
TRANSPORT DYNAMICS OF BROAD RESONANCESJ�orn Knoll, GSI, DarmstadtJ.Knoll�gsi.de; http://theory.gsi.deAbstratThe propagation of short life time partiles with onsequently broad mass width are disussedin the ontext of transport desriptions. In the �rst part some known properties of �nite life timepartiles suh as resonanes are reviewed and disussed at the example of the �-meson. Gravede�ienies in some of the transport treatment of broad resonanes are dislosed and quanti�ed.The seond part addresses the derivation of transport equations whih permit to aount for thedamping width of the partiles. Baym's �-derivable method is used to derive a self-onsistent andonserving sheme, whih ful�ls detailed balane relations even in the ase of partiles with broadmass distributions. For this sheme a onserved energy-momentum tensor an be onstruted.Furthermore, a kineti entropy an be derived whih besides the standard quasi-partile part alsoinludes ontributions from utuations.1 Introdution and ProspetsWith the aim to desribe the ollision of two nulei at intermediate or even high energies one isonfronted with the fat that the dynamis has to inlude partiles like the �33 or �-meson resonaneswith life-times of less than 2 fm/ or equivalently with damping rates above 100 MeV. Also the ollisionrates dedued from presently used transport odes are omparable in magnitude, whereas typial meankineti energies as given by the temperature range between 70 to 150 MeV depending on beam energy.Thus, the damping width of most of the onstituents in the system an no longer be treated as aperturbation.As a onsequene the mass spetra of the partiles in dense matter are no longer sharp deltafuntions but rather aquire a width due to ollisions and deays. The orresponding quantum prop-agators G (Green's funtions) are no longer the ones as in standard text books for �xed mass, buthave to be folded over a spetral funtion A(�; ~p) of �nite width. One thus omes to a piture whihuni�es resonanes whih have already a deay width in vauum with the \states" of partiles in densematter, whih obtain a width due to ollisions (ollisional broadening). The theoretial onepts for aproper many body desription in terms of a real time non equilibrium �eld theory have already beendevised by Shwinger, Kadano�, Baym and Keldysh [1℄ in the early sixties. First investigations of thequantum e�ets on the Boltzmann ollision term were given Danielewiz [2℄, the prinipal oneptualproblems on the level of quantum �eld theory were investigated by Landsmann [3℄, while appliationswhih seriously inlude the �nite width of the partiles in transport desriptions were arried out onlyin reent times, e.g.[2,4-10℄ For resonanes, e.g. the �33-resonane, it was natural to onsider broadmass distributions and ad ho reipes have been invented to inlude this in transport simulation mod-els. However, many of these reipes are not orret as they violate some basi priniples like detailedbalane [4℄, and the desription of resonanes in dense matter has to be improved.In this talk the transport dynamis of short life time partiles are reviewed and disussed. In the�rst part some known properties of resonanes are presented. These onern the equilibrium and lowdensity (virial) limits. Some example disussions are given for the di-lepton spetrum resulting fromthe deay of �-mesons in a dense nulear environment, both in thermal equilibrium and in a quasi-freesattering proess. On the basis of this some de�ienies of presently used transport odes for thetreatment of broad resonanes are dislosed and quanti�ed. They a�et the di-lepton spetra alreadyon a qualitative level and signal that the low mass side is grossly underestimated in the respetivealulations. This motivates the question disussed in the seond part, namely, how to ome to aself-onsistent, onserving and thermodynamially onsistent transport desription of partiles with�nite mass width. The oneptual starting point will be a formulation within the real-time non-equilibrium �eld theory. The derivation is based on and generalizes Baym's �-funtional method



[11℄. The �rst-order gradient approximation provides a set of oupled equations of time-irreversiblegeneralized kineti equations for the slowly varying spae-time part of the phase-spae distributionssupplemented by retarded equations. The latter aount for the fast miro-sale dynamis representedby the four-momentum part of the distributions. Funtional methods permit to derive a onservedenergy-momentum tensor whih also inludes orretions arising from utuations besides the standardquasi-partile terms. Memory e�ets [12-14℄ appearing in ollision term diagrams of higher order aswell as the formulation of a non-equilibrium kineti entropy ow an also be addressed [14℄.2 PreliminariesThe standard text-book transition rate in terms of Fermi's golden rule, e.g. for the photon radiationfrom some initial state jii with oupation ni to �nal states jfiW =Pif ni(1� nf) ������ 6if 6- ������ 2 (1 + n!) Æ(Ei � Ef � !~q) (1)with oupation n! for the photon, is limited to the onept of asymptoti states. It is thereforeinappropriate for problems whih deal with partiles of �nite life time. One rather has to go to the\losed" diagram piture, where the same rate emerges asW = �� ���- (1 + n!)Æ(! � !~q) (2)with now two types of verties � and + for the time-ordered and the anti-time ordered parts of thesquare of the amplitude. Together with the orientation of the + ��! and � +�! propagator lines one obtainsunique diagrammati rules for the alulation of rates rather than amplitudes. The just mentionedpropagator lines de�ne the densities of oupied states or those of available states, respetively. There-fore all standard diagrammati rules an be used again. One simply has to extend those rules to thetwo types of verties with marks � and + and the orresponding 4 propagators, the usual time-orderedpropagator � ��! between two � verties, the anti-time-ordered one + +�! between two + verties andthe mixed + ��! or � +�! ones with �xed operator ordering (Wightman-funtions) as densities of oupiedand available states. For details I refer to the textbook of Lifshitz and Pitaevski [15℄.
