor(
f. se
t. 3.3) whi
h is symmetri
 with respe
t to the appearan
e of real and imaginaryself-energy terms and propagators. Following Botermans and Mal
iet (BM) [10℄, who �rstsuggested to drop the above rkin term in the four-phase-spa
e kineti
 equation, we nowput rkin = rmass = 0 in both Eqs. (3.24) and (3.25) with the advantage that then theseequations be
ome 
ompletely identi
al. Dropping the rkin and rmass terms in (3.24) and(3.25) amounts to repla
e the �in and �out terms by f� and (1 � f)� in all Poissonbra
kets. The so obtained quantum four-phase-spa
e kineti
 equations for F and eF inBM-
hoi
e then readDF (X; p)� ��FA;ReGR�=C(X; p); (3.26)D eF (X; p)� (� eFA;ReGR)=�C(X; p); (3.27)whi
h are identi
al to ea
h other in view of the retarded relation (3.22). In terms of thefour-phase-spa
e o

upation fun
tions f(X; p) both above equations redu
e toA2�2 �Df � M� f�; fg�=C: (3.28)To get Eq. (3.28) we used that the additional Poisson-bra
ket term be
omesn�f;ReGRo = M2 � �2=4(M2 + �2=4)2 D (�f) + M�2=2(M2 + �2=4)2 f�; fg : (3.29)1 These terms have the expli
it formrkin = ���(
 � f);ReGR	 ; rmass�eq = 14 f�(
 � f); Ag :
10



Both, the KB 
hoi
e (3.13) and the BM 
hoi
e (3.26) are of 
ourse equivalent withinthe validity range of the �rst order gradient approximation. Frequently, however, su
hequations are used beyond the limits of validity as ad-ho
 equations and then the di�erentversions may lead to di�erent results. So far we have no physi
al 
ondition whi
h givespreferen
e to one or the other 
hoi
e. The pro
edure used here, where in all Poissonbra
kets the �in and �out terms have 
onsistently been repla
ed by f� and (1 � f)�,respe
tively is therefore optional. However, in doing so we gained few advantages. First,four-phase-spa
e kineti
 and mass-shell equation are from now exa
tly equivalent to ea
hother, as they were before the gradient expansion. Se
ond, the so obtained quantumkineti
 equations (3.26)-(3.27) has parti
ular feature with respe
t to the de�nition of anonequilibrium entropy 
ow and the formulation of an exa
t H-theorem in 
ertain 
ases(se
t. 5). If we omit these substitutions, both these features would be
ome approximateup to the se
ond-order gradient terms.So far the gradient approximation has been applied to the spa
e-time foldings o

urringbetween the self-energies and the propagators appearing in the 
ollision term. They giverise to the gradient terms on the l.h.s. of the kineti
 equations. This is suÆ
ient as longas the self-energies are 
al
ulated without further approximation. Commonly one alsolikes to obtain �in and �out in a kind of lo
al approximation evaluated with all Greenfun
tions taken at the same spa
e-time point X. Then for self-energy diagrams with morethan two points, also nonlo
al gradient 
orre
tions arise for su
h diagrams, whi
h haveto be treated in a 
onsistent gradient approximation s
heme. The latter fa
t gives rise tomemory e�e
ts, whi
h will be dis
ussed in detail in subse
t. 4.2, below.3.2 Physi
al interpretation and quasiparti
le limitWe now provide a physi
al interpretation of various terms in the quantum four-phase-spa
e kineti
 equation (3.26) or equivalently (3.28). This physi
al interpretation relies onthe similarity of most of the terms to 
onventional kineti
 equations, for example, su
h asthe Landau kineti
 equation for Fermi liquids (see, e.g., refs. [51,54℄) and ref. [55℄ for therelativisti
 version), proposed by Landau on the basis of an intuitive quasiparti
le pi
ture[56℄, although the 
omplete spe
tral dependen
e on energy is treated dynami
ally.For this purpose it is advantage to 
onvert the drift operator (3.15) into a spa
e and timeseparated form D = 1Z (�t + vg�X) + �tRe�R � �p0 � �XRe�R � �p ; (3.30)wherevg(X; p) = Z  v + �Re�R�p ! with Z =  v0 � �Re�R�p0 !�1 (3.31)11



takes the meaning of the group 3-velo
ity in the quasiparti
le approximation, while Z isthe standard renormalization fa
tor. In the quantum four-phase-spa
e kineti
s p0 and pare independent in (3.31).Thus, the drift term DF on the l.h.s. of Eqs. (3.13), (3.26) is the usual kineti
 drift termin
luding the 
orre
tions from the self-
onsistent �eld Re�R into the 
onve
tive transfer infour-phase-spa
e. In the 
ollision-less 
ase DF = 0 (Vlasov equation), the 
hara
teristi

urves of quasi-linear �rst-order di�erential operator D de�ne 
lassi
al paths in four-phase-spa
e with 
onserved probability F (X; p) in this 
ase. The formulation in termsof a Poisson bra
ket in four dimensions implies a generalized Liouville theorem. In the
ollisional 
ase, both the 
ollision, C, and 
u
tuation terms (3.29) 
hange the phase-spa
eprobabilities of the \generalized" parti
les during their propagation along the the four-phase-spa
e paths given by D. Thereby parti
les are no longer bound to their mass-shell,M = 0, during propagation due to damping pro
esses governed by the 
ollision term. ThePoisson-bra
ket term (3.29) is spe
ial. It 
ontains genuine 
ontributions from the �nitedamping width of the parti
les and des
ribes the response of the surrounding matter dueto 
u
tuations. This 
an be seen from the 
onservation laws dis
ussed below. In parti
ularthe �rst term in (3.29) gives rise to a ba
k-
ow 
omponent of the surrounding matter. Itrestores the Noether 
urrents as the 
onserved ones rather than the intuitively expe
tedsum of 
onve
tive 
urrents arising from the 
onve
tive DF term in (3.26). Furthermore, itis seen from Eq. (3.28) that the termM f�; fg =� gives no 
ontribution in the quasiparti
lelimit due to the fa
tor M and thus represents a spe
i�
 o�-mass-shell response.The r.h.s. of Eqs. (3.13), (3.26), (3.28) spe
i�es the 
ollision term C in terms of gain andloss terms, whi
h also 
an a

ount for multi-parti
le pro
esses. Sin
e F in Eqs. (3.13),(3.26) in
ludes a fa
tor A, C further deviates from the standard Boltzmann-type formin as mu
h that it is multiplied by the spe
tral fun
tion A, whi
h a

ounts for the �nitewidth of the parti
les.The equations so far presented, mostly with the KB 
hoi
e (3.13), were the startingpoint for many derivations of extended Boltzmann and generalized kineti
 equations, eversin
e these equations have been formulated in 1962. Most of those derivations use theequal-time redu
tion by integrating the four-phase-spa
e equations over energy p0, thusredu
ing the des
ription to three-phase-spa
e information, 
f. refs. [21,22,27,36{42℄ andrefs. therein. This 
an only 
onsistently be done in the limit of small width � employingsome kind of quasi-parti
le ansatz for the spe
tral fun
tion A(X; p). It is important torealize that the fun
tion 12A2� in front of the drift term in Eq. (3.28) is more sharplypeaked than the original spe
tral fun
tion A. Both 12A2� and A are redu
ed to the sameÆ-fun
tion in the quasiparti
le limit, however 
orre
tions to the Æ-fun
tion in powers of �start linear for A whereas they start of order �3 for 12A2� [50℄. Parti
ular attention hasbeen payed to the treatment of the time-derivative parts in the Poisson bra
kets, whi
h inthe four-phase-spa
e formulation still appear time-lo
al, i.e. Markovian, while they leadto retardation e�e
ts in the equal-time redu
tion. Generalized quasiparti
le ans�atze wereproposed, whi
h essentially improve the quality and 
onsisten
y of the approximation,providing those extra terms to the naive Boltzmann equation (some times 
alled additional12




ollision term) whi
h are responsible for the 
orre
t se
ond-order virial 
orre
tions andthe appropriate 
onservation of total energy, 
.f. [27,38℄ and refs. therein.At the simplest level the quasiparti
le distribution takes the form [57℄F qp(X; p) = 2� Z(X; ";p) Æ (p0 � "(X;p)) fqp(X;p) (3.32)whi
h is a fun
tion of only three-momentum through the quasiparti
le dispersion relationfor the energy "(X;p) "(X;p) = 12mp2 +Re �R (X; "(X;p);p) : (3.33)However, all these quasi-parti
le s
hemes rely on the smallness of the damping widths. Yet,in order to des
ribe the transport of parti
les with large mass widths, in parti
ular, broadresonan
es, one has to stay at the level of the quantum four-phase-spa
e kineti
 equations(3.28) together with the retarded Eq. (3.22), whi
h preserve all the spe
tral information.It is the main obje
tive of this paper to study the properties of this four-phase-spa
ekineti
s at the most general level.3.3 Conservations of Charge and Energy{MomentumThe quantum four-phase-spa
e kineti
 equation (3.26) weighted either with the 
harge eor with 4-momentum p�, integrated over momentum and summed over internal degreesof freedom like spin (Tr) gives rise to the 
harge or energy{momentum 
onservation laws,respe
tively, with the Noether 4-
urrent and Noether energy{momentum tensor de�nedby the following expressionsj�(X)= eTr Z d4p(2�)4v�F (X; p); (3.34)���(X)=Tr Z d4p(2�)4v�p�F (X; p) + g�� �E int(X)� Epot(X)� : (3.35)HereE int(X) = D� bL int(X)E = Æ�Æ�(x) ������=1 (3.36)is the total intera
tion energy density, whi
h in terms of � is given by a fun
tional variationwith respe
t to a spa
e-time dependent 
oupling strength of the intera
tion part of theLagrangian density bL int ! �(x) bL int, 
f. ref. [1℄. The potential energy density Epot asintrodu
ed in ref. [1℄ determines that potential energy whi
h a probe parti
le with Wigner13



density F (X; p) would have due to the intera
tion with all other parti
les in the system.For the BM 
hoi
e 2 it takes the formEpot(X) = Tr Z d4p(2�)4 �Re�RF + ReGR �AF � = Tr Z d4p(2�)4 �p0 � �0(p)�F (X; p)with �0(p) = p22m:(3.37)This auxiliary quantity is dire
tly related to the self-energy �. Whereas the �rst term inthe square bra
ket 
omplies with quasiparti
le expe
tations, namely mean potential timesdensity, the se
ond term displays the role of the width in the potential energy density.For the BM 
hoi
e the entire expression 
an be redu
ed to a simple tra
e over F (X; p).In general, E int(X) has to be determined a

ording to its diagrams given by �, 
f. [1℄.Only for spe
i�
 intera
tions there are dire
t relations to Epot(X). This is the 
ase, if toall intera
tion verti
es of bL int the same number � of �eld operators is atta
hed. Then onesimply dedu
esE int(X) = 2�Epot(X): (3.38)In parti
ular, for two-body intera
tions one has � = 4 and thus 2E int = Epot whi
hprovides the energy momentum tensor as a simple tra
e over F (X; p)���(two�body)(X)=Tr Z d4p(2�)4 �v�p� � 12g�� �p0 � �0(p)��A(X; p)f(X; p); (3.39)with the free energy �0(p) from (3.37). a form 
ommonly used in extended quasiparti
leapproximations, e.g. [38℄. Please, also noti
e from (3.35) that the spe
ial 
ombination�00(X) + 13 3Xi=1�ii(X) = Tr Z d4p(2�)4A(X; p)f(X; p)�p0 + 23�0(p)� (3.40)depends on the spe
i�
 form of the intera
tion only via the spe
tral fun
tion. As we willsee below, in lo
al thermodynami
 equilibrium this 
ombination simply relates to theentropy density.2 For the KB 
hoi
e it takes the formEpot(X) = TrZ d4p(2�)4 �Re�RF +ReGR�in� :
14



