
TRANSPORT DYNAMICS OF BROAD RESONANCESJ�orn Knoll, GSI, DarmstadtJ.Knoll�gsi.de; http://theory.gsi.deAbstra
tThe propagation of short life time parti
les with 
onsequently broad mass width are dis
ussedin the 
ontext of transport des
riptions. In the �rst part some known properties of �nite life timeparti
les su
h as resonan
es are reviewed and dis
ussed at the example of the �-meson. Gravede�
ien
ies in some of the transport treatment of broad resonan
es are dis
losed and quanti�ed.The se
ond part addresses the derivation of transport equations whi
h permit to a

ount for thedamping width of the parti
les. Baym's �-derivable method is used to derive a self-
onsistent and
onserving s
heme, whi
h ful�ls detailed balan
e relations even in the 
ase of parti
les with broadmass distributions. For this s
heme a 
onserved energy-momentum tensor 
an be 
onstru
ted.Furthermore, a kineti
 entropy 
an be derived whi
h besides the standard quasi-parti
le part alsoin
ludes 
ontributions from 
u
tuations.1 Introdu
tion and Prospe
tsWith the aim to des
ribe the 
ollision of two nu
lei at intermediate or even high energies one is
onfronted with the fa
t that the dynami
s has to in
lude parti
les like the �33 or �-meson resonan
eswith life-times of less than 2 fm/
 or equivalently with damping rates above 100 MeV. Also the 
ollisionrates dedu
ed from presently used transport 
odes are 
omparable in magnitude, whereas typi
al meankineti
 energies as given by the temperature range between 70 to 150 MeV depending on beam energy.Thus, the damping width of most of the 
onstituents in the system 
an no longer be treated as aperturbation.As a 
onsequen
e the mass spe
tra of the parti
les in dense matter are no longer sharp deltafun
tions but rather a
quire a width due to 
ollisions and de
ays. The 
orresponding quantum prop-agators G (Green's fun
tions) are no longer the ones as in standard text books for �xed mass, buthave to be folded over a spe
tral fun
tion A(�; ~p) of �nite width. One thus 
omes to a pi
ture whi
huni�es resonan
es whi
h have already a de
ay width in va
uum with the \states" of parti
les in densematter, whi
h obtain a width due to 
ollisions (
ollisional broadening). The theoreti
al 
on
epts for aproper many body des
ription in terms of a real time non equilibrium �eld theory have already beendevised by S
hwinger, Kadano�, Baym and Keldysh [1℄ in the early sixties. First investigations of thequantum e�e
ts on the Boltzmann 
ollision term were given Danielewi
z [2℄, the prin
ipal 
on
eptualproblems on the level of quantum �eld theory were investigated by Landsmann [3℄, while appli
ationswhi
h seriously in
lude the �nite width of the parti
les in transport des
riptions were 
arried out onlyin re
ent times, e.g.[2,4-10℄ For resonan
es, e.g. the �33-resonan
e, it was natural to 
onsider broadmass distributions and ad ho
 re
ipes have been invented to in
lude this in transport simulation mod-els. However, many of these re
ipes are not 
orre
t as they violate some basi
 prin
iples like detailedbalan
e [4℄, and the des
ription of resonan
es in dense matter has to be improved.In this talk the transport dynami
s of short life time parti
les are reviewed and dis
ussed. In the�rst part some known properties of resonan
es are presented. These 
on
ern the equilibrium and lowdensity (virial) limits. Some example dis
ussions are given for the di-lepton spe
trum resulting fromthe de
ay of �-mesons in a dense nu
lear environment, both in thermal equilibrium and in a quasi-frees
attering pro
ess. On the basis of this some de�
ien
ies of presently used transport 
odes for thetreatment of broad resonan
es are dis
losed and quanti�ed. They a�e
t the di-lepton spe
tra alreadyon a qualitative level and signal that the low mass side is grossly underestimated in the respe
tive
al
ulations. This motivates the question dis
ussed in the se
ond part, namely, how to 
ome to aself-
onsistent, 
onserving and thermodynami
ally 
onsistent transport des
ription of parti
les with�nite mass width. The 
on
eptual starting point will be a formulation within the real-time non-equilibrium �eld theory. The derivation is based on and generalizes Baym's �-fun
tional method