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Fig. 1: Closed real-time ontour with two external points x; y on the ontour.Equivalently the non-equilibrium theory an entirely be formulated on one speial time ontour,the so alled losed time path [1℄, �g. 1, with the time argument running from some initial time t0 toin�nity and bak with external points plaed on this ontour, e.g., for the four di�erent omponentsof Green's funtions or self energies. The speial �+ or +� omponents of the self energies de�ne thegain and loss terms in transport problems, .f. eq. (2) and eqs. (23-25) below.The advantage of the formulation in terms of \orrelation" diagrams, whih no longer refer toamplitudes but diretly to physial observables, like rates, is that now one is no longer restrited tothe onept of asymptoti states. Rather all internal lines, also the ones whih originally referred tothe \in" or \out" states are now treated on equal footing. Therefore now one an deal with \states"whih have a broad mass spetrum. The orresponding Wigner densities + ��! or � +�! are then no longer



on-shell Æ-funtions in energy (on-mass shell) but rather aquire a width, as we shall disuss in moredetail.For slightly inhomogeneous and slowly evolving systems, the degrees of freedom an be subdividedinto rapid and slow ones. Any kineti approximation is essentially based on this assumption. Then forany two-point funtion F (x; y), one separates the variable � = (t1 � t2; ~r1 � ~r2), whih relates to therapid and short-ranged mirosopi proesses, and the variable X = 12(t1 + t2; ~r1 + ~r2), whih refers toslow and long-ranged olletive motions. The Wigner transformation, i.e. the Fourier transformationin four-spae di�erene � = x� y to four-momentum p of the ontour deomposed omponents of anytwo-point ontour funtionF ij(X; p) = Z d�eip�F ij (X + �=2; X � �=2) ; where i; j 2 f�+g (3)leads to a (o-variant) four phase-spae formulation of two-point funtions. The Wigner transformationof Dyson's equation (19) in f�+g notation is straight forward. For details and the extensions to inludethe oupling to lassial �eld equations we refer to ref. [16℄.Standard transport desriptions usually involve two approximation steps: (i) the gradient expan-sion for the slow degrees of freedom, as well as (ii) the quasi-partile approximation for rapid ones.We intend to avoid the latter approximation and will solely deal with the gradient approximation forslow olletive motions by performing the gradient expansion of the oupled Dyson equations. Thisstep indeed preserves all the invarianes of the � funtional in a �-derivable approximation.It is helpful to avoid all the imaginary fators inherent in the standard Green's funtion formula-tion and hange to quantities whih are real and positive either in the homogeneous or in appropriateoarse graining limits. They then have a straight physial interpretation analogously to the Boltzmannequation. We de�neF (X; p) = A(X; p)f(X; p) = �iG�+(X; p);eF (X; p) = A(X; p)[1� f(X; p)℄ = iG+�(X; p);) with A(X; p)� �2Im GR(X; p) = eF � F (4)for the generalized Wigner funtions F and eF with the orresponding four phase spae distributionfuntions f(X; p), the Fermi/Bose fators [1 � f(X; p)℄ and spetral funtion A(X; p). Aording tothe retarded relations between Green's funtions Gij, only two of these real funtions are required for aomplete dynamial desription. Here and below upper signs relate to fermion quantities, whereas lowersigns refer to boson quantities. As shown in ref. [16℄ mean �elds and ondensates, i.e. non-vanishingexpetation values of one-point funtions an also be inluded.3 Thermodynami EquilibriumThe thermodynami equilibrium leads to a lot of simplifying