The 
onservation laws only hold, if all the self-energies are �-derivable. In ref. [1℄, it hasbeen shown that this implies 
onsisten
y relations, Eqs. (6.5) and (6.9) in [1℄, whi
h afterWigner transformation and �rst-order gradient expansion lead toiTr Z d4p(2�)4 �nRe�R; Fo� �ReGR; �AF�+ C� = 0; (3.41)for the 
onserved 
urrent and�� �E int � Epot� = Tr Z p�d4p(2�)4 �nRe�R; Fo� �ReGR; �AF�+ C� : (3.42)for the energy-momentum tensor. The 
ontributions from the Markovian 
ollision termC drop out in both 
ases, 
f. Eq. (4.8) below. The �rst term in ea
h of the two relationsrefers to the 
hange from the free velo
ity v to the group velo
ity vg, 
f. Eq. (3.31), in themedium. It 
an therefore be asso
iated with a 
orresponding drag{
ow 
ontribution of thesurrounding matter to the 
urrent or energy{momentum 
ow. The se
ond (
u
tuation)term 
ompensates the former 
ontribution and 
an therefore be asso
iated with a ba
k{
ow 
ontribution, whi
h restores the Noether expressions (3.34) and (3.35) to be indeedthe 
onserved quantities. In this 
ompensation we see the essential role of the 
u
tuationterm (3.29) in the quantum four-phase-spa
e kineti
 equation. Dropping this term wouldspoil the 
onservation laws.Expressions (3.34) and (3.35) for the 
onserved 
urrent and energy{momentum tensor,as well as self-
onsisten
y relations (3.41) and (3.42) are written expli
itly for the 
ase ofnon-relativisti
 parti
les with �xed parti
le number. This follows from the 
onventionalway of non-relativisti
 renormalization for su
h parti
les based on normal ordering. Whenthe number of parti
les is not 
onserved (e.g., for phonons or a system of relativisti
parti
les), one should repla
e F (X; p) ! 12 �F (X; p)� eF (X; p)� in all above formulas inorder to take proper a

ount of zero point vibrations (e.g., of phonons) or of the va
uumpolarization in the relativisti
 
ase. These symmetrized equations, derived from spe
ial(�) 
ombinations of the transport equations (3.26) and (3.27), are generally ultra-violetdivergent, and hen
e, have to be properly renormalized at the va
uum level.3.4 Positive De�niteness of Kineti
 QuantitiesFor a semi-
lassi
al interpretation one likes to have the Wigner distributions F (X; p) andeF (X; p) to be positive semi-de�nite, hereto after just 
alled \positive". Using the operatorde�nition for the Green fun
tions (2.1) and integrating it over a large spa
e-time volume,one arrives at, e.g.,Z dXF (X; p) = ��Z dyeipy b'y(y)��Z dxe�ipx b'(x)�� ; (3.43)15



and similarly for self-energies � expressed through the 
urrent{
urrent 
orrelator. It indi-
ates that the r.h.s. of su
h equality is real and non-negative. Thus, we get the followingset of 
onstraintsZ dX eF (X; p) � 0; Z dXF (X; p) � 0; Z dX�out(X; p) � 0; Z dX�in(X; p) � 0: (3.44)Similar relations are obtained for the integration over four-momentum spa
e rather thanspa
e and time. As a result, in stationary and spatially homogeneous systems, in parti
ularin equilibrium systems, the quantities F , eF , �in and �out are real and non-negative 3 , i.e.F (p) � 0; eF (p) � 0; �in(p) � 0; �out(p) � 0: (3.45)In deriving 
onstraints (3.44) and (3.45), we did not use the fa
t that the Green fun
-tions are solutions of the Dyson's equation. However, we used the operator pi
ture. Anyapproximation, in parti
ular, if formulated in the spa
e of Green fun
tions, may spoilsu
h rigorous statements like (3.43). Nevertheless, both the �-derivable s
heme and thegradient approximation preserve the retarded relations (A.6) among the di�erent 
on-tour 
omponents and the retarded and advan
ed fun
tions of any 
ontour fun
tion, withde�nite values for the imaginary parts of the 
orresponding retarded Wigner fun
tions�2ImGR(X; p) = A(X; p) � 0; �2Im�R(X; p) = �(X; p) � 0; (3.46)whi
h even hold lo
ally. In parti
ular, solution (3.21) for the retarded Green fun
tionshows that all retarded relations hold lo
ally: the momentum part is the same as thatin the homogeneous 
ase with the spa
e-time 
oordinate X as a parameter. Under the
ondition jf � 
j � 1, 
f. the dis
ussion around Eq. (3.24), one �nds that�out(X; p) � f�(X; p) > 0; �in(X; p) � (1� f)�(X; p) > 0 (3.47)as long as the Wigner densities f and 1�f are positive. As the gradient approximation isa quasi-homogeneous approximation, one may therefore expe
t the positivity of �in and�out to be preserved even in the self-
onsistent treatment dis
ussed here. Diagrammati
rules may also 
orroborate this, sin
e diagrams for �in and �out are 
al
ulated like in thehomogeneous 
ase.We now like to show that, if �in and �out are positive, also under minor restri
tions thekineti
 equation (3.28) preserves the positivity of f , on
e initially started from a positive f .This equation is of integro-quasi-linear �rst-order partial di�erential type in 8 dimensionswith all derivatives pla
ed on the l.h.s. and the 
ollision termC = A(�in � �f) (3.48)3 In relativisti
 des
riptions one has appropriately to separate parti
les from anti-parti
les.16



provides a term linear in f with a negative 
oeÆ
ient. Therefore overall stability requiresthe 
oeÆ
ient in front of the time derivative term in Eq. (3.28) to be positive 4 . Giventhe solution of (3.28), let us then dis
uss properties of f along the 
hara
teristi
 
urvesdetermined by the quasi-linear drift operator on the l.h.s. of (3.28) with a 
urve parameters growing monotoni
ally with time. Assuming f positive initially, the o

urren
e of anegative value at some later time requires the �rst zero value to o

ur at one of the
hara
teristi
 
urves. Be s0 su
h a pla
e, one �nds12A� dds f(s)����s = s0 = [A�in℄s = s0 > 0: (3.49)If the r.h.s. is positive, one 
omes to a 
ontradi
tion, as the approa
h from some positivevalue to a zero value whi
h then be
omes negative would require a non-positive derivativeat s0. Thus, the overall stability requirement of the equations is suÆ
ient to preservepositive distribution fun
tions.4 Collision TermTo further dis
uss the transport treatment we need an expli
it form of the 
ollision term(3.16), whi
h is provided from the � fun
tional in the �+matrix notation via the variationrules (A.8) asC(X; p) = Æi�Æ eF (X; p) eF (X; p)� Æi�ÆF (X; p)F (X; p): (4.1)Here we assumed � be transformed into the Wigner representation and all �iG�+ andiG+� to be repla
ed by the Wigner-densities F and eF . Thus, the stru
ture of the 
ollisionterm 
an be inferred from the stru
ture of the diagrams 
ontributing to the fun
tional �.To this end, in 
lose analogy to the 
onsideration of ref. [13℄, we dis
uss various de
omposi-tions of the �-fun
tional, from whi
h the in- and out-rates are derived. This 
onsiderationis based on the standard real-time diagrammati
 rules, where the 
ontour integrations arede
omposed into two bran
hes with � and + verti
es for the time- and anti-time-orderedbran
hes, 
f. Appendix A. For the sake of physi
al transparen
y, we 
on�ne our treatmentto the lo
al 
ase, where in Wigner representation all the Green fun
tions are taken at thesame spa
e-time 
oordinate X and all non-lo
alities, i.e. derivative 
orre
tions, are disre-garded. Derivative 
orre
tions give rise to memory e�e
ts in the 
ollision term, whi
h willbe analyzed separately for the spe
i�
 
ase of triangle diagram (see subse
t. 4.4).4 If the physi
al situation allows for instabilities, the dynami
s will 
arry the system over intonew regime of stability, like for phase transitions. In the latter 
ase the kineti
 equation hasto be supplemented by an equation des
ribing the time evolution of the 
ondensate (one-pointfun
tion) whi
h 
ouples to the propagator, 
f. the general s
heme dis
ussed in [1℄.17



4.1 Diagrammati
 De
omposition into Physi
al Sub-Pro
essesConsider a given 
losed diagram of �, at this level spe
i�ed by a 
ertain number n� ofverti
es and a 
ertain 
ontra
tion pattern whi
h links all verti
es with lines of 
ertainarrow sense for 
omplex �elds. This �xes the topology of su
h a 
ontour diagram. Itleads to 2n� di�erent diagrams in the �+ notation from the summation over all �+ signsatta
hed to ea
h vertex. Thus for any �+ type diagram of � also the diagram, where all +and � vertex signs are inter
hanged, 
ontributes to �. Furthermore, for any diagram withgiven line senses the diagram with all line senses reversed also is a valid diagram of �. Weshall exploit these two dis
rete symmetry operations to further determine the propertiesof �. The simultaneous appli
ation of the inter
hange of all vertex signs and the reversionof the line sense leads to the adjoint expressions, sin
e in the underlying operator pi
tureit adjungates all operators and inverts the operator ordering. The 
orresponding valuesare then 
omplex 
onjugate to one another, 
f. (A.7).Using these symmetries one 
an 
onvert the fun
tional � into the following general formi�lo
al= 12 Z dX Xm;m0 [i�m;m0(X) + i�m0;m(X)℄ ; (4.2)i�m;m0 = Z d4p1(2�)4 � � � d4pm(2�)4 d4p01(2�)4 � � � d4p0m0(2�)4 (2�)4Æ40� mXi=1 pi � m0Xi=1 p0i1A�Rm;m0(X; p1; : : : ; pm; p01; : : : ; p0m0) F1 � � �Fm eF 01 � � � eF 0m0 ; (4.3)where in view of the lo
al approximation the four momentum 
onservation has beenextra
ted. While �00 
ompiles with terms void of any Wigner densities, i.e. from diagramswhere all verti
es have the same sign and whi
h do not 
ontribute to the 
ollision term,the nontrivial �m;m0 terms sum the sub-
lass of diagrams of � with pre
isely m + m0Wigner densities Fi = F (X; pi) and eF 0i = eF (X; p0i), respe
tively. A

ording to Eq. (4.1)ea
h �m;m0 in (4.3) generates multi-parti
le gain or loss 
ontributions expressed in termsof integrals over produ
ts of generalized distribution fun
tions F , and Fermi/Bose fa
torseF . Every term in the sum (4.2) has been dupli
ated, repeating ea
h term in its linereverse form. The 
orresponding transition rates Rm;m0(X; p1; : : : ; pm; p01; : : : ; p0m0) are realdue to the adjungation symmetry. As explained below, they result from the produ
t of
hronologi
al Feynman amplitudes, given by the sub-diagram 
ompiled from all � verti
eslinked by iG�� Green fun
tions times that of the anti-
hronologi
al part 
ontaining theiG++ fun
tions.The generi
 form (4.3) of �m;m0 
an be illustrated diagrammati
ally. For this purpose
onsider a �+ notation diagram 
ontributing to �m;m0 , whi
h 
ontains verti
es of eithersign. It 
an be de
omposed into two pie
es, denoted by a 
ompa
t bra-ket notation, say(�j and j�), in su
h a way that ea
h of the two sub-pie
es 
ontains verti
es of only one18