[11℄. The �rst-order gradient approximation provides a set of 
oupled equations of time-irreversiblegeneralized kineti
 equations for the slowly varying spa
e-time part of the phase-spa
e distributionssupplemented by retarded equations. The latter a

ount for the fast mi
ro-s
ale dynami
s representedby the four-momentum part of the distributions. Fun
tional methods permit to derive a 
onservedenergy-momentum tensor whi
h also in
ludes 
orre
tions arising from 
u
tuations besides the standardquasi-parti
le terms. Memory e�e
ts [12-14℄ appearing in 
ollision term diagrams of higher order aswell as the formulation of a non-equilibrium kineti
 entropy 
ow 
an also be addressed [14℄.2 PreliminariesThe standard text-book transition rate in terms of Fermi's golden rule, e.g. for the photon radiationfrom some initial state jii with o

upation ni to �nal states jfiW =Pif ni(1� nf) ������ 6if 6- ������ 2 (1 + n!) Æ(Ei � Ef � !~q) (1)with o

upation n! for the photon, is limited to the 
on
ept of asymptoti
 states. It is thereforeinappropriate for problems whi
h deal with parti
les of �nite life time. One rather has to go to the\
losed" diagram pi
ture, where the same rate emerges asW = �� ���- (1 + n!)Æ(! � !~q) (2)with now two types of verti
es � and + for the time-ordered and the anti-time ordered parts of thesquare of the amplitude. Together with the orientation of the + ��! and � +�! propagator lines one obtainsunique diagrammati
 rules for the 
al
ulation of rates rather than amplitudes. The just mentionedpropagator lines de�ne the densities of o

upied states or those of available states, respe
tively. There-fore all standard diagrammati
 rules 
an be used again. One simply has to extend those rules to thetwo types of verti
es with marks � and + and the 
orresponding 4 propagators, the usual time-orderedpropagator � ��! between two � verti
es, the anti-time-ordered one + +�! between two + verti
es andthe mixed + ��! or � +�! ones with �xed operator ordering (Wightman-fun
tions) as densities of o

upiedand available states. For details I refer to the textbook of Lifshitz and Pitaevski [15℄.
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Fig. 1: Closed real-time 
ontour with two external points x; y on the 
ontour.Equivalently the non-equilibrium theory 
an entirely be formulated on one spe
ial time 
ontour,the so 
alled 
losed time path [1℄, �g. 1, with the time argument running from some initial time t0 toin�nity and ba
k with external points pla
ed on this 
ontour, e.g., for the four di�erent 
omponentsof Green's fun
tions or self energies. The spe
ial �+ or +� 
omponents of the self energies de�ne thegain and loss terms in transport problems, 
.f. eq. (2) and eqs. (23-25) below.The advantage of the formulation in terms of \
orrelation" diagrams, whi
h no longer refer toamplitudes but dire
tly to physi
al observables, like rates, is that now one is no longer restri
ted tothe 
on
ept of asymptoti
 states. Rather all internal lines, also the ones whi
h originally referred tothe \in" or \out" states are now treated on equal footing. Therefore now one 
an deal with \states"whi
h have a broad mass spe
trum. The 
orresponding Wigner densities + ��! or � +�! are then no longer



on-shell Æ-fun
tions in energy (on-mass shell) but rather a
quire a width, as we shall dis
uss in moredetail.For slightly inhomogeneous and slowly evolving systems, the degrees of freedom 
an be subdividedinto rapid and slow ones. Any kineti
 approximation is essentially based on this assumption. Then forany two-point fun
tion F (x; y), one separates the variable � = (t1 � t2; ~r1 � ~r2), whi
h relates to therapid and short-ranged mi
ros
opi
 pro
esses, and the variable X = 12(t1 + t2; ~r1 + ~r2), whi
h refers toslow and long-ranged 
olle
tive motions. The Wigner transformation, i.e. the Fourier transformationin four-spa
e di�eren
e � = x� y to four-momentum p of the 
ontour de
omposed 
omponents of anytwo-point 
ontour fun
tionF ij(X; p) = Z d�eip�F ij (X + �=2; X � �=2) ; where i; j 2 f�+g (3)leads to a (
o-variant) four phase-spa
e formulation of two-point fun
tions. The Wigner transformationof Dyson's equation (19) in f�+g notation is straight forward. For details and the extensions to in
ludethe 
oupling to 
lassi
al �eld equations we refer to ref. [16℄.Standard transport des
riptions usually involve two approximation steps: (i) the gradient expan-sion for the slow degrees of freedom, as well as (ii) the quasi-parti
le approximation for rapid ones.We intend to avoid the latter approximation and will solely deal with the gradient approximation forslow 
olle
tive motions by performing the gradient expansion of the 
oupled Dyson equations. Thisstep indeed preserves all the invarian
es of the � fun
tional in a �-derivable approximation.It is helpful to avoid all the imaginary fa
tors inherent in the standard Green's fun
tion formula-tion and 
hange to quantities whi
h are real and positive either in the homogeneous or in appropriate
oarse graining limits. They then have a straight physi
al interpretation analogously to the Boltzmannequation. We de�neF (X; p) = A(X; p)f(X; p) = �iG�+(X; p);eF (X; p) = A(X; p)[1� f(X; p)℄ = iG+�(X; p);) with A(X; p)� �2Im GR(X; p) = eF � F (4)for the generalized Wigner fun
tions F and eF with the 
orresponding four phase spa
e distributionfun
tions f(X; p), the Fermi/Bose fa
tors [1 � f(X; p)℄ and spe
tral fun
tion A(X; p). A