relations among the kineti quantities.All quantities beome spae-time independent. The Kubo-Martin-Shwinger ondition determines thedistribution funtions to be of Fermi-Dira or Bose-Einstein type, respetivelyfeq(X; p) = 1= (exp ((p0 � �)=T )� 1) : (5)Here � is the hemial potential. The spetral funtion attains a formAeq(X; p) = �(p)M2(p) + �2(p)=4 with ( �(p) = �2Im �R(p);M(p) =M0(p)� Re �R(p); M0(p) = p�0 � p�0(~p): (6)This form is exat through the four-momentum p = (p0; ~p) dependene of the retarded self-energy�R(p). Thereby M0(p) = p�0 � p�0(~p) = 0 is the free dispersion relation with � = 1 or 2 for thenon-relativisti Shr�odinger or the relativisti Klein-Gordon ase, respetively. In the non-equilibriumase all quantities beome funtions of the spae-time oordinates X and, of ourse, the distributionfuntions f(X; p) generally also depend on three momentum ~p.



4 The Virial LimitAnother simplifying ase is provided by the low density limit, i.e. the virial limit. Sine Beth-Uhlenbek(1937) [17℄ it is known that the orretions to the level density are given by the asymptoti propertiesof binary sattering proesses, i.e. in a partial wave deomposition by means of phase-shifts, see also[18-20℄ . The reasoning an be summarized as follows. While for any pair the .m. motion remainsunaltered the relative motion is a�eted by the mutual two-body interation. Considering a largequantization volume of radius R and a partial wave of angular momentum j, the levels follow thequantization ondition j(r) �! sin(kr + Æj(E)) jR ) kR + Æj(E) = n�; (7)where Æj(E) is the phase-shift at relative energy E and n is an integer ounting the levels. The kRterm aounts for the free motion part. The orresponding orretions to both, the level density andthermodynami partition sum, are given by
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dndE = dnfreedE + 2j + 1� dÆjdE (8)Z =Xi e�Ei=T = Z dE dndEe�E=T (9)Sine Z determines the equation of state, its low density limitis uniquely given by the sattering phase-shifts. The energyderivatives of the phase-shifts are also responsible for the time-delays disussed in ref. [21℄ and also for the virial orretionsto the Boltzmann ollision term reently disussed in ref. [22℄.The latter is diretly onneted to the B-term in our gener-alized kineti equation (20). The advane of a phase-shift bya value range of � aross a ertain energy window adds onestate to the level density and points towards an s-hannel res-onane. An example is the �-meson in the p-wave �+�� sat-tering hannel, �g. 2. In ases, where the resonane ouplesto one asymptoti hannel only, the orresponding phase-shiftsrelate to the vauum spetral funtion Aj(p) of that resonanevia� 4 jTin;outj2 = �in(E)�out(E)(E� � E�R(E))2 + �2tot(E)=4 (10)= 4 sin2 Æj(E) = Aj(E; ~p = 0) �tot(E): (11)Here Tin;out is the orresponding T -matrix element. While relation (10) is orret also in the ase wheremany hannels ouple to the same resonane, relation (11) only holds for the single hannel ase,where �in = �out = �tot. Relation (11) illustrates that the vauum spetral funtions of resonanesan almost model-independently be dedued from phase-shift information. In the ase of the �-mesonadditional information is provided by the pion form fator. Also in the ase of two hannels ouplingto a resonane the energy dependene of phase-shifts of the two sattering hannels together with theinelastiity oeÆient provide stringent onstraints for the spetral funtion of the resonane [23℄.�E is the relative .m. energy and orrespondingly the momentum in A vanishes; � = 1 for non-rel. partiles; � = 2for relativisti bosons, where �(E)=2E equals the energy dependent deay width and E2R(E) = m2R + ~p2 +Re �(p).