type of sign 5
i�+��� = 1n�� ��� ���---��� = 1n�� �� ���F1 � � �Fm eF 01 � � � eF 0m0 ��� ��= 1n�� Z d4(m+m0)pmm0(2�)4(m+m0) (2�)4Æ40� mXi=1 pi � m0Xi=1 p0i1A� V �� (X; pmm0) F1 � � �Fm eF 01 � � � eF 0m0 V�(X; pmm0); (4.4)where n�� 
ounts the number of verti
es in the 
losed diagram (�j�). The short-handnotation pmm0 = fp1; : : : ; pm; p01; : : : ; p0m0g summarizes the momenta, type and internalquantum numbers of the set of ordered valen
es, to be joint to the produ
t of m + m0Wigner densities 6 F1 � � �Fm eF 01 � � � eF 0~m linking the two amplitudes. The \end-
aps" (�j andj�) represent multi-point vertex fun
tions, in simple 
ases of tree type, of only one signfor the verti
es, i.e. they are either entirely time ordered (� verti
es) or entirely anti-timeordered (+ verti
es). Ea
h su
h vertex fun
tionj�)= V�(X; pmm0); (�j= V �� (X; pmm0); (4.5)to be determined by normal Feynman diagram rules, hasm F -valen
es andm0 eF -valen
es,respe
tively. In (4.5) we used the fa
t that adjoint expressions are 
omplex 
onjugate toea
h other, 
f. (A.7). A

umulating all diagrams of � that lead to the same set of Wignerdensities F1 � � �Fm eF 01 � � � eF 0~m provides us with the generi
 form (4.3) with the partial pro
essrates Rm;m0(X; pmm0) = X(��)2�m;m0 1n��Re fV �� (X; pmm0)V�(X; pmm0)g : (4.6)The restri
tion to the real part arises, sin
e with (�j�) also the adjoint (�j�) diagram
ontributes to the sub
lass �m;m0 . However these rates are not ne
essarily positive as inperturbation theory 7 . In this point, the �-derivable s
heme di�ers from the 
onventional5 To 
onstru
t the de
omposition, just deform a given mixed-vertex diagram of � in su
h a waythat all + and � verti
es are pla
ed left and respe
tively right from a verti
al division line andthen 
ut along this line.6 This produ
t of Wigner-densities originates from the �iG�+ and iG+� Green fun
tions, (
f.Eq. (3.7)). In 
losing the diagram by these Wigner densities extra fermion loops may appearbesides the ones a

ounted for in the amplitudes � and �. Using the produ
t F1 � � �Fm eF 01 � � � eF 0m0just take 
are of the additional (�1) fa
tors arising from this 
losing of the diagram.7 In perturbation theory they are positive, sin
e there the sum in (4.6) leads to absolute squares.In the general 
ase with resummed propagators this positivity may be lost due to the restri
tionto diagrams of � whi
h are globally two-parti
le irredu
ible. The latter ex
ludes 
ertain 
ombi-nations of amplitude diagrams, implying that the rates of genuine multi-parti
le pro
esses are19



Boltzmann kineti
s. Even the two rates, Rmm0 and its line sense reverse Rm0m, have not tobe ne
essarily identi
al to ea
h other. Still Eq. (4.3) represents the most general form of �expressed through the Wigner densities F (X; p) and eF (X; p) in the lo
al approximation. Itis however important to realize that in many physi
ally relevant 
ases, e.g. those dis
ussedbelow, one indeed �nds thatRm;m0 = Rm0;m: (4.7)This property will be used as a suÆ
ient 
ondition for the derivation of the H-theorem. Inthe following we will restri
t the dis
ussion to 
ases where (4.7) is assumed. The treatmentof more general 
ases, in parti
ular in 
onne
tion with the H-theorem, will be deferred toanother publi
ation.Sin
e � is two-line irredu
ible, there are at least three lines 
onne
ting (�j and j�) and inmany 
ases (�j and j�) are 
onne
ted by, at least, four lines, like in the 
ase of two-bodyintera
tions. In su
h diagrams ea
h of the amplitudes � or � ne
essarily form a 
onne
teddiagram for the 
omplex �eld 
ase for binary (m = m0 = 2) and for triple s
attering(m = m0 = 3) 
ase, while in the general 
ase of multi-parti
le (more than triple) pro
essessu
h amplitudes may be dis
onne
ted.No further symmetry 
an be spe
i�ed at this level without additional knowledge on possi-ble topologi
al and other symmetries of � and the di�erent parti
le spe
ies involved. Thede
omposition dis
ussed here solely relies on a straightforward appli
ation of the 
ontourrules for multi-point fun
tions. They di�er from other 
utting rules like those derived byDanielewi
z [8℄, whi
h represent the result in terms of generalized retarded fun
tions.4.2 Lo
al Collision Term and Memory Corre
tionsThe gradient 
orre
tions to the folding of the self-energies with the propagators in the
ollision term essentially give rise to in-medium 
orre
tions of the 
onve
tive part (l.h.s)of the quantum four-phase-spa
e kineti
 equation (3.26). Within the spirit of the gradientapproximation one also likes to express the self-energies themselves by spa
e-time lo
alquantities. Thus, for a 
onsistent gradient approximation further gradient 
orre
tions areadmissible on
e the self-energy diagrams and thereby the diagrams of � 
onsist of morethan 2 verti
es. We 
all the 
ollision term, evaluated with all Green fun
tions in theWigner representation taken at the same spa
e-time point X, the lo
al 
ollision term.In terms of the representation (4.3) of � and implying line-sense reversal symmetry forthe rates (4.7) the matrix variation rules (4.1) determine the following lo
al part of the
ollision term (3.16) for a parti
le of 
avor "a" asnot ne
essarily positive. 20



C lo
a (X; p) = 12 Xm;m0 Z d4p1(2�)4 � � � d4pm(2�)4 d4p01(2�)4 � � � d4p0m0(2�)4� Rm;m0(X; p1; � � � ; pm; p01; � � � ; p0m0) n eF1 � � � eFmF 01 � � �F 0m0 � F1 � � �Fm eF 01 � � � eF 0m0o� 24 mXi=1 Æaai(2�)4Æ4(pi � p)� m0Xi=1 Æaai(2�)4Æ4(p0i � p)35 (2�)4Æ40� mXi=1 pi � m0Xi=1 p0i1A : (4.8)The fun
tional variations of � with respe
t to Fa and eFa are expressed in terms of the four-momentum proje
tors Æaai(2�)4Æ4(pi� p), 
f. eq. (A.9), whi
h in 
ase of multi-
omponentsystems of parti
les with di�erent 
avors and internal quantum numbers "a" also in
ludethe proper proje
tions onto the di�erent 
avors ai = a. This expression ni
ely visualizesthe detailed balan
e property namely that the same multi-parti
le rate determines boththe forward and the ba
kward pro
esses.The �rst-order gradient 
orre
tions to the lo
al 
ollision term (4.8) are 
alled memory
orre
tions. Nonlo
al 
ollision terms have been already studied by many authors, in par-ti
ular, within the nonequilibrium Green's fun
tion te
hnique,e.g., 
f. refs [37,38,58{63℄.Only re
ently it was realized [63℄ that within the �rst-order gradient expansion we mustkeep the linear gradient 
orre
tions to the 
ollision term. Therefore, memory e�e
ts are,in general, unavoidable within kineti
 treatment. However, memory e�e
ts are quite 
om-monly negle
ted in transport models. Indeed, only self-energy diagrams of third and higherorder in the number of verti
es give rise to memory e�e
ts, as it is dis
ussed below (se
t.4.4) within a simple model example. In parti
ular, it means that the popular Born (orself-
onsistent Born) approximation does not involve any memory 
orre
tions. Until re-
ently this property of the Born approximation was not that obvious within the equal-timeformalism be
ause of 
ompli
ations resulting from redu
tion s
hemes. Spi
ka et al. [62℄showed that a proper equal-time redu
tion really maintains this property.Memory 
orre
tions are linear in the time-spatial gradients of Wigner fun
tions and thedispla
ement fa
tors in front of these Taylor expansions give momentum gradients ofasso
iated other multi-point fun
tions. Sin
e our prime goal here is only to demonstratehow memory 
orre
tions arise within our method of de
omposing the � fun
tional, werefrain from spe
ifying them in general terms. To this end only a simple model exampleis 
onsidered below (se
t. 4.4).4.3 �-Derivable Collision Terms4.3.1 Two-body Potential Intera
tionTo be spe
i�
 we 
onsider a system of fermions intera
ting via a zero-range two-bodypotential V = V0Æ(x � y), and, for the sake of simpli
ity, disregard its spin stru
ture,by relating spin and anti-symmetrization e�e
ts to a degenera
y fa
tor d. To derive thede
omposition of a �-derivable 
ollision term, we employ the rules as des
ribed in subse
t.21



4.1.In the �rst example, we 
onsider the generating fun
tional � to be approximated by thefollowing two diagramsi� = 12 r-� + 14 r r--�� (4.9)with the dashed line illustrating the de
omposition a

ording to (4.4). Here the 1=n�fa
tors start with 1=2; 1=4; : : : a

ording to the non-relativisti
 diagram rules for two-body intera
tion, 
f. Appendix C, i.e. the vertex dots are 
onsidered as the zero rangelimit of a �nite range intera
tion. In the f�+g matrix notation of the Green fun
tions,one 
an easily see that the one-point diagram does not 
ontribute to the 
ollision term,while de
omposing the se
ond diagram along the dashed line leads to a purely lo
al resultC(2)= d2 Z d4p1(2�)4 d4p2(2�)4 d4p3(2�)4 ��� q���wR ���2�(2�)4Æ4 (p+ p1 � p2 � p3) �F2F3 eF eF1 � eF2 eF3FF1� ; (4.10)where the brief notation of the previous subse
t. is used for Fi and eFi. This 
ollision inte-gral has pre
isely the form of the binary 
ollision term of Boltzmann{Uehling{Uhlenbe
k(BUU), ex
ept for the fa
t that distribution fun
tions are not 
onstrained to the massshell. The binary transition rateR(2)2 = V 20 = ��� q���wR ���2 (4.11)is non-negative in this 
ase. Here and below, the supers
ripts in bra
kets (2) (or (3)) pointout the origin of the quantity (C, R, et
.) from the se
ond (or third) diagram of �. Thesubs
ript 2 in the transition rate of Eq. (4.11) indi
ates the binary-
ollision nature of thistransition rate. Note that external 4-momenta (in-going and out-going) of the s
atteringamplitude q���wR are not 
on�ned to the mass shell. For the trivial 
ase under 
onsideration,this fa
t does not give rise to any important 
onsequen
es. However, for more 
ompli
atedexamples below, it means that the 
ollision term is determined by o�-shell s
atteringamplitudes.The pi
ture be
omes more 
ompli
ated, if � involves diagrams of higher orders. For in-stan
e, let us add the three point diagram to �, i.e.i�= i ��(1) + �(2) + �(3)� 22



= 12 r-� + 14 r r--�� + 16 r rr�� ^- ℄�

 

 