ording tothe retarded relations between Green's fun
tions Gij, only two of these real fun
tions are required for a
omplete dynami
al des
ription. Here and below upper signs relate to fermion quantities, whereas lowersigns refer to boson quantities. As shown in ref. [16℄ mean �elds and 
ondensates, i.e. non-vanishingexpe
tation values of one-point fun
tions 
an also be in
luded.3 Thermodynami
 EquilibriumThe thermodynami
 equilibrium leads to a lot of simplifying relations among the kineti
 quantities.All quantities be
ome spa
e-time independent. The Kubo-Martin-S
hwinger 
ondition determines thedistribution fun
tions to be of Fermi-Dira
 or Bose-Einstein type, respe
tivelyfeq(X; p) = 1= (exp ((p0 � �)=T )� 1) : (5)Here � is the 
hemi
al potential. The spe
tral fun
tion attains a formAeq(X; p) = �(p)M2(p) + �2(p)=4 with ( �(p) = �2Im �R(p);M(p) =M0(p)� Re �R(p); M0(p) = p�0 � p�0(~p): (6)This form is exa
t through the four-momentum p = (p0; ~p) dependen
e of the retarded self-energy�R(p). Thereby M0(p) = p�0 � p�0(~p) = 0 is the free dispersion relation with � = 1 or 2 for thenon-relativisti
 S
hr�odinger or the relativisti
 Klein-Gordon 
ase, respe
tively. In the non-equilibrium
ase all quantities be
ome fun
tions of the spa
e-time 
oordinates X and, of 
ourse, the distributionfun
tions f(X; p) generally also depend on three momentum ~p.



4 The Virial LimitAnother simplifying 
ase is provided by the low density limit, i.e. the virial limit. Sin
e Beth-Uhlenbe
k(1937) [17℄ it is known that the 
orre
tions to the level density are given by the asymptoti
 propertiesof binary s
attering pro
esses, i.e. in a partial wave de
omposition by means of phase-shifts, see also[18-20℄ . The reasoning 
an be summarized as follows. While for any pair the 
.m. motion remainsunaltered the relative motion is a�e
ted by the mutual two-body intera
tion. Considering a largequantization volume of radius R and a partial wave of angular momentum j, the levels follow thequantization 
ondition j(r) �! sin(kr + Æj(E)) jR ) kR + Æj(E) = n�; (7)where Æj(E) is the phase-shift at relative energy E and n is an integer 
ounting the levels. The kRterm a

ounts for the free motion part. The 
orresponding 
orre
tions to both, the level density andthermodynami
 partition sum, are given by
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��u uFig. 2: �+�� p-wave phase-shiftsand s
attering diagram.