5 The �-meson in dense matterAn an example I like to disuss the properties of the �-meson and the onsequenes for the deay intodi-leptons. The exat prodution rate of di-leptons is given by the following formuladne+e�dtdm = ��I�� ��	��e+e� ������������������������� �� ��t t��� +������������������������� ����	����Ie+e�t t = f�(m; ~p; ~x; t) A�(m; ~p; ~x; t) �� e+e�(m): (12)Here �� e+e�(m) / 1=m2 is the mass-dependent eletromagneti deay rate of the �-meson into thedi-eletron hannel. The phase-spae distribution f�(m; ~p; ~x; t) and the spetral funtion A�(m; ~p; ~x; t)de�ne the properties of the �-meson at spae-time point ~x; t. Both quantities are in priniple to bedetermined dynamially by an appropriate transport model. However till to-date the spetral funtionsare not treated dynamially in most of the present transport models. Rather one employs on-shellÆ-funtions for all stable partiles and spetral funtions �xed to the vauum shape for resonanes.As an illustration the model ase is disussed, where the �-meson just strongly ouples to twohannels: naturally the �+�� hannel and to the �N $ �N hannels relevant at �nite nulear den-sities. The latter omponent is representative for all hannels ontributing to the so-alled diret �in transport odes. For a �rst orientation the equilibrium properties are disussed. Admittedly byfar more sophistiated and in parts unitary onsistent equilibrium alulations have already be pre-sented in the literature, e.g. [24-28℄. It is not the point to ompete with them at this plae. Ratherwe try to give a detailed analysis in simple terms with the aim to disuss the onsequenes for theimplementation of suh resonane proesses into dynamial transport simulation odes.Both onsidered proesses add to the total width of the �-meson�tot(m; ~p) = ��!�+��(m; ~p) + ��!�NN�1(m; ~p); (13)and the equilibrium spetral funtion then results from the uts of the two diagramsA�(m; ~p) = �� ��r r� �� ��r r��� �����+���� �� �� + �� ��r r� �� ��r r�� �� �-�N�1�N��� �� �� = �� �+�� + �� �NN�1�m2 �m2� � Re��2 + �2tot=4 : (14)In priniple both diagrams have to be alulated by fully self onsistent propagators, i.e. with or-responding widths for all partiles involved. This formidable task has not been done yet. Usingmiro-reversibility and the properties of thermal distributions the two terms in (14) ontributingto the di-lepton yield (12) an indeed approximately be reformulated as the thermal average of a�+�� ! �! e+e�-annihilation proess and a �N ! �N ! e+e�N -sattering proess, i.e.dne+e�dmdt / Df�+f�� v�� �(�+�� ! �! e+e�) + f�fN v�N �(�N ! �N ! e+e�N)ET (15)However, the important fat to be notied is that in order to preserve unitarity the orrespondingross setions are no longer the free ones, as given by the vauum deay width in the denominator,but rather involve the medium dependent total width (13). This illustrates in simple terms that ratesof broad resonanes an no longer simply be added in a perturbative way. Sine it onerns a oupledhannel problem there is a ross talk between the di�erent hannels to the extent that the ommonresonane propagator attains the total width arising from all partial widths feeding and depopulatingthe resonane. While a perturbative treatment with free ross setions in (15) would enhane the yieldat resonane, m = m�, if a hannel is added, .f. �g. 2 left part, the orret treatment (14) even invertsthe trend and indeed depletes the yield at resonane, right part in �g. 2. Furthermore one sees thatonly the total yield involves the spetral funtion, while any partial ross setion only refers to thatpartial term with the orresponding partial width in the numerator! Unfortunately so far all thesefats have been ignored or even overlooked in the present transport treatment of broad resonanes.
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2m� m�Fig. 3: e+e� rates (arb. units) as a funtion of the invariant pairmass m at T = 110 MeV from �+�� annihilation (dotted line) anddiret �-meson ontribution (dashed line), the full line gives the sumof both ontributions. Left part: using the free ross setion reipe,i.e. with �tot = �� �+�� ; right part for the orret partial rates(14). The alulation are done with ��$��(m�)=2m� = 150 MeVand ��$�NN�1(m�)=2m� = 70 MeV.