 ; (4.12)where one possible de
omposition is illustrated by dashed lines. The 
orresponding self-energy be
omes�i�=�i ��(1) + �(2) + �(3)� == r--- + r r-�-- - + r rr� ^℄�-- -: (4.13)Now the 
ollision term 
ontains a nonlo
al part due to the last diagram. This nonlo
al
ontribution is dis
ussed in the next subse
t. in detail. The lo
al part 
an easily be derivedin the formC(2) + C(3)lo
 = d2 Z d4p1(2�)4 d4p2(2�)4 d4p3(2�)4 0������ q���wR + qq��6?---- �����2 � ����� qq��6?---- �����21A�(2�)4Æ4 (p+ p1 � p2 � p3) �F2F3 eF eF1 � eF2 eF3FF1� ; (4.14)where all the verti
es in the o�-shell s
attering amplitudes are of the same sign, say "� "for de�niteness, i.e. there are no " + �" and " � +" Green fun
tions left. The quantityC(2) + C(3)lo
 is again of the Boltzmann form with the transition rateR(2)2 +R(3)2 = ����� q���wR + qq��6?---- �����2 � ����� qq��6?---- �����2 : (4.15)At the �rst glan
e, one may argue that this rate is not ne
essarily positive in the limitof strong 
oupling. Indeed, the �rst term in Eq. (4.15), i.e. �iV0, is purely imaginary,whereas the se
ond one|the loop|given byloop = �d Z d4p1(2�)4 j V0 j2 iG��(x; p+ p1)iG��(x; p1);has both real and imaginary parts. Hen
e, the real part of this loop is 
an
eled out in Eq.(4.15). If j Im(loop) j>j V0 j, the rate (R(2)2 + R(3)2 ) may be
ome negative, depending onsigns of V0 and Im(loop). However, one has to keep in mind that the Green fun
tions in theloop 
annot be 
hosen arbitrarily. Rather in a 
onsistent treatment, as shown in Eq. (80)of ref. [13℄, the loop reveals a fa
tor / j1=�j / j1=V 20 j resulting from the imaginary part23



of the retarded self-energy in the propagators, whi
h balan
es the total value of the loop.Indeed, in equilibrium the gain part of 
ollision term and thus (R(2)2 + R(3)2 ) is positive.This illustrates that the question of positive de�niteness is quite subtle.4.3.2 Bosonization of the Intera
tionIt is obvious that the situation be
omes 
ompli
ated on
e one extends the pi
ture toring diagrams with more than three verti
es. Yet, there is a simple (however, not general)strategy to pro
eed. We may avoid the two-parti
le potential intera
tion from the very be-ginning and rather introdu
e an intera
tion mediated by an arti�
ially introdu
ed neutralheavy s
alar boson (h.b.) of mass mh.b. mu
h larger than any 
hara
teristi
 momentumtransfers in the system. Then the free retarded Green fun
tion of the boson approximatelyequals�0Rh.b. ' �1m2h.b. � i0 ; (4.16)and the vertex of fermion{heavy-boson intera
tion being g = qjV0jmh.b.. Moreover, by thesame reason the heavy-boson o

upation numbers may be put to zero, �0�+h.b. = 0, sin
etypi
al ex
itation energies are mu
h less than the boson mass. The fa
t that this bosonis very heavy makes the fermion{fermion intera
tion almost point-like. To be spe
i�
, weassume that V0 < 0, i.e. attra
tive, whi
h 
an be mediated by a s
alar boson. In 
ase ofrepulsive intera
tions, a ve
tor boson would be an appropriate 
hoi
e.Thus, from now on, we deal with a system of intera
ting fermions and heavy bosons. Letus take the following approximation for the 
orresponding � fun
tional (we 
all it �h.b.)i�h.b. = 12 r r-� (4.17)in terms of full Green fun
tions of fermions (the bold solid lines) and bosons (the boldwavy line). In this approximation, the boson self-energy is given by (
f. Eq. (2.7)) 8
�i12�h.b. = Æi�h.b.ÆiGh.b. = r r-� (4.18)8 Note that for neutral bosons, whi
h number is not 
onserved, the additional fa
tor 1=2 appearsin Eq. (2.7), 
f. ref. [1℄. 24



and the heavy-boson Green fun
tion is de�ned by the standard Dyson's equationiGh.b. = = + r r-� : (4.19)We would like to 
ompare this model with the model des
ribed in subse
tion 4.3.1. Elim-inating the arti�
ial heavy boson one e�e
tively sums up all ring diagrams of the typei�ring = 12 r-� + 14 r r--�� + 16 r rr�� ^- ℄� + 18 r r- r-�� r-�-
� + :::(4.20)Note that �ring 6= �h.b., sin
e the summations of loops in Eq. (4.17) and Eq. (4.20) havedi�erent sense. In Eq. (4.19) we have the 
onventional diagrammati
 summation, while inEq. (4.20) the summation is logarithmi
, i.e. with the fa
tors 1=n, where n is the numberof verti
es in the diagram. However, this di�eren
e in summations is 
ompensated forby the heavy-boson 
ontribution to the generating fun
tional (2.3). The equivalen
e ofapproximations (4.20) and (4.17) 
an be a
tually seen, e.g., from the fa
t that they resultin the same approximation for the fermion self-energy i�f = Æ�ring=ÆGf = Æ�h.b.=ÆGf (
f.Eq. (2.7)) after substituting Eq. (4.19) for the heavy-boson propagator. Here and below,the sub-label "f" denotes fermion quantities.In the heavy-boson pi
ture we have to deal with two 
oupled transport equations|fornon-relativisti
 fermions and for heavy bosons|with the following 
ollision termsCf(X; p)= Z d4p1(2�)4 d4p2(2�)4g2(2�)4Æ4 (p� p1 � p2)� h eFf(X; p)Ff(X; p1)Fh.b.(x; p2)� Ff(X; p) eFf(X; p1) eFh.b.(x; p2)i ; (4.21)for fermions andCh.b.(X:p)= d Z d4p1(2�)4 d4p2(2�)4g2(2�)4Æ4 (p + p1 � p2)� h eFh.b.(X; p) eFf(X; p1)Ff(X; p2)� Fh.b.(X; p)Ff(X; p1) eFf(X; p2)i ; (4.22)for heavy bosons, where g2 = �V0m2h.b. > 0 is de�ned in terms of two-parti
le intera
tionstrength V0 < 0 and the heavy boson mass mh.b..The 
ollision terms (4.21) and (4.22) are very simple in spite of the fa
t that they involvethe whole series of ring diagrams. The 
orresponding gain and loss terms are positive and25




ontain no memory e�e
ts, as they are hidden in the boson, while in the pure fermioni
 
asealready the triangle diagram gives rise to memory e�e
ts. Indeed, there is no 
ontradi
tionhere. If one wants to eliminate the bosoni
 degree of freedom, one has to resolve thebosoni
 transport equation with respe
t to the bosoni
 generalized distribution fun
tionFh.b. for the entire past and substitute this into the fermioni
 
ollision term. In this way,the resulting 
ollision term be
omes highly 
ompli
ated and nonlo
al and thus 
ontainsmemory e�e
ts.Hen
e, we have demonstrated that sometimes it is useful to introdu
e new degrees offreedom in order to a
hieve a reasonable 
ollision term. Of 
ourse, all the 
onsiderationsabove remain valid also for parti
le{parti
le intera
tion mediated by a real boson ratherthan only by the arti�
ially introdu
ed one.4.4 Memory E�e
ts in Collision TermA general treatment of memory e�e
ts in the 
ollision term is a 
umbersome task. In thissubse
tion we 
ontinue to 
onsider a system of non-relativisti
 fermions intera
ting viathe 
onta
t two-body potential and 
on
entrate on the third diagram in Eq. (4.12), whi
hhas already been 
onsidered in a �-derivable s
heme for the thermodynami
 potentialand entropy in refs. [49,50℄. This is the �rst ring diagram to 
ontribute to memory e�e
ts.The 
orresponding self-energy diagram reads
�i�(3)jk (x; y)= r rr� ^℄�--yk xj

zl - ; j; k 2 f+;�g: (4.23)Standard diagrammati
 rules in the matrix representation present �(3)ij in analyti
 formas �i�(3)jk (x; y) = Z dz � iV0�jj0�kk0iGj0k0(x; y)Lk0l(y; z)�ll0Ll0j0(z; x); (4.24)where we have introdu
ed the loop fun
tionLjk(x; y) = r r-�yk xj= diV0iGjk(x; y)iGkj(y; x); (4.25)and �ij are given by Eq. (A.2). As above, the fa
tor d results from the tra
e over spin. Inthe Wigner representation, Ljk takes the form26



Ljk(X; p0) = Z d4p00(2�)4 eLjk(X; p00 + p0; p00); (4.26)whereeLjk(X; p00 + p0; p00) = diV0iGjk(X; p00 + p0)iGkj(X; p00): (4.27)The loop fun
tions L possess notable propertiesL++ + L�� = L�+ + L+�; Ljk(x; y) = Lkj(y; x); Ljk(X; p) = Lkj(X;�p): (4.28)The former property follows from the general property (A.6) of the two-point fun
tionsand holds in both the 
oordinate and Wigner representations. Pro
eeding from Eq. (4.24)and with the help of relation (3.3), we 
an immediately evaluate the Wigner transform of�(3)ij (
f. Eq. (3.1)) and perform its gradient expansion�(3)jk ' ��(3)jk �lo
 + ��(3)jk �mem ; (4.29)where�i ��(3)jk �lo
 (X; p) = Z d4p0(2�)4 iV0�jj0�kk0�ll0 iGj0k0(X; p0 + p)Lk0l(X; p0)Ll0j0(p0; X) (4.30)is the lo
al 
ontribution to �(3)ij , and�i ��(3)jk �mem (X; p)= i2 Z d4p0(2�)4 iV0�jj0�kk0�ll0 iGj0k0(X; p0 + p)� nLk0l(X; p0); Ll0j0(X; p0)op0;X (4.31)is the �rst-order gradient (memory) 
orre
tion, whi
h is of 
entral interest in this subse
-tion. Here, the Poisson bra
ket is taken with respe
t to the (p0; X) variables indi
ated inthe subs
ript.To evaluate the memory 
orre
tion for the 
ollision term (
f. Eqs. (3.9) and (3.16)), weneed to 
onsider the following 
ombinations of self-energies with Green fun
tions��(3)+��mem (X; p)G�+(X; p) = i2 Z d4p0(2�)4 1d eL+�(X; p0 + p; p)�ll0 nL�l; Ll0+op0;X ; (4.32)
G+�(x; p) ��(3)�+�mem (X; p) = i2 Z d4p0(2�)4 1d eL�+(X; p0 + p; p)�ll0 nL+l; Ll0�op0;X : (4.33)27