dndE = dnfreedE + 2j + 1� dÆjdE (8)Z =Xi e�Ei=T = Z dE dndEe�E=T (9)Sin
e Z determines the equation of state, its low density limitis uniquely given by the s
attering phase-shifts. The energyderivatives of the phase-shifts are also responsible for the time-delays dis
ussed in ref. [21℄ and also for the virial 
orre
tionsto the Boltzmann 
ollision term re
ently dis
ussed in ref. [22℄.The latter is dire
tly 
onne
ted to the B-term in our gener-alized kineti
 equation (20). The advan
e of a phase-shift bya value range of � a
ross a 
ertain energy window adds onestate to the level density and points towards an s-
hannel res-onan
e. An example is the �-meson in the p-wave �+�� s
at-tering 
hannel, �g. 2. In 
ases, where the resonan
e 
ouplesto one asymptoti
 
hannel only, the 
orresponding phase-shiftsrelate to the va
uum spe
tral fun
tion Aj(p) of that resonan
evia� 4 jTin;outj2 = �in(E)�out(E)(E� � E�R(E))2 + �2tot(E)=4 (10)= 4 sin2 Æj(E) = Aj(E; ~p = 0) �tot(E): (11)Here Tin;out is the 
orresponding T -matrix element. While relation (10) is 
orre
t also in the 
ase wheremany 
hannels 
ouple to the same resonan
e, relation (11) only holds for the single 
hannel 
ase,where �in = �out = �tot. Relation (11) illustrates that the va
uum spe
tral fun
tions of resonan
es
an almost model-independently be dedu
ed from phase-shift information. In the 
ase of the �-mesonadditional information is provided by the pion form fa
tor. Also in the 
ase of two 
hannels 
ouplingto a resonan
e the energy dependen
e of phase-shifts of the two s
attering 
hannels together with theinelasti
ity 
oeÆ
ient provide stringent 
onstraints for the spe
tral fun
tion of the resonan
e [23℄.�E is the relative 
.m. energy and 
orrespondingly the momentum in A vanishes; � = 1 for non-rel. parti
les; � = 2for relativisti
 bosons, where �(E)=2E equals the energy dependent de
ay width and E2R(E) = m2R + ~p2 +Re �(p).



5 The �-meson in dense matterAn an example I like to dis
uss the properties of the �-meson and the 
onsequen
es for the de
ay intodi-leptons. The exa
t produ
tion rate of di-leptons is given by the following formuladne+e�dtdm = ��I�� ��	��e+e� ������������������������
� �� ��t t��� +������������������������
� ����	����Ie+e�t t = f�(m; ~p; ~x; t) A�(m; ~p; ~x; t) �� e+e�(m): (12)Here �� e+e�(m) / 1=m2 is the mass-dependent ele
tromagneti
 de
ay rate of the �-meson into thedi-ele
tron 
hannel. The phase-spa
e distribution f�(m; ~p; ~x; t) and the spe
tral fun
tion A�(m; ~p; ~x; t)de�ne the properties of the �-meson at spa
e-time point ~x; t. Both quantities are in prin
iple to bedetermined dynami
ally by an appropriate transport model. However till to-date the spe
tral fun
tionsare not treated dynami
ally in most of the present transport models. Rather one employs on-shellÆ-fun
tions for all stable parti
les and spe
tral fun
tions �xed to the va
uum shape for resonan
es.As an illustration the model 
ase is dis
ussed, where the �-meson just strongly 
ouples to two
hannels: naturally the �+�� 
hannel and to the �N $ �N 
hannels relevant at �nite nu
lear den-sities. The latter 
omponent is representative for all 
hannels 
ontributing to the so-
alled dire
t �in transport 
odes. For a �rst orientation the equilibrium properties are dis
ussed. Admittedly byfar more sophisti
ated and in parts unitary 
onsistent equilibrium 
al
ulations have already be pre-sented in the literature, e.g. [24-28℄. It is not the point to 
ompete with them at this pla
e. Ratherwe try to give a detailed analysis in simple terms with the aim to dis
uss the 
onsequen
es for theimplementation of su
h resonan
e pro
esses into dynami
al transport simulation 
odes.Both 
onsidered pro
esses add to the total width of the �-meson�tot(m; ~p) = ��!�+��(m; ~p) + ��!�NN�1(m; ~p); (13)and the equilibrium spe
tral fun
tion then results from the 
uts of the two diagramsA�(m; ~p) = �� ��r r� �� ��r r��� �����+���� �� �� + �� ��r r� �� ��r r�� �� �-�N�1�N��� �� �� = �� �+�� + �� �NN�1�m2 �m2� � Re��2 + �2tot=4 : (14)In prin
iple both diagrams have to be 
al
ulated by fully self 
onsistent propagators, i.e. with 
or-responding widths for all parti
les involved. This formidable task has not been done yet. Usingmi
ro-reversibility and the properties of thermal distributions the two terms in (14) 
ontributingto the di-lepton yield (12) 
an indeed approximately be reformulated as the thermal average of a�+�� ! �! e+e�-annihilation pro
ess and a �N ! �N ! e+e�N -s
attering pro
ess, i.e.dne+e�dmdt / Df�+f�� v�� �(�+�� ! �! e+e�) + f�fN v�N �(�N ! �N ! e+e�N)ET (15)However, the important fa
t to be noti
ed is that in order to preserve unitarity the 
orresponding
ross se
tions are no longer the free ones, as given by the va
uum de
ay width in the denominator,but rather involve the medium dependent total width (13). This illustrates in simple terms that ratesof broad resonan
es 
an no longer simply be added in a perturbative way. Sin
e it 
on
erns a 
oupled
hannel problem there is a 
ross talk between the di�erent 
hannels to the extent that the 
ommonresonan
e propagator attains the total width arising from all partial widths feeding and depopulatingthe resonan
e. While a perturbative treatment with free 
ross se
tions in (15) would enhan
e the yieldat resonan
e, m = m�, if a 
hannel is added, 
.f. �g. 2 left part, the 
orre
t treatment (14) even invertsthe trend and indeed depletes the yield at resonan
e, right part in �g. 2. Furthermore one sees thatonly the total yield involves the spe
tral fun
tion, while any partial 
ross se
tion only refers to thatpartial term with the 
orresponding partial width in the numerator! Unfortunately so far all thesefa
ts have been ignored or even overlooked in the present transport treatment of broad resonan
es.
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Di-lepton rates from thermal �-mesons (T = 110 MeV) Quasi-free �N 
ollisionsand spe
tral fun
tion