Fig. 4: Fermi motion averaged �N !�N ! e+e�N ross setions at pionbeam momenta of 1 and 1.3 GeV/(dashed and full urve) as a funtionof invariant pair mass m. The dottedline gives the spetral funtion usedhere and in �g. 3.Compared to the spetral funtion (dotted line in �g. 4) both thermal omponents in �g. 3 show asigni�ant enhanement on the low mass side and a strong depletion at high masses due to the thermalweight f / exp(�p0=T ) in the rate (12). A similar e�et is seen in genuine non-equilibrium proesseslike the di-lepton yield resulting from Fermi-motion averaged �N ! �N sattering, �g. 4. The latter isrepresentive for the �rst hane ollision in a �A reation and shows a behavior signi�antly di�erentfrom that obtained in refs. [30℄. For orientation the sub-threshold onditions for the two beam momentaare given by the vertial lines in �g. 4!Muh of the physis an already be disussed by observing that the partial widths are essentiallygiven by the type of oupling (s or p-wave, l = 0; 1) and the phase spae available for the deayhannel. For point-like ouplings and two-body phase spae or approximately in the ase of one lightpartile among only heavy ones in the deay hannel (e.g. for �NN�1) one �nds�(m) / mpm �pmm �l with pm / qm2 � sthr; (sthr = 4m2�; l = 1 for  = f�$ ��gsthr = m2�; l = 1 for  = f�$ �NN�1g : (16)In the �� ase the orresponding strength is approximately given by the vauum deay, while it dependson the nulear density in the �N $ �N ase. The simple phase-spae behavior (16) suggests that faraway from all thresholds (m2 � sthr) the ratio h��-annihilationi = hdiret �i of the two omponentsshould result to a fairly smooth and almost onstant funtion of m, e.g. for m > 500 MeV. Thiskinematial onstraint is niely on�rmed by some alulations, e.g. of ref. [29℄, however, no suhbehavior is seen in the diret �-mesons so far omputed in refs. [30, 31℄y.For ompleteness and as a stimulus for improvements the disussed defets in some of presentlyused transport treatments of broad resonanes (vetor mesons in partiular) are listed below. The lastolumn gives an estimate of multipliative fators needed to restore the defet (mR is the resonanemass and T � (between 70 and 120 MeV) is a typial slope parameter for the orresponding beamenergy). Many of the points are known and trivial, and an trivially be implemented. They are justof kinematial origin. However the assoiated defets are by no means minor. Rather they ignoreessential features of the dynamis with onsequenes already on the qualitative level and a�et thespetra by far more than any of the urrently disussed im-medium e�ets, e.g. of the �-meson.yIn refs. [30, 31℄ the diret � omponent appears almost like the spetral funtion itself, i.e. untouhed from anyphase-spae onstraints whih ome in through the distributions f�(X; p). The latter favour low masses and depletethe high mass omponents! In fat rather than being almost onstant the ratios h��i = hdiret �i exhibit an exponentialbehavior exp(�m=T �) for m > 500 MeV with T � between 70 - 110 MeV depending on beam energy, pointing towardsa major de�ieny in the aount of phase-spae onstraints for the diret �-meson omponent in these alulations.



List of defets in some of the transport odes restoring fator[a℄ The di�erential mass information ontained in the distribution funtionsf(X; p) = f(X;m; ~p) of resonanes is ignored and only the integrated totalnumber is evaluated as a funtion of spae-time (diret � in refs. [30, 31℄). exp(�(m�mR)=T �)(fator 10 or more atm = 500 MeV for �)[b℄ Exept for the �+�� ! e+e� ase most resonane prodution ross setionsare parametrized suh that they vanishes for ps values below the nominalthreshold, e.g. below mN +m� in the ase �N ! �N . This violates detailedbalane, sine broad resonanes an deay for m < mR. misses yield form < mR[ ℄ In partial ross setions leading to a resonane the randomly hosen mass isnormally seleted aording to the spetral funtion. This is not orret sinethe orresponding partial width in the numerator of (14) has to be onsidered. hanges shape[d℄ Di�erent partial ross setions are simply added without adjusting the totalwidth in the resonane propagator aordingly. This violates unitarity. (�free=�rmtot)2at m = mR[e ℄ The Monte Carlo implementation of seleting the random mass m of theresonane (item [℄) is sometimes falsely implemented, namely ignoring thekineti phase-spae of genuine multi-partile �nal state on�gurations, e.g. in�N ! �N . Applies also to the �-resonane , e.g. for NN ! N�. proportional to(s(ps�m�mN ))1=2for two-body �nalstate[ f ℄ For the eletromagneti deay of vetor mesons some authors use a mass in-dependent deay rate, e.g. ��!e+e�=m = onst:, rather than that resultingfrom vetor dominane and QED with ��!e+e� / 1=m2. (mR=m)3