With the symmetry relations�ll0 nL�l; Ll0+op0;X = �ll0 nL+l; Ll0�op0;X = nL+�; L�+op0;X (4.34)dedu
ed from (4.28) one determines the �rst-order gradient 
orre
tion to the 
ollisionterm indu
ed by graph (4.23) asC(3)mem(X; p) = h��(3)+��mem (X; p)G�+(X; p)�G+�(X; p) ��(3)�+�mem (X; p)i= i2 Z d4p0(2�)4 1d h eL+�(X; p0 + p; p)� eL�+(X; p0 + p; p)i nL+�; L�+op0;X : (4.35)The 
orresponding lo
al 
ollision term is given by Eq. (4.14).5 H{Theorem5.1 Time-Irreversibility of the Quantum Four-Phase-Spa
e Kineti
 Des
riptionCompared to exa
t des
ription, whi
h is time-reversible, redu
ed des
ription s
hemesin terms of relevant degrees of freedom have a

ess only to some limited informationand thus normally lead to irreversibility through the implied 
oarse graining. Variousredu
tion s
hemes in parti
ular at the equal time operator level have been dis
ussed anddeveloped over the years. In the Green's fun
tion formalism presented here, we have doneonly three kind of approximations. First, we assumed that the Wi
k theorem holds inour 
ase. This assumption implies that either the initial state is un
orrelated or initial
orrelations are qui
kly dying a

ording to Bogolyubov's 
ondition of weakening of initial
orrelations [3,7,64℄. We further suggested to trun
ate the series of skeleton diagrams in the� fun
tional in order to arrive at tra
table �-derivable approximations. This trun
ation,though not equivalent to the trun
ation in the Martin-S
hwinger hierar
hy 9 for multi-point Green's fun
tions [52,53℄, leads to a loss of higher-order 
orrelations beyond a 
ertainlevel. Finally, the gradient approximation brought us to spa
e time lo
al expression andgradient 
orre
tions implying a further loss of information, 
f. [44℄ and refs. therein. Allthese three steps lead to a s
heme, whi
h generally is time-irreversible. Retaining diagramsup to two verti
es in � together with the gradient approximation leads to Markoviantransport equations, void of any memory e�e
ts whi
h are time irreversible. However inthe spe
ial 
ase, when only one-point fun
tions are retained in �, whi
h 
orresponds to theself-
onsistent Hatree approximation, transport pro
esses are dropped and this s
heme isexpli
itly time-reversible.9 The appropriate 
lassi
al limit leads to the Bogolyubov{Born{Green{Kirkwood{Yvon 
hainof equations. 28



At the operator level the nonequilibrium entropy 
an be straightforwardly formulated interms of von Neumann's entropy, whi
h is an entropy in the information theory sense [65℄S = �Tr b� ln b�: (5.1)It is given by the expe
tation value of the logarithm of the density operator b� itself. Theproblem of the Green fun
tion formalism is that it does not give a dire
t a

ess to thedensity operator itself but rather des
ribes the spa
e-time dependen
e of the expe
tationvalues of well de�ned operators, say D bA(t)E = Tr bA b�(t). To this extend, there is no imme-diate formulation of the entropy (5.1) in terms of Green fun
tions for the nonequilibrium
ase. The situation is di�erent at equilibrium, where with b� = exp(��( bH � � bN ))=Z awell de�ned density operator exists, whi
h leads to the well known Matsubara or real-timeformulation of the equilibrium entropy, 
f. se
t. 6 below. As known sin
e long time [50℄,even in equilibrium, the entropy expression is not priori given but rather depends on the
hoi
e of � in a �-derivable s
heme.In order to a

ess a nonequilibrium expression relevant for our quantum four-phase-spa
etransport equation (3.26), we shall start from this transport equation and derive a 
owexpression s� with the property that its divergen
e grows in time, i.e.��s�(X) � 0; (5.2)and whi
h in the equilibrium limit merges the 
orresponding equilibrium form of theentropy 
ow. That is, we expli
itly show the existen
e of an H-theorem for our quantumfour-phase-spa
e kineti
 des
ription and s�(X) is thus identi�ed with the kineti
 entropy
ow. Thereby, the validity 
onditions for the derivation of this kineti
 entropy 
ow 
oin
idewith those of the kineti
 equations themselves.5.2 Markovian Entropy FlowWe start with general manipulations whi
h lead us to de�nition of the kineti
 entropy
ow. We multiply Eq. (3.27) by (�) ln( eF=A), Eq. (3.26) by � ln(F=A), take their sum,integrate it over d4p=(2�)4 and �nally sum the result over internal degrees of freedom likespin (Tr). Using the identity for the Poisson bra
ketsfB;Afg ln f � fB;A(1� f)g ln(1� f) = fB;Af ln f � A(1� f) ln(1� f)g (5.3)for any fun
tions A;B and positive f and 1� f , one then arrives at the following relation��s�lo
(X) = TrXa Z d4p(2�)4 ln eFaFaCa(X; p); (5.4)29



where the quantitys�lo
 =Xa s�lo
;a = TrXa Z d4p(2�)4 " v� � �Re�Ra�p� ! � eFa ln eFaAa � Fa ln FaAa!� ReGRa  � ln eFaAa ��p�  �a eFaAa!� ln FaAa ��p� ��a FaAa�!# (5.5)obtained from the l.h.s. of the kineti
 equation is interpreted as the lo
al (Markovian)part of the entropy 
ow. Here we have restored the summation over "a" denoting thedi�erent parti
le spe
ies and intrinsi
 quantum numbers for a multi-
omponent system.It illustrates that, although this entropy expression a

ounts for intera
tions among allparti
les, it 
an be expressed as a sum of the individual 
ontributions, ea
h of whi
h issolely determined by the parti
le self-energy Re�Ra and its width �a. Gradient 
orre
tionsto the 
ollision term (i.e. Cmem) give rise to extra memory 
ontributions to the entropy
ow.Partial integrations in Eq. (5.5) lead us to a more transparent expression for the entropy
ow in terms of four-phase-spa
e distribution fun
tions fa(X; p) (
f. Eq.(3.7))s�lo
 = TrXa Z d4p(2�)4A�sa(X; p) � �fa(X; p)� ; �(f) = �(1� f) ln(1� f)� f ln f; (5.6)whereA�sa(X; p) = Aa�a2 B�a ; (5.7)the zero 
omponent of whi
h A0sa has the meaning of an entropy-
ow spe
tral fun
tion,while the zero 
omponent ofB�a = Aa " v� � �Re�R�p� !�Ma��1a ��a�p� # ; (5.8)is the 
ow spe
tral fun
tion, 
f. the 
orresponding drift term (proportional to ��f in Eq.(3.28)). These entropy-
ow and 
ow spe
tral fun
tions 
oin
ide with the 
orrespondingtwo fun
tions introdu
ed in refs. [66,67℄ for the 
ase of equilibrium systems. Moreover,they satisfy the sum rules1Z�1 dp02� A0sa = 1Z�1 dp02� B0a = 1Z�1 dp02� Aa = 1; (5.9)whi
h 
an dire
tly be obtained from the sum rule (3.23) for the spe
tral fun
tion A.For the 
ase of a resonan
e, like the � or �-meson resonan
es in hadron physi
s, the B030



fun
tion relates to the energy variations of s
attering phase shift of the s
attering 
hannel
oupling to the resonan
e in the virial limit, for details see e.g. refs. [66,67,1℄.In the non-intera
ting limit, the entropy (the zero 
omponent of s�lo
) dire
tly transformsinto the proper ideal gas expression, 
f. ref. [68℄. In the quasiparti
le approximation, the�in and �out terms have an additional smallness, whi
h allows to negle
t these terms.Thus, expression (5.5) for the entropy 
ow takes the form(s�lo
)qp = 0B� s0s 1CA = TrXa Z d3p(2�)3 0BB� 1�"a�p 1CCA�� (1� fqpa ) ln (1� fqpa )� fqpa ln fqpa �(5.10)in the quasiparti
le limit, whi
h follows from the substitution of Eqs. (3.32) into Eq. (5.5).From (5.6) Eq. (5.10) is also easily re
overed, sin
e A2�=2 transforms to the 
orrespondingÆ-fun
tion in the limit �! 0.To prove expli
itly the H-theorem we have to show that the r.h.s. of Eq. (5.4) is non-negative. To this end, we should 
onsider the 
onvolution of the 
ollision term withln( eF=F ). First, we do this for 
ollision terms in lo
al approximation. For the spe
ial
ase of the Hatree approximation (�-diagrams with only one vertex) the 
ollsion termvanishes and the 
orresponding entropy is exa
tly 
onserved.5.3 Lo
al Collision Term and H-TheoremUsing the multi-parti
le pro
ess de
omposition (4.8) we arrive at the relationTr Z d4p(2�)4 ln eFF Clo
(X; p) = Tr Xm;m0 12 Z d4p1(2�)4 � � � d4pm(2�)4 d4p01(2�)4 � � � d4p0m0(2�)4� nF1 � � �Fm eF 01 � � � eF 0m0 � eF1 � � � eFmF 01 � � �F 0m0o ln F1 � � �Fm eF 01 � � � eF 0m0eF1 � � � eFmF 01 � � �F 0m0�Rm;m0 (2�)4Æ40� mXi=1 pi � m0Xi=1 p0i1A : (5.11)Here we assumed di�erent 
avors and intrinsi
 quantum numbers to be absorbed in themomenta p1 and p0i. In the 
ase when all rates Rm;m0 are non-negative, i.e. Rm;m0 � 0, thisexpression is non-negative, sin
e (x�y) ln(x=y) � 0 for any positive x and y. In parti
ular,Rm;m0 � 0 takes pla
e for all �-fun
tionals up to two verti
es. Then the divergen
e of s�lo
is non-negative whi
h proves the H-theorem in this 
ase with (5.5) as the nonequilibriumentropy 
ow. 31



5.4 Expli
it examples for the H-TheoremWe expli
itly dis
uss the two examples introdu
ed already in se
t. 4.3 with Markovian
ollision terms, i.e. with the � fun
tional 
onsisting of one- and two-point diagrams only.In the pure fermioni
 
ase with 
ollision term (4.9), one 
an state an exa
t H-theoremTr Z d4p(2�)4 ln eFF C(2) = d3 Z d4p(2�)4 d4p1(2�)4 d4p2(2�)4 d4p3(2�)4 ��� q��wR ���2�(2�)4Æ4 (p+ p1 � p2 � p3) ln eF eF1F2F3FF1 eF2 eF3 � eF eF1F2F3 � FF1 eF2 eF3� � 0: (5.12)Furthermore, it is instru
tive to 
onsider the � approximation (4.17), where a heavy s
alarboson has been introdu
ed in order to sum up the series of ring diagrams of Eq. (4.20), 
f.subse
t. 4.3.2. In this 
ase, there are two 
oupled kineti
 equations with 
ollision terms(4.21) for fermions and (4.22) for heavy bosons, leading to��s�lo
 = ��s�f + ��s�h.b. = Z d4p(2�)4  d ln eFfFfCf + 12 ln eFh.b.Fh.b.Ch.b.! ; (5.13)where s�lo
 is given by the sum of the proper fermion (s�f ) and heavy-boson (s�h.b.) 
ontri-butions. The thermodynami
 entropy for this system, i.e. for � given by diagram (4.17),has re
ently been obtained in ref. [6℄. Here we present the 
orresponding nonequilibriumentropy 
ow together with an aÆrmation of the H-theorem also for this 
ase. The 
ollisionterm, indeed, be
omes��s�lo
= d Z d4p1(2�)4 d4p2(2�)4 d4pb(2�)4g2(2�)4Æ4 (p1 � p2 � pb)� ln eF1F2Fh.b.Ff1 eFf2 eFh.b. � eFf1Ff2Fh.b. � Ff1 eFf2 eFh.b.� � 0; (5.14)whi
h is non-negative.Our representation of the entropy of a system intera
ting via two-body potential (i.e. as asum of a purely fermioni
 part and that of the arti�
ially introdu
ed heavy boson) is alsovery similar to that derived by Riedel [49℄ within the ring-diagram model of �-derivablethermodynami
s. In both 
ases, the bosoni
 part of the entropy s�h.b. takes a

ount of thefermion{fermion intera
tion 
al
ulated within the ring-diagram approximation (4.20). Inthermodynami
s, this intera
tion part of the entropy gives rise to the famous 
orre
tionto the spe
i�
 heat of liquid 3He [49{51℄: � T 3 lnT , where T is the temperature. As hasbeen found by Carneiro and Pethi
k [50℄, this 
orre
tion to the spe
i�
 heat emergesalready solely from the third diagram of the whole ring series (4.20). To demonstratethe same within our kineti
 approa
h, we should 
onsider the �-derivable model (4.12)32