m� 2m� m� m� 2m� m�
�tot = �free full �tot

2m� m�Fig. 3: e+e� rates (arb. units) as a fun
tion of the invariant pairmass m at T = 110 MeV from �+�� annihilation (dotted line) anddire
t �-meson 
ontribution (dashed line), the full line gives the sumof both 
ontributions. Left part: using the free 
ross se
tion re
ipe,i.e. with �tot = �� �+�� ; right part for the 
orre
t partial rates(14). The 
al
ulation are done with ��$��(m�)=2m� = 150 MeVand ��$�NN�1(m�)=2m� = 70 MeV.
Fig. 4: Fermi motion averaged �N !�N ! e+e�N 
ross se
tions at pionbeam momenta of 1 and 1.3 GeV/
(dashed and full 
urve) as a fun
tionof invariant pair mass m. The dottedline gives the spe
tral fun
tion usedhere and in �g. 3.Compared to the spe
tral fun
tion (dotted line in �g. 4) both thermal 
omponents in �g. 3 show asigni�
ant enhan
ement on the low mass side and a strong depletion at high masses due to the thermalweight f / exp(�p0=T ) in the rate (12). A similar e�e
t is seen in genuine non-equilibrium pro
esseslike the di-lepton yield resulting from Fermi-motion averaged �N ! �N s
attering, �g. 4. The latter isrepresentive for the �rst 
han
e 
ollision in a �A rea
tion and shows a behavior signi�
antly di�erentfrom that obtained in refs. [30℄. For orientation the sub-threshold 
onditions for the two beam momentaare given by the verti
al lines in �g. 4!Mu
h of the physi
s 
an already be dis
ussed by observing that the partial widths are essentiallygiven by the type of 
oupling (s or p-wave, l = 0; 1) and the phase spa
e available for the de
ay
hannel. For point-like 
ouplings and two-body phase spa
e or approximately in the 
ase of one lightparti
le among only heavy ones in the de
ay 
hannel (e.g. for �NN�1) one �nds�
(m) / mp
m �p
mm �l with p
m / qm2 � sthr; (sthr = 4m2�; l = 1 for 
 = f�$ ��gsthr = m2�; l = 1 for 
 = f�$ �NN�1g : (16)In the �� 
ase the 
orresponding strength is approximately given by the va
uum de
ay, while it dependson the nu
lear density in the �N $ �N 
ase. The simple phase-spa
e behavior (16) suggests that faraway from all thresholds (m2 � sthr) the ratio h��-annihilationi = hdire
t �i of the two 
omponentsshould result to a fairly smooth and almost 
onstant fun
tion of m, e.g. for m > 500 MeV. Thiskinemati
al 
onstraint is ni
ely 
on�rmed by some 
al
ulations, e.g. of ref. [29℄, however, no su
hbehavior is seen in the dire
t �-mesons so far 
omputed in refs. [30, 31℄y.For 
ompleteness and as a stimulus for improvements the dis
ussed defe
ts in some of presentlyused transport treatments of broad resonan
es (ve
tor mesons in parti
ular) are listed below. The last
olumn gives an estimate of multipli
ative fa
tors needed to restore the defe
t (mR is the resonan
emass and T � (between 70 and 120 MeV) is a typi
al slope parameter for the 
orresponding beamenergy). Many of the points are known and trivial, and 
an trivially be implemented. They are justof kinemati
al origin. However the asso
iated defe
ts are by no means minor. Rather they ignoreessential features of the dynami
s with 
onsequen
es already on the qualitative level and a�e
t thespe
tra by far more than any of the 
urrently dis
ussed im-medium e�e
ts, e.g. of the �-meson.yIn refs. [30, 31℄ the dire
t � 
omponent appears almost like the spe
tral fun
tion itself, i.e. untou
hed from anyphase-spa
e 
onstraints whi
h 
ome in through the distributions f�(X; p). The latter favour low masses and depletethe high mass 
omponents! In fa
t rather than being almost 
onstant the ratios h��i = hdire
t �i exhibit an exponentialbehavior exp(�m=T �) for m > 500 MeV with T � between 70 - 110 MeV depending on beam energy, pointing towardsa major de�
ien
y in the a