6 �-derivable approximationsThe preeding setion has shown that one needs a transport sheme adapted for broad resonanes.Besides the onservation laws it should omply with requirements of unitarity and detailed balane.A pratial suggestion has been given in ref. [4℄ in terms of ross setion presriptions. However thispiture is tied to the onept of asymptoti states and therefore not well suited for the general ase,in partiular if more than one hannel feeds into a broad resonane. Therefore we suggest to revivethe so-alled �-derivable sheme, originally proposed by Baym [11℄ on the basis of a formulation ofthe generating funtional or partition sum given by Luttinger, Ward [32℄, and later reformulated interms of path-integrals [33℄. This funtional an be generalized to the real time ase (for details see[16℄) with the diagrammati representationzi� fGg = i�0 nG0o+Xn� 1n� �Æ ��i� �Æ ��i��Æ ��i�. . . . . .� �Æ | {z }� ln �1��G0 � �� ��Æ ��i�� �Æ | {z }��G� � + Xn� 1n� ����2| {z }+ i� fGg : (17)
Thereby the key quantity is the auxiliary funtional � given by two-partile irreduible vauum dia-grams. It solely depends on fully re-summed, i.e. self onsistently generated propagators G(x; y) (thiklines). The onsisteny is provided by the fat that � is the generating funtional for the re-summedself-energy �(x; y) via funtional variation of � with respet to any propagator G(y; x), i.e.�i� = �Æi�=ÆiG: (18)The Dyson equations of motion diretly follow from the stationarity ondition of � (17) with respetto variations of G on the ontourx Æ� fGg =ÆG = 0; (Dyson eq.) (19)zn� ounts the number of self-energy �-insertions in the ring diagrams, while for the losed diagram of � the valuen� ounts the number of verties building up the funtional �.xan extension to inlude lassial �elds or ondensates into the sheme is presented in ref. [16℄



In graphial terms, the variation (18) with respet to G is realized by opening a propagator line inall diagrams of �. The resulting set of thus opened diagrams must then be that of proper skeletondiagrams of � in terms of full propagators, i.e. void of any self-energy insertions. As a onsequene,the �-diagrams have to be two-partile irreduible (label 2), i.e. they annot be deomposed into twopiees by utting two propagator lines.The lue is that trunating the auxiliary funtional � to a limited subset of diagrams leads toa self onsistent, i.e losed, approximation sheme. Thereby the approximate forms of �(appr.) de�nee�etive theories, where �(appr.) serves as a generating funtional for the approximate self-energies�(appr.)(x; y) through relation (18), whih then enter as driving terms for the Dyson equations ofthe di�erent speies in the system. As Baym [11℄ has shown suh a �-derivable approximation isonserving for all onservation laws related to the global symmetries of the original theory and at thesame time thermodynamially onsistent. The latter automatially implies orret detailed balanerelations between the various transport proesses. For multiomponent systems it leads to a atio =reatio priniple. This implies that the properties of one speies are not hanged by the interationwith other speies without a�eting the properties of the latter ones, too. The �-derivable shemeo�ers a natural and onsistent way to aount for this priniple. Some thermodynami examples havebeen onsidered reently, e.g., for the interating �N� system [9℄ and for a relativisti QED plasma[34℄.7 Generalized Kineti EquationIn terms of the kineti notation (4) and in the �rst gradient approximation the generalized kinetiequation for F takes the form DF (X; p) = Bin(X; p) + C(X; p) (20)with the drift term determined from the "mass" funtion (.f. (6))M(X; p) =M0(p)� Re �R(X; p) (21)through the Poisson braket DF � fM;Fg. The expliit form of the di�erential drift operator readsD =  v� � �Re �R�p� ! ��X + �Re �R�X� ��p� ; with v� = �M0(p)�p� = ((1; ~p=m) non-rel.2p� rel. bosons. (22)The two other terms in (20), Bin(X; p) and C(X; p), are a utuation term and the ollision term,respetively Bin = n�in;Re GRo ; C(X; p) = �in(X; p) eF (X; p)� �out(X; p)F (X; p); : (23)Here the redued gain and loss rates and total width of the ollision integral are�in(X; p) = �i��+(X; p); �out(X; p) = i�+�(X; p); (24)�(X; p) � �2Im �R(X; p) = �out(X; p)� �in(X; p): (25)The ombination opposite to (25) determines the utuationsI(X; p) = �in(X; p)� �out(X; p): (26)We need still one more equation, whih in fat an be provided by the retarded Dyson equation.In �rst order gradient approximation the latter is ompletely solved algebraially [5℄GR = 1M(X; p) + i�(X; p)=2 ) A(X; p) = �(X; p)M2(X; p) + �2(X; p)=4 (27)Canonial equal-time (anti) ommutation relations for (fermioni) bosoni �eld operators provide thestandard sum{rule for the spetral funtion.