involving only the �rst three ring diagrams. Moreover, sin
e the lo
al entropy expression(
f. Eq. (5.5)) derived above does not 
ontain su
h kind of 
orre
tions, one has to expli
itly
onsider memory e�e
ts in the 
ollision term (4.35).5.5 Memory E�e
ts in Entropy Flow and H-TheoremWe assume that the fermion{fermion potential intera
tion is su
h that the 
orrespondingtransition rate (4.15) is always non-negative, so that the H-theorem takes pla
e in thelo
al approximation, i.e. when we keep only C(2) + C(3)lo
 . Our aim now is to derive theentropy, whi
h takes into a

ount memory e�e
ts in the 
ollision term (C(3)mem).Pro
eeding similarly to that in subse
t. 5.2, we multiply Eq. (3.27) by � ln( eF=A), Eq.(3.26) by � ln(F=A), sum and integrate it over d4p=(2�)4. Thus, we arrive at the equation��s�lo
(X) = Tr Z d4p(2�)4 ln eFF (C(2) + C(3)lo
 ) + Tr Z d4p(2�)4 ln eFF C(3)mem; (5.15)where s�lo
 is still the Markovian entropy 
ow de�ned by Eq. (5.5). Our aim here is topresent the last term on the r.h.s. of Eq. (5.15) in the form of full x-derivativeTr Z d4p(2�)4 ln eFF C(3)mem = ���s�mem(X) + Æ
mem(X) (5.16)of some fun
tion s�mem(X), whi
h we then interpret as a non-Markovian 
orre
tion to theentropy 
ow of Eq. (5.5), plus a 
orre
tion (Æ
mem) whi
h is small in some sense. Indeed,this term on the r.h.s. of Eq. (5.16) is linear in X- and p-derivatives. Hen
e, it 
annot betransformed into sign-de�nite form. The only possibility whi
h is left is to 
onstru
t a fullderivative out of it. If we su

eed to �nd a proper s�mem(X), then relying on smallness ofÆ
mem we obtain �� (s�lo
 + s�mem) ' Tr Z d4p(2�)4 ln eFF (C(2) + C(3)lo
 ) � 0; (5.17)whi
h is the H-theorem for the non-Markovian kineti
 equation under 
onsideration withs�lo
 + s�mem as the proper entropy 
ow. The r.h.s. of Eq. (5.17) is non-negative due to ourassumption that the 
orresponding transition rate (4.15) is always non-negative.Hen
e, 
onsidering the last term on the r.h.s. of Eq. (5.15) we substitute expression (4.35)for C(3)mem, shift the integration variable p! p� p0=2 and arrive atTr Z d4p(2�)4 ln eFF C(3)mem= i2 Z d4p(2�)4 d4p0(2�)4 "eL+�(X; p+ p02 ; p� p02 )� eL�+(X; p+ p02 ; p� p02 )#33



� nL+�(X; p0); L�+(X; p0)op0;X ln eF (X; p� p0=2)F (X; p� p0=2) : (5.18)By taking the average of Eq. (5.18) with that with p0 and �p0 inter
hanged we arrive atthe symmetri
 form of this equationTr Z d4p(2�)4 ln eFF C(3)mem= i4 Z d4p(2�)4 d4p0(2�)4 "eL�+(X; p+ p02 ; p� p02 )� eL+�(X; p+ p02 ; p� p02 )#�fL�+(X; p0); L+�(X; p0)gp0;X ln eL+�(X; p+ p0=2; p� p0=2)eL�+(X; p+ p0=2; p� p0=2) ; (5.19)whi
h after simple algebrai
 transformations 
an be de
omposed into two termsTr Z d4p(2�)4 ln eFF C(3)mem = 
mem + Æ
mem; (5.20)with
mem(X)= i2 Z d4p(2�)4 d4p0(2�)4 (L�+(X; p0); L+�(X; p0)eL�+  X; p+ p02 ; p� p02 !� "ln eL+�(X; p+ p0=2; p� p0=2)eL�+(X; p+ p0=2; p� p0=2) � 1#)p0;X ; (5.21)
Æ
mem(X)= i2 Z d4p(2�)4 d4p0(2�)4 "nL�+(X; p0); L+�(X; p0)op0;X eL�+  X; p+ p02 ; p� p02 !� (L�+(X; p0); eL�+  X; p+ p02 ; p� p02 ! ln eL+�(X; p+ p0=2; p� p0=2)eL�+(X; p+ p0=2; p� p0=2))p0;X� L+�(X; p0)# : (5.22)Using partial integration, we have subdivided the quantities in Eq. (5.20) in su
h a waythat the �rst term 
mem takes the form of the full divergen
e, and thus de�nes the non-Markovian 
ontribution to the entropy 
ow (
f. Eq. (5.16))s�mem(X)=� i2 Z d4p(2�)4 d4p0(2�)4 eL�+  X; p+ p02 ; p� p02 !L+�(X; p0)� "ln eL+�(X; p+ p0=2; p� p0=2)eL�+(X; p+ p0=2; p� p0=2) � 1# �L�+(X; p0)�p0� : (5.23)34



This 
mem-term remains non-zero even in lo
al thermal equilibrium, whi
h is de�ned by theformer equilibrium relations (B.1){(B.4) but with temperature T (X), 4-velo
ity U�(X)and 
hemi
al potential �(X) depending on the 
oordinate X. On the other hand, as weshow below, the se
ond term Æ
mem vanishes in the limit of lo
al thermal equilibrium.In lo
al thermal equilibrium the Kubo-Martin-S
hwinger 
ondition (B.1) provides thefollowing relations eL+�(X; p+ p0=2; p� p0=2)eL�+(X; p+ p0=2; p� p0=2)!lo
.Eq. =  L+�(X; p0)L�+(X; p0)!lo
.Eq. = exp p0�U�(X)T (X) ! ; (5.24)whi
h 
an also be derived from (B.2){(B.5) pro
eeding from de�nitions of Lij (4.26) andeLij (4.27). Guided by (5.24) we write the eLij ratio in the ln-term of (5.22) aseL+�(X; p+ p0=2; p� p0=2)eL�+(X; p+ p0=2; p� p0=2) = L+�(X; p0)L�+(X; p0) (1 + �); (5.25)where � is expe
ted to be small within the validity range of the quantum four-phase-spa
ekineti
 equation (3.26), i.e. j�j � jf�
j. Substituting this into expression (5.22) for Æ
mem,the ln(L�+=L�+)-term in the se
ond Poisson bra
ket 
an
els against the �rst term, sin
ethe p-integration 
onverts the linear eLij fa
tor into Lij. Thus one obtainsÆ
mem=� i2 Z d4p(2�)4 d4p0(2�)4 nL�+; eL�+ ln(1 + �)op0;X L+�' i2 Z d4p(2�)4 d4p0(2�)4 �L�+; eL�+ 12�2�p0;X L+�; (5.26)where also the term linear in � exa
tly 
an
els out, sin
e� i2 Z d4p(2�)4 d4p0(2�)4 nL�+; eL�+�op0;X L+�=� i2 Z d4p(2�)4 d4p0(2�)4 (L�+; L�+L+� eL+� � eL�+!)p0;X L+� = 0: (5.27)As above, the eLij 
an be readily integrated over p to produ
e Lij, revealing a 
an
elation ofthe terms in the Poisson bra
ket in (5.27). Thus, Æ
mem is not only zero in lo
al equilibrium(� = 0). It is of the se
ond-order in the small parameter j�j � jf � 
j times gradients andtherefore negligible 
ompared to 
mem in (5.21) whi
h is of linear order in j�j � jf � 
jtimes gradients. Thus within the validity of the quantum four-phase-spa
e kineti
 equation(3.26) s�mem(X) as given in (5.23) represents the appropriate non-Markovian memory35




orre
tion to the entropy 
ow. In lo
al equilibrium this term 
an be further simpli�ed to(s�mem)eq = i2 Z d4p0(2�)4L�+(X; p0)L+�(X; p0) "lnL+�(X; p0)L�+(X; p0) � 1# �L�+(X; p0)�p0� (5.28)by means of relation (5.24).6 Thermodynami
 Limit of Entropy6.1 Thermodynami
 EntropyIn the Matsubara te
hnique the thermodynami
 potential 
 (see, e.g., ref. [35℄) is a fun
-tional of Matsubara Green fun
tions G(i"n;p). Its important property is that in the formanalogous to (2.3) it is stationary under variations of G(i"n;p) at �xed free MatsubaraGreen fun
tion G0(i"n;p)  Æ
ÆG(i"n;p)!G0 = 0: (6.1)Sin
e G(i"n;p) has the spe
tral representationG(i"n;p) = 1Z�1 d"02� A("0;p)i"n � "0 ; (6.2)property (6.1) implies that 
 is stationary under variations of the spe
tral density A(";p)keeping the Matsubara frequen
ies "n and, thus, the free Matsubara Green fun
tionG0(i"n;p) unaltered.In the standard way, 
f. (B.8){(B.10), the Matsubara sum over "n is 
onverted into anenergy integral over the distribution fun
tions n(" � �), 
f. (B.4). The thermodynami
potential expressed in terms of the real-time Green fun
tions and self-energies (
f. Eqs.(B.2) and (B.3)) then be
omes [50,1℄
 = Tr Z d3x d4p(2�)4n("� �) h�2Im ln ��GR�� ReGR�� ARe�Ri + �T (6.3)where " = p0 in the rest frame of the equilibrated system and �T is represented by thesame set of 
losed diagrams as �. Due to the stationarity property of 
, only the expli
it36



T -dependen
es of the Matsubara frequen
ies or in the o

upations n("��) in the integralformulation (6.3) are to be taken into a

ount in 
al
ulating the entropy fromS = � (�
=�T )� =V; (6.4)where V is the volume of the system. Thus one �ndsS = �Tr Z d4p(2�)4 �n("� �)�T h�2Im ln ��GR�� ReGR�� ARe�Ri� ��T�T (6.5)for the entropy density. With the help of the identity (B.6) we repla
e �n("� �)=�T inEq. (6.5) and then perform partial integration over p0 and obtainS=Slo
 + Smem; where (6.6)Slo
=�Tr Z d4p(2�)4 � �n("� �)� ��p0 h�2Im ln(�GR)� ReGR�i ; (6.7)Smem=����T + Tr Z d4p(2�)4 � �n("� �)� � �ARe�R��p0 ; (6.8)�(n)=�(1� n) ln(1� n)� n lnn: (6.9)We have used subs
ripts \lo
al" and \memory" to denote these two di�erent 
ontributions,be
ause below we demonstrate that they are indeed asso
iated with the lo
al (Markovian)s0lo
, 
f. Eq. (5.5), and the memory (non-Markovian) s0mem, 
f. Eq. (5.23), parts of thekineti
 entropy. Taking derivatives in Eq. (6.7), we readily getSlo
 = Tr Z d4p(2�)4 � �n("� �)�A0s(p) (6.10)with A0s de�ned in Eq. (5.7). Thus, Slo
, indeed, 
oin
ides with 0-
omponent of the kineti
entropy 
ow (5.6).In order to 
larify the meaning of the values Slo
 and Smem we �rst inspe
t the quasiparti
lelimit, in whi
h the spe
tral fun
tion redu
es to a delta-fun
tion. In this limit, the value(6.10) for Slo
 is given bySqplo
 = Tr Z d3p(2�)3 � �n �"(p)� ��� ; (6.11)where the quasiparti
le energy "(p) is determined by solution of the dispersion equation(3.33). The full Sqplo
 is just the sum of single-parti
le 
ontributions, as if one deals with anon-intera
ting ideal gas of quasiparti
les. This is the standard pi
ture in the quasiparti
leapproximation. Corre
tions to Sqplo
, resulting from Slo
, are of higher order in the width37