ount of phase-spa
e 
onstraints for the dire
t �-meson 
omponent in these 
al
ulations.



List of defe
ts in some of the transport 
odes restoring fa
tor[a℄ The di�erential mass information 
ontained in the distribution fun
tionsf(X; p) = f(X;m; ~p) of resonan
es is ignored and only the integrated totalnumber is evaluated as a fun
tion of spa
e-time (dire
t � in refs. [30, 31℄). exp(�(m�mR)=T �)(fa
tor 10 or more atm = 500 MeV for �)[b℄ Ex
ept for the �+�� ! e+e� 
ase most resonan
e produ
tion 
ross se
tionsare parametrized su
h that they vanishes for ps values below the nominalthreshold, e.g. below mN +m� in the 
ase �N ! �N . This violates detailedbalan
e, sin
e broad resonan
es 
an de
ay for m < mR. misses yield form < mR[
 ℄ In partial 
ross se
tions leading to a resonan
e the randomly 
hosen mass isnormally sele
ted a

ording to the spe
tral fun
tion. This is not 
orre
t sin
ethe 
orresponding partial width in the numerator of (14) has to be 
onsidered. 
hanges shape[d℄ Di�erent partial 
ross se
tions are simply added without adjusting the totalwidth in the resonan
e propagator a

ordingly. This violates unitarity. (�free=�rmtot)2at m = mR[e ℄ The Monte Carlo implementation of sele
ting the random mass m of theresonan
e (item [
℄) is sometimes falsely implemented, namely ignoring thekineti
 phase-spa
e of genuine multi-parti
le �nal state 
on�gurations, e.g. in�N ! �N . Applies also to the �-resonan
e , e.g. for NN ! N�. proportional to(s(ps�m�mN ))1=2for two-body �nalstate[ f ℄ For the ele
tromagneti
 de
ay of ve
tor mesons some authors use a mass in-dependent de
ay rate, e.g. ��!e+e�=m = 
onst:, rather than that resultingfrom ve
tor dominan
e and QED with ��!e+e� / 1=m2. (mR=m)3
6 �-derivable approximationsThe pre
eding se
tion has shown that one needs a transport s
heme adapted for broad resonan
es.Besides the 
onservation laws it should 
omply with requirements of unitarity and detailed balan
e.A pra
ti
al suggestion has been given in ref. [4℄ in terms of 
ross se
tion pres
riptions. However thispi
ture is tied to the 
on
ept of asymptoti
 states and therefore not well suited for the general 
ase,in parti
ular if more than one 
hannel feeds into a broad resonan
e. Therefore we suggest to revivethe so-
alled �-derivable s
heme, originally proposed by Baym [11℄ on the basis of a formulation ofthe generating fun
tional or partition sum given by Luttinger, Ward [32℄, and later reformulated interms of path-integrals [33℄. This fun
tional 
an be generalized to the real time 
ase (for details see[16℄) with the diagrammati
 representationzi� fGg = i�0 nG0o+Xn� 1n� �Æ �
�i� �Æ �
�i��Æ �
�i�. . . . . .� �Æ 
| {z }� ln �1��G0 � �� ��Æ �
�i�� �Æ 
| {z }��G� � + Xn� 1n� ����
2| {z }+ i� fGg : (17)
Thereby the key quantity is the auxiliary fun
tional � given by two-parti
le irredu
ible va
uum dia-grams. It solely depends on fully re-summed, i.e. self 
onsistently generated propagators G(x; y) (thi
klines). The 
onsisten
y is provided by the fa
t that � is the generating fun
tional for the re-summedself-energy �(x; y) via fun
tional variation of � with respe
t to any propagator G(y; x), i.e.�i� = �Æi�=ÆiG: (18)The Dyson equations of motion dire
tly follow from the stationarity 
ondition of � (17) with respe
tto variations of G on the 
ontourx Æ� fGg =ÆG = 0; (Dyson eq.) (19)zn� 
ounts the number of self-energy �-insertions in the ring diagrams, while for the 
losed diagram of � the valuen� 
ounts the number of verti
es building up the fun
tional �.xan extension to in
lude 
lassi
al �elds or 
ondensates into the s
heme is presented in ref. [16℄