We now provide a physial interpretation of the various terms in the generalized kineti equation(20). The drift term DF on the l.h.s. of eq. (20) is the usual kineti drift term inluding theorretions from the self-onsistent �eld Re �R into the onvetive transfer of real and also virtualpartiles. For the ollision-less ase C = B = 0, i.e. DF = 0 (Vlasov equation), the quasi-linear �rstorder di�erential operator D de�nes harateristi urves. They are the standard lassial paths in theVlasov ase. Thereby the four-phase-spae probability F (X; p) is onserved along these paths. Theformulation in terms of a Poisson braket in four dimensions implies a generalized Liouville theorem.For the ollisional ase both, the ollision term C and the utuation term B hange the phase-spaeprobabilities of the \generalized" partiles during their propagation along the \generalized" lassialpaths given by D. We use the term \generalized" in order to emphasize that partiles are no longerbound to their mass-shell,M = 0, during propagation due to the ollision term, i.e. due deay, reationor sattering proesses.The r.h.s. of eq. (20) spei�es the ollision term C in terms of gain and loss terms, whih alsoan aount for multi-partile proesses. Sine F inludes a fator A, the C term further deviates fromthe standard Boltzmann-type form in as muh that it is multiplied by the spetral funtion A, whihaounts for the �nite width of the partiles.The additional Poisson-braket termBin = n�in;Re GRo = M2 � �2=4(M2 + �2=4)2 D �in + M�(M2 + �2=4)2 f�in;�outg (28)is speial. It ontains genuine ontributions from the �nite mass width of the partiles and desribesthe response of the surrounding matter due to utuations. This an be seen from the onservationlaws disussed below. In partiular the �rst term in (28) gives rise to a bak-ow omponent ofthe surrounding matter. It restores the Noether urrents to be onserved rather than the intuitivelyexpeted sum of onvetive urrents arising from the onvetive DF terms in (20). The seond termof (28) gives no ontribution in the quasi-partile limit of small damping width limit and represents aspei� o� mass-shell response due to utuations, .f. [35, 14℄. In the low density and quasi-partilelimit the Bin term provides the virial orretions to the Boltzmann ollision term [22℄.8 Conservations of the Current and Energy{MomentumThe global symmetries of � provide onservation laws suh as the onservation of harge and energy{momentum. The orresponding Noether harge urrent and Noether energy{momentum tensor resultto the following expressions, .f. [16℄,j�(X) = e2Tr Z d4p(2�)4v� �F (X; p)� eF (X; p)� ;���(X) = 12Tr Z d4p(2�)4v�p� �F (X; p)� eF (X; p)�+ g�� �E int(X)� Epot(X)� : (29)HereE int(X) = D� bL int(X)E = Æ�Æ�(x) ������=1 ; Epot = 12Tr Z d4p(2�)4 hRe �R �F � eF�+Re GR (�in � �out)iare the densities of the interation energy and the potential energy, respetively. The �rst term ofEpot omplies with quasi-partile expetations, namely mean potential times density, the seond termdisplays the role of utuations I = �in � �out in the potential energy density. This utuation termpreisely arises form the B-term in the kineti eq. (20), disussed around eq. (28). It restores that theNoether expressions (29) are indeed the exatly onserved quantities. In this ompensation we see theessential role of the utuation term in the generalized kineti equation. Dropping or approximatingthis term would spoil the onservation laws. Indeed, both expressions in (29) omply exatly with thegeneralized kineti equation (20), i.e. they are exat integrals of the generalized kineti equations of
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