�. At the same time, Smem provides 
orre
tions to Sqplo
 even at the zero-order level in �,whi
h are asso
iated with real res
atterings of on-mass-shell quasiparti
les. This fa
t wasdemonstrated by Carneiro and Pethi
k in ref. [50℄. For Fermi liquids, they showed thatthe �rst � diagram 
ontributing to Smem is the triangle �(3) of (4.12). Contributions from�(1) and �(2) are zero. In the quasiparti
le approximation, the 
ontribution from �(3) is(
f. Eqs. (45) and (72) of ref. [50℄)Sqpmem = 112 Z d4p(2�)4 ��qpb (p)�3 �nb(p0)�T ; (6.12)where nb is the thermal o

upation (B.4) number of the arti�
ial boson. The width �b =�2ImLR of the bosoni
 loop (4.25) is given by�b(p) = V0d Z d4p0(2�)4 �nf �"0 � 12p0�nf �"0 + 12p0��Af �p0 � 12p�Af �p0 + 12p� (6.13)with "0 = p00 � � and the nf are the thermal fermion o

upations (B.4). As above, V0stands for the strength of the two-body potential. To get the quasiparti
le approximationto this width (�qpb ), one should repla
e the exa
t spe
tral fun
tion Af in (6.13) by itsquasiparti
le approximation Aqpf . Note that now Sqpmem is expressed in terms of bosoni
quantities nb and �b, although initially we have started with a purely fermioni
 systemwith two-body intera
tion. This fa
t provides the link to the thermodynami
 
al
ulationof Riedel [49℄, where the 
orre
tion to the standard quasiparti
le entropy of Fermi liquidsis presented in the form of an e�e
tive boson 
ontribution re-summing the entire seriesof ring diagrams rather than 
onsidering only the �rst three of them as in Eq. (4.12).At low temperatures, Sqpmem � T 3 lnT [50℄ gives the leading 
orre
tion to the standardquasiparti
le entropy. This is the famous 
orre
tion to the spe
i�
 heat of liquid 3He[51,49,50℄. Sin
e this 
orre
tion is quite 
omparable (numeri
ally) to the leading termin the spe
i�
 heat (� T ), one may 
laim that liquid 3He is a liquid with quite strongmemory e�e
ts from the point of view of kineti
s.Note that using the thermodynami
 relation E + PV � �N = TSV for homogenoussystems a di�erent but even simpler form of the thermodynami
 entropy in
luding memory
orre
tions follows from Eq. (3.40)TS = Tr Z d4p(2�)4A(p) n(p0 � �)�p0 + 23�0(p)� �� (6.14)with the free single-parti
le energy �0(p) = p2=(2m) in non-relativisti
 kinemati
s.38



6.2 Non-Markovian Entropy in EquilibriumWe now evaluate the memory 
orre
tion (s�mem)eq to the kineti
 entropy 
ow (see Eq.(5.28)) in thermal equilibrium. Pro
eeding from the de�nition of Lij (4.26), as well asfrom equilibrium relations (B.2){(B.4), and identity (B.5), we present Lij in the formL�+(p) = inb(!)�b(p); L+�(p) = i [1 + nb(!)℄ �b(p); (6.15)where ! = p�U� , �b is de�ned by Eq. (6.13), and nb is the bosoni
 o

upation number.Now, (s�mem)eq of Eq. (5.28) takes the form(s�mem)eq=�12 Z d4p(2�)4nb(!) [1 + nb(!)℄ �2b(p)�!T � 1� ��p� [nb(!)�b(p)℄ (6.16)=�12 Z d4p(2�)4nb (1 + nb)�!T � 1� �3b�nb�p� + 13 ��3b�p� nb!= 16U� Z d4p(2�)4�3b �n2b (1 + nb) !T 2 � : (6.17)The last line is obtained through partial integration, expli
itly taking the derivatives ofthe bosoni
 o

upations and using the equilibrium property dnb=d! = �nb(1 + nb)=T .Now, we 
hange the integration variable p! �p in the last line of Eq. (6.17) and use theparity properties valid for bosoni
 loops, phonons or relativisti
 bosons�b(�!) = ��b(!); nb(�!) = � [1 + nb(!)℄ ; (6.18)and arrive at(s�mem)eq=�16U� Z d4p(2�)4�3b �nb (1 + nb)2 !T 2 � : (6.19)Taking the average of the r.h.s. in (6.19) and the last line of Eq. (6.17) and using theidentity (B.7) we �nally arrive at(s�mem)eq= 112U� Z d4p(2�)4�3b�nb�T : (6.20)The 0-
omponent of (6.20) pre
isely 
oin
ides with the thermodynami
 quantity Sqpmemgiven by Eq. (6.12) in the quasiparti
le approximation, provided we 
onsider it in the restframe of the matter, i.e. at U� = f1; 0g . This fa
t again justi�es the label \memory" forthe thermodynami
 quantity Smem. 39



Thus, we have demonstrated that our kineti
 entropy, in
luding memory 
ontributions,
oin
ides with the thermodynami
 entropy in thermal equilibrium.7 Con
lusion and Prospe
tsWe suggested to follow Baym's �-derivable prin
iple to 
onstru
t 
onsistent transporttheories whi
h also apply to unstable parti
les. The �-derivable s
heme has a 
ouple ofimportant 
on
eptual advantages [33℄. First, it leads to 
losed, i.e. self-
onsistent equationswhi
h 
an be 
losed at any order or loop level of the diagrams of �, this way de�ning ane�e
tive theory. We showed in ref. [1℄ that the original properties of � are also valid forgenuine nonequilibrium systems des
ribed within the real-time formalism, namely thatthe so 
onstru
ted approximation is 
onserving and at the same time thermodynami
ally
onsistent. The �-derivable energy momentum tensor has expli
itly been 
onstru
ted forthe 
ontour Dyson equation. As further shown in ref. [1℄ the s
heme 
an be easily extendedto in
lude relativisti
 kinemati
s and dynami
al 
lassi
al boson �elds, su
h as mean �eldsor 
ondensates. The latter permit to in
lude soft modes in terms of su
h 
lassi
al �elds,mu
h in the spirit of the kineti
 pi
ture [69,70,13℄ of hard thermal loop approximations[71℄.In this paper we showed that the 
onserving properties of a �-derivable s
heme also holdfor the quantum four-phase-spa
e kineti
 equations, if all phase-spa
e distribution fun
-tions vary slowly a
ross the spa
e-time region. The usual restri
tion to small mass widths(mass-shell 
ondition) for the parti
les involved was avoided. We demonstrated that themass-shell equation is exa
tly equivalent to the quantum four-phase-spa
e kineti
 equa-tion in the BM-
hoi
e while deviates from that of the KB-
hoi
e in se
ond-order gradientterms. Besides the usual drift and 
ollision terms, present in any transport equation, likein Landau's Fermi liquid theory [56,35,51℄, a genuine width and a 
u
tuation-dependentterm appear in the quantum four-phase-spa
e kineti
 equation. The latter term, normallydropped within the quasiparti
le approximation, gives rise to a ba
k-
ow 
ontribution inthe 
urrents and produ
es width and 
u
tuation dependent 
ontributions to the energymomentum. This term is indeed essential in order to preserve the 
onservation laws in the
ase of broad damping widths. Along with the kineti
 equation a lo
al retarded equationhas to be solved whi
h provides the dynami
al information about the spe
tral fun
tionsof the parti
les.The stru
ture of the 
ollision term was studied by means representing the � fun
tional interms of \�+" and \+�" Green fun
tions whi
h represent Wigner phase-spa
e densities[13℄. The advantage of the \�+" and \+�" representation is that it leads to a naturalde
omposition of the 
ollision term into multi-parti
le pro
esses with Feynman transitionamplitudes whi
h determine the partial rates. Furthermore, it has been dis
ussed thatsometimes it appears advantageous to a

ount for su
h memory e�e
ts by in
luding new\arti�
ial" parti
les (e.g. bosonization of parti
le-hole ex
itations) whi
h then lead tolo
al 
ollision terms. 40



We also addressed the question whether a 
losed nonequilibrium system approa
hes thethermodynami
 equilibrium during its evolution. Investigating the stru
ture of the 
olli-sion term in the �-derivable s
heme we obtained de�nite expressions for a lo
al (Marko-vian) entropy 
ow and were able to expli
itly demonstrate the H-theorem for some of the
ommon 
hoi
es of � approximations. The expression for the lo
al entropy 
ow holds be-yond the quasiparti
le pi
ture, and thus generalizes the well-known Boltzmann expressionfor the kineti
 entropy. To demonstrate memory e�e
ts in the quantum four-phase-spa
ekineti
s, we 
onsidered a parti
ular 
ase of a system of fermions intera
ting via two-bodyzero-range potential. We 
al
ulated the memory (non-Markovian) 
ontribution to the ki-neti
 entropy, whi
h merges the equilibrium limit with its famous 
orre
tion to the spe
i�
heat of liquid 3He [49{51℄: � T 3 lnT .Mass-width e�e
ts are important for des
ription of various physi
al systems. As for imme-diate appli
ations of the developed formalism, we see the des
ription of wide resonan
es(su
h as �-meson, �-resonan
e, et
.) in nonequilibrium hadron matter produ
ed in heavy-ion 
ollisions. Sin
e the widths of these resonan
es are of the order (or even larger) thanthe mean ex
itation energy per parti
le, a self-
onsistent treatment of su
h widths ef-fe
ts is required. Up to now, width e�e
ts were 
onsidered either within some simpli�eddynami
s with phenomenologi
al Landau{Migdal residual intera
tion [11,12℄ or within asimple �-derivable approximation at thermal equilibrium and in the dilute gas limit [66℄.In parti
ular, it was demonstrated in ref. [13℄, that the soft-photon produ
tion is sensi-tive to dynami
al and width e�e
ts. The interplay between the width and the in-mediumpopulation of �-mesoni
 states may also simulate a shift of the �-meson mass in the nu-
lear medium, and thus may a�e
t the produ
tion of di-leptons in relativisti
 heavy-ion
ollisions. It is of interest to study these e�e
ts within a dynami
al approa
h, su
h as thes
heme presented here.Further appli
ations 
on
ern relativisti
 plasmas, like QCD and QED plasmas. The plasmaof de
on�ned quarks and gluons was present in the early Universe, it may exist in 
oresof massive neutron stars, and may also be produ
ed in laboratory in ultra-relativisti
nu
leus{nu
leus 
ollisions. All these systems need a proper treatment of parti
le transport.Perturbative des
riptions of soft-quanta propagation su�ers from infrared divergen
es andone needs a systemati
 study of the mass-width e�e
ts in order to treat them, 
f. ref.[13℄. A thermodynami
 �-derivable approximation for hot relativisti
 QED plasmas|agas of ele
trons and positrons in a thermal bath of photons|was re
ently 
onsidered byVanderheyden and Baym [6℄. Their treatment may also be applied to the high-temperaturesuper-
ondu
tors and the fra
tional quantum Hall e�e
t [72,73℄. Our approa
h allows fora natural generalization of su
h a �-derivable s
hemes to the dynami
al 
ase.Another appli
ation, as we see it, 
on
erns the des
ription of the neutrino transport insupernovas and hot neutron stars during �rst few minutes of their evolution. At an initialstage, neutrinos typi
ally of thermal energy, produ
ed outside (in the mantel) and insidethe neutron-star 
ore, are trapped within the regions of produ
tion. However, 
oherente�e
ts in neutrino produ
tion and their res
attering on nu
leons [13℄ redu
e the opa
ityof the nu
lear-medium and may allow for soft neutrinos to es
ape the 
ore and 
ontribute41