In graphi
al terms, the variation (18) with respe
t to G is realized by opening a propagator line inall diagrams of �. The resulting set of thus opened diagrams must then be that of proper skeletondiagrams of � in terms of full propagators, i.e. void of any self-energy insertions. As a 
onsequen
e,the �-diagrams have to be two-parti
le irredu
ible (label 
2), i.e. they 
annot be de
omposed into twopie
es by 
utting two propagator lines.The 
lue is that trun
ating the auxiliary fun
tional � to a limited subset of diagrams leads toa self 
onsistent, i.e 
losed, approximation s
heme. Thereby the approximate forms of �(appr.) de�nee�e
tive theories, where �(appr.) serves as a generating fun
tional for the approximate self-energies�(appr.)(x; y) through relation (18), whi
h then enter as driving terms for the Dyson equations ofthe di�erent spe
ies in the system. As Baym [11℄ has shown su
h a �-derivable approximation is
onserving for all 
onservation laws related to the global symmetries of the original theory and at thesame time thermodynami
ally 
onsistent. The latter automati
ally implies 
orre
t detailed balan
erelations between the various transport pro
esses. For multi
omponent systems it leads to a a
tio =rea
tio prin
iple. This implies that the properties of one spe
ies are not 
hanged by the intera
tionwith other spe
ies without a�e
ting the properties of the latter ones, too. The �-derivable s
hemeo�ers a natural and 
onsistent way to a

ount for this prin
iple. Some thermodynami
 examples havebeen 
onsidered re
ently, e.g., for the intera
ting �N� system [9℄ and for a relativisti
 QED plasma[34℄.7 Generalized Kineti
 EquationIn terms of the kineti
 notation (4) and in the �rst gradient approximation the generalized kineti
equation for F takes the form DF (X; p) = Bin(X; p) + C(X; p) (20)with the drift term determined from the "mass" fun
tion (
.f. (6))M(X; p) =M0(p)� Re �R(X; p) (21)through the Poisson bra
ket DF � fM;Fg. The expli
it form of the di�erential drift operator readsD =  v� � �Re �R�p� ! ��X + �Re �R�X� ��p� ; with v� = �M0(p)�p� = ((1; ~p=m) non-rel.2p� rel. bosons. (22)The two other terms in (20), Bin(X; p) and C(X; p), are a 
u
tuation term and the 
ollision term,respe
tively Bin = n�in;Re GRo ; C(X; p) = �in(X; p) eF (X; p)� �out(X; p)F (X; p); : (23)Here the redu
ed gain and loss rates and total width of the 
ollision integral are�in(X; p) = �i��+(X; p); �out(X; p) = i�+�(X; p); (24)�(X; p) � �2Im �R(X; p) = �out(X; p)� �in(X; p): (25)The 
ombination opposite to (25) determines the 
u
tuationsI(X; p) = �in(X; p)� �out(X; p): (26)We need still one more equation, whi
h in fa
t 
an be provided by the retarded Dyson equation.In �rst order gradient approximation the latter is 
ompletely solved algebrai
ally [5℄GR = 1M(X; p) + i�(X; p)=2 ) A(X; p) = �(X; p)M2(X; p) + �2(X; p)=4 (27)Canoni
al equal-time (anti) 
ommutation relations for (fermioni
) bosoni
 �eld operators provide thestandard sum{rule for the spe
tral fun
tion.



We now provide a physi
al interpretation of the various terms in the generalized kineti
 equation(20). The drift term DF on the l.h.s. of eq. (20) is the usual kineti
 drift term in
luding the
orre
tions from the self-
onsistent �eld Re �R into the 
onve
tive transfer of real and also virtualparti
les. For the 
ollision-less 
ase C = B = 0, i.e. DF = 0 (Vlasov equation), the quasi-linear �rstorder di�erential operator D de�nes 
hara
teristi
 
urves. They are the standard 
lassi
al paths in theVlasov 
ase. Thereby the four-phase-spa
e probability F (X; p) is 
onserved along these paths. Theformulation in terms of a Poisson bra
ket in four dimensions implies a generalized Liouville theorem.For the 
ollisional 
ase both, the 
ollision term C and the 
u
tuation term B 
hange the phase-spa
eprobabilities of the \generalized" parti
les during their propagation along the \generalized" 
lassi
alpaths given by D. We use the term \generalized" in order to emphasize that parti
les are no longerbound to their mass-shell,M = 0, during propagation due to the 
ollision term, i.e. due de
ay, 
reationor s
attering pro
esses.The r.h.s. of eq. (20) spe
i�es the 
ollision term C in terms of gain and loss terms, whi
h also
an a

ount for multi-parti
le pro
esses. Sin
e F in
ludes a fa
tor A, the C term further deviates fromthe standard Boltzmann-type form in as mu
h that it is multiplied by the spe
tral fun
tion A, whi
ha

ounts for the �nite width of the parti
les.The additional Poisson-bra
ket termBin = n�in;Re GRo = M2 � �2=4(M2 + �2=4)2 D �in + M�(M2 + �2=4)2 f�in;�outg (28)is spe
ial. It 
ontains genuine 
ontributions from the �nite mass width of the parti
les and des
ribesthe response of the surrounding matter due to 
u
tuations. This 
an be seen from the 
onservationlaws dis
ussed below. In parti
ular the �rst term in (28) gives rise to a ba
k-
ow 
omponent ofthe surrounding matter. It restores the Noether 
urrents to be 
onserved rather than the intuitivelyexpe
ted sum of 
onve
tive 
urrents arising from the 
onve
tive DF terms in (20). The se
ond termof (28) gives no 
ontribution in the quasi-parti
le limit of small damping width limit and represents aspe
i�
 o� mass-shell response due to 
u
tuations, 
.f. [35, 14℄. In the low density and quasi-parti
lelimit the Bin term provides the virial 
orre
tions to the Boltzmann 
ollision term [22℄.8 Conservations of the Current and Energy{MomentumThe global symmetries of � provide 
onservation laws su
h as the 
onservation of 
harge and energy{momentum. The 
orresponding Noether 
harge 
urrent and Noether energy{momentum tensor resultto the following expressions, 
.f. [16℄,j�(X) = e2Tr Z d4p(2�)4v� �F (X; p)� eF (X; p)� ;���(X) = 12Tr Z d4p(2�)4v�p� �F (X; p)� eF (X; p)�+ g�� �E int(X)� Epot(X)� : (29)HereE int(X) = D� bL int(X)E = Æ�Æ�(x) ������=1 ; Epot = 12Tr Z d4p(2�)4 hRe �R �F � eF�+Re GR (�in � �out)iare the densities of the intera
tion energy and the potential energy, respe
tively. The �rst term ofEpot 
omplies with quasi-parti
le expe
tations, namely mean potential times density, the se
ond termdisplays the role of 
u
tuations I = �in � �out in the potential energy density. This 
u
tuation termpre
isely arises form the B-term in the kineti
 eq. (20), dis
ussed around eq. (28). It restores that theNoether expressions (29) are indeed the exa
tly 
onserved quantities. In this 
ompensation we see theessential role of the 
u
tuation term in the generalized kineti
 equation. Dropping or approximatingthis term would spoil the 
onservation laws. Indeed, both expressions in (29) 
omply exa
tly with thegeneralized kineti
 equation (20), i.e. they are exa
t integrals of the generalized kineti
 equations of



motion within the �-derivable s
heme. Memory e�e
ts and the formulation of a kineti
 entropy 
anlikewise be addressed [14℄.A
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