to the heating of the mantle. The extra energy transport may be suÆ
ient to blow o�the supernova's mantle in the framework of the sho
k-reheating me
hanism [74℄. Thedes
ription of the neutrinos transport in the semi-transparent region should therefore betreated with the due a

ount of mass-widths e�e
ts.A
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t RUS-656-96).APPENDICESA Matrix NotationIn 
al
ulations that apply the Wigner transformations, it is ne
essary to de
ompose thefull 
ontour into its two bran
hes|the time-ordered and anti-time-ordered bran
hes. Onethen has to distinguish between the physi
al spa
e-time 
oordinates x; : : : and the 
or-responding 
ontour 
oordinates xC whi
h for a given x take two values x� = (x�� ) andx+ = (x+� ) (� 2 f0; 1; 2; 3g) on the two bran
hes of the 
ontour (see �gure 1). Closedreal-time 
ontour integrations 
an then be de
omposed asZC dxC : : : = 1Zt0 dx� : : :+ t0Z1 dx+ : : : = 1Zt0 dx� : : :� 1Zt0 dx+ : : : ; (A.1)where only the time limits are expli
itly given. The extra minus sign of the anti-time-ordered bran
h 
an 
onveniently be formulated by a f�+g \metri
" with the metri
tensor in f�+g indi
es��ij�= ��ij� = 0B� 1 00 �11CA (A.2)42



whi
h provides a proper matrix algebra for multi-point fun
tions on the 
ontour with \
o"-and \
ontra"-
ontour values. Thus, for any two-point fun
tion F , the 
ontour values arede�ned asF ij(x; y) :=F (xi; yj); i; j 2 f�;+g; withF ji (x; y) :=�ikF kj(x; y); F ij(x; y) := F ik(x; y)�kiFij(x; y) :=�ik�jlF kl(x; y); �ki = Æik (A.3)on the di�erent bran
hes of the 
ontour. Here summation over repeated indi
es is implied.Then 
ontour folding of 
ontour two-point fun
tions, e.g. in Dyson equations, simplybe
omesH(xi; yk) = H ik(x; y) = ZC dzCF (xi; zC)G(zC; yk) = Z dzF ij(x; z)Gjk(z; y) (A.4)in the matrix notation.For any multi-point fun
tion the external point xmax, whi
h has the largest physi
al time,
an be pla
ed on either bran
h of the 
ontour without 
hanging the value, sin
e the
ontour-time evolution from x�max to x+max provides unity. Therefore, one-point fun
tionshave the same value on both sides on the 
ontour.Due to the 
hange of operator ordering, genuine multi-point fun
tions are, in general,dis
ontinuous, when two 
ontour 
oordinates be
ome identi
al. In parti
ular, two-pointfun
tions like iF (x; y) = DTC bA(x) bB (y)E be
ome
iF (x; y)=0BB� iF��(x; y) iF�+(x; y)iF+�(x; y) iF++(x; y)1CCA = 0BBB�DT bA(x) bB (y)E � D bB (y) bA(x)ED bA(x) bB (y)E DT �1 bA(x) bB (y)E1CCCA ; (A.5)where T and T �1 are the usual time and anti-time ordering operators. Sin
e there arealtogether only two possible orderings of the two operators, in fa
t given by the Wightmanfun
tions F�+ and F+�, whi
h are both 
ontinuous, not all four 
omponents of F areindependent. Eq. (A.5) implies the following relations between nonequilibrium and usualretarded and advan
ed fun
tionsFR(x; y) = F��(x; y)� F�+(x; y) = F+�(x; y)� F++(x; y):=�(x0 � y0) �F+�(x; y)� F�+(x; y)� ;FA(x; y) = F��(x; y)� F+�(x; y) = F�+(x; y)� F++(x; y):=��(y0 � x0) �F+�(x; y)� F�+(x; y)� ; (A.6)43



where �(x0 � y0) is the step fun
tion of the time di�eren
e. The rules for the 
o-
ontourfun
tions F�� et
. follow from Eq. (A.3).For su
h two point fun
tions 
omplex 
onjugation implies�iF�+(x; y)��= iF�+(y; x) ) iF�+(X; p) = real;�iF+�(x; y)��= iF+�(y; x) ) iF+�(X; p) = real;�iF��(x; y)��= iF++(y; x) ) �iF��(X; p)�� = iF++(X; p);�FR(x; y)��=FA(y; x) ) �FR(X; p)�� = FA(X; p); (A.7)where the right parts spe
ify the 
orresponding properties in the Wigner representation.Diagrammati
ally these rules imply the simultaneous swapping of all + verti
es into �verti
es and vi
e versa together with reversing the line arrow-sense of all propagator linesin the diagram.In 
omponents the determination of the self-energy from the fun
tional variation of � (
f.Eq. (2.7)) reads�i�ik(x; y) = � Æi�ÆiGki(y; x) ) �i�ik(X; p) = � Æi�ÆiGki(X; p) ; i; k 2 f�+g (A.8)the right expression given in the Wigner representation. Note that the variation over af+�g-\
ontra-variant" Green fun
tion Gki produ
es a f+�g-\
ovariant" self-energy �ik,
f. (A.3). This o

urs due to the same reason dis
ussed above, 
f. Eq. (A.1), when dealingwith f+�g matrix notation with integrations over physi
al times, rather than 
ontourtimes. The extra minus signs o

urring for the anti-time ordered bran
hes are pre
iselytaken into a

ount by the \
ovariant" notation (A.3). Fu
tional variation, e.g. in Eqs.(A.8), di�er for fun
tions in 
oordinate and momentum spa
eÆf(x0)Æf(x) = Æ4(x� x0); Æf(p0)Æf(p) = (2�)4Æ4(p� p0); (A.9)be
ause of di�erent integration measures d4x and d4p=(2�)4, respe
tively.B Equilibrium RelationsFor 
ompleteness of the thermodynami
 
onsideration, we expli
itly present here equilib-rium relations between quantities on the real-time 
ontour. Basi
ally, they follow fromthe Kubo{Martin{S
hwinger 
ondition [75℄44



G�+(p) = �G+�(p)e�("��)=T ; ��+(p) = ��+�(p)e�("��)=T ; (B.1)where " = p�U� , while U� and � are a global 4-velo
ity of the system and a 
hemi-
al potential related to a 
onserved 
harge, respe
tively. All the Green fun
tions 
an beexpressed through the retarded and advan
ed Green fun
tionsGik(p) = 0BB�GR(p)� inA(p) �inA(p)�i [1� n℄A(p) �GA(p)� inA(p)1CCA ; (B.2)i; k mean + or �, and the self-energies take a similar form�ik(p) = 0BB��R(p)� in�(p) �in�(p)i [1� n℄ �(p) ��A(p)� in�(p)1CCA : (B.3)Here n = n("� �) = [exp(("� �)=T )� 1℄�1 (B.4)are thermal Fermi/Bose{Einstein o

upations. They obey some useful relations betweenfermion nf and boson nb o

upation numbers, likenf;b(�+ !=2) [1� nf;b(�� !=2)℄ = [nf;b(�� !=2)� nf;b(�+ !=2)℄nb(!); (B.5)or derivatives with respe
t to T�n("� �)�T =��� �n("� �)��" ; �(n) = �[1� n℄ ln[1� n℄� n lnn; (B.6)�n("� �)�T = "� �T 2 n (1� n) : (B.7)The link between the Matsubara te
hnique and the real-time formulation used here 
anbe provided by extending the real time 
ontour by an imaginary tail going to �i�, � =1=T , this way de�ning the equilibrium density operator exp[��( bH � � bN )℄. Thus, thelink is provided by 
onsidering analyti
 expressions like the \
ontour tra
e" of two-pointfun
tions iFeq(x; y) = DTC bA(x) bB (y)EZCfeqg Feq(t; t+ 0)dt= �i�Z0 F�+eq (t; t)dt = �i� 1Z�1 d"2� n("� �) �FAeq(")� FReq(")�45



= 1Xm=�1 1Z�1 d"2� F Seq(")i"m + �AB � " = 1Xm=�1FMatsubara(i"m): (B.8)Here the 
ontour time t + 0 is pla
ed in�nitesimally behind t on the 
ontour in order tospe
ify a �xed operator ordering of the two external operators of F , �AB is the 
hemi
alpotential asso
iated to D bA(x) bB (y)E, and �AB = ��BA. The step towards the dis
reteMatsubara sum is provided by standard residue te
hnique, 
f. ref. [76℄, �g. 25.4 �. Thesum runs over the Matsubara energies"m = 8><>: (2m+ 1)�T for fermions2m�T for bosons. (B.9)Thereby, the Matsubara form of the two-point fun
tion Feq has the spe
tral representationFMatsubara(z) = 1Z�1 d"2� F Seq(")z + �AB � " = 8>><>>:FReq(z + �AB) for Im z > 0FAeq(z + �AB) for Im z < 0 (B.10)in terms of the real time 
ontour spe
tral fun
tion F Seq = �2ImFReq.C Diagram rulesFor relativisti
 theories with lo
al verti
es the diagrammati
 rules on the 
ontour areidenti
al to the standard Feynman rules ex
ept that all time integrations are to be repla
edby 
ontour integrations. The diagrams 
ontributing to � are 
al
ulated as diagrams withone external point, namely the intera
tion part of the Lagrangian D bLint(x)E, then 
ontourintegrated over x and weighted with 1=n�, where n� 
ounts the number verti
es in thediagram. These diagrams have to be two-parti
le irredu
ible with all lines representingfull propagators. For details about the 
orresponding diagrammati
 rules on the 
ontoursee ref. [1℄.The rules for non-relativisti
 two-body intera
tions are also naturally extended to the
ontour C withbH int(t1)= 12 Z d3x1 ZC d4x2 b	y(x1) b	y(x2)V (x1 � x2) b	(x2) b	(x1) (C.1)with V (x1 � x2) = U(x1 � x2) ÆC(t1 � t2) now de�ned for 
ontour times t1, t2. One hashowever to observe that for the instantaneous two-body intera
tions the diagrammati
46



elements are given by � � � � � �� � � � � �r r = �iV (x1 � x2), i.e. without the fa
tor 1=2 
ontainedin (C.1). With respe
t to the topologi
al rules, indeed, the intera
tion lines are treatedlike bosons in the relativisti
 theory with lo
al verti
es. To this extend we re
all that theexpe
tation value for D bH int(t)E = 12 � fdiagramsg has an expli
it fa
tor 12 in front of the
orresponding diagrams. Correspondingly, for the n� vertex 
ounting for the diagramsof � ea
h two-body intera
tion line 
ounts as two verti
es, 
f. the rules given in ref.[35℄ for the thermodynami
 potential in Matsubara formalism. However, the two-parti
leirredu
ibility of �-diagrams is de�ned with respe
t to 
utting dynami
al propagators only,i.e. leaving the V -intera
tion lines untou
hed. In f�+g-matrix notation the above rulesimply, 
f. [54℄ se
t. X,� � � � � � �� � � � � �r+ r+��= � � � � � �� � � � � �r� r� = �iV (x1 � x2); � � � � � �� � � � � �r� r+ = � � � � � �� � � � � �r+ r� = 0: (C.2)Referen
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