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funtions. Compared to the various equal-time operator formulations of transport theo-ries, .f. [27℄, and within the path-integral formulation [28℄, the Green's funtion approahwith its non-loalities in time o�ers a onvenient desription of spetral information suhas the damping width of partiles. Suh mass-width e�ets beome inreasingly importantespeially in the realm of high-energy nulear ollisions.For atual alulations ertain approximation steps are neessary. In many ases pertur-bative approahes are insuÆient, as for systems with strong ouplings treated in nulearphysis. In suh ases, one has to re-sum ertain sub-series of diagrams in order to ob-tain a reasonable approximation sheme. In ontrast to perturbation theory for suhre-summations one frequently enounters the ompliation that the resulting equationsof motion may no longer omply with the onservation laws, e.g., of harge, energy andmomentum, in partiular, if the mass width of the partiles is no longer negligible. Thisproblem has �rst been onsidered in two pioneering papers by Baym and Kadano� [29,30℄disussing the response to an external perturbation of quantum systems in thermody-nami equilibrium. Baym, in partiular, showed [30℄ that any approximation, in order tobe onserving, must be so-alled�-derivable. He exploited the properties of a resummationtehnique in terms of an auxiliary funtional, the �-funtional, introdued by Luttingerand Ward [31℄ for the formulation of the thermodynami potential (see also [32℄). Mean�elds were inluded in this formalism in ref. [33℄. The �-funtional is determined in termsof full, i.e. re-summed, Green's funtions and lassial �elds oupled by free verties andserves as a generating funtional for the driving terms of the equations of motion.In the non-equilibrium formalism the problem of onserving approximations is even moresevere than in the ase of the systems response to an external perturbation lose to thermalequilibrium, sine the system may exerise a rather violent evolution. Apart from transportmodels, mostly based on the quasi-partile approximation like Landau's Fermi liquidtheory, there were only few attempts to disuss the issue of onserving approximations inthe ontext of the non-equilibrium �eld theory (see, e.g., [2,6,9℄), whih mainly onsideredHatree-Fok and T-matrix approximations. However, the general problem of onstrutingonserving approximations in the non-equilibrium ase and, in partiular, beyond thequasi-partile limit has not expliitly been addressed yet.Alongside, the question of thermodynami onsisteny is vital. If, as a result of a non-equilibrium evolution, a system arrives at an equilibrium state, the non-equilibriumGreen'sfuntions should properly desribe thermodynami quantities and potentials, suh thatthermodynami relations between them are preserved. This problem is also relevant to thethermodynami Green's funtion tehnique, as already onsidered by Baym [30℄. Baymdemonstrated that any �-derivable approximation is at the same time thermodynamiallyonsistent.In this paper we re-address the above problems and extend the onept to the genuinenon-equilibrium ase formulated on the losed real-time ontour and to the inlusion oflassial �elds, i.e. non-vanishing expetation values of the �eld operators. The generalizedsheme permits to onstrut self-onsistent, approximate, oupled dynamial equations of2



motion for the lassial �elds and Green's funtions of the system on the losed real-time ontour. The inlusion of lassial �elds allows to aount for the phase-transitionphenomena or to desribe the oherent dynamis of soft modes, muh in the spirit ofhard-thermal-loop re-summations [34{36,13℄. In this paper we on�ne the presentation tothe derivation of losed self-onsistent approximations to the Kadano�-Baym and lassial�eld equations. This onstitutes the basis for various further steps towards lassial-typetransport shemes through the gradient approximation, whih will be presented in a forth-oming paper [37℄.The paper is organized as follows. In set. 2 we briey reapitulate the general equations ofmotion and expressions for the onserved quantities on the operator level. The equationsof motion for the orresponding expetation values within the real-time losed ontourformalism are formulated in set. 3. It is advantageous to use the onepts of generatingfuntionals, where the speial funtional � plays a entral role (set. 4). The latter takesthe same status in the spae of Green's funtions (two-point funtions) and lassial�elds (one-point funtions), as the original Lagrangian on the level of �eld operators.Subsequently, we formulate the diagrammati representation for � (set. 5). We showthat any approximation, where all lassial �eld soures and self-energies are �-derivablein the sense of a variational priniple, has the following properties: (i) it is self-onsistent,i.e. the equations lose, (ii) it is onserving, i.e. it provides onserved urrent and energy{momentum tensor, whih are idential to the orresponding Noether quantities (set.6), and (iii) it is at the same time thermodynamially onsistent (set. 7). In set. 8we disuss the low density limit at the example of an interating �N� system [40℄. Itillustrates how sattering phase shifts an provide the seond-order virial orretions ofthe thermo-dynami potential and the self-energies in a onsistent way in the sense ofthe �-derivable sheme. In the summary, we disuss the main results and briey prospetpossible appliations of the derived formalism. Appendix A ontains some helpful relationsfor ontour funtions, the list of diagrammati rules is deferred to the Appendix B.Exept for the example in set. 8 and the appendies, the presentation of the generalonept in the main part of the paper is restrited to the ase of relativisti salar bosons.This allows us to formulate the basi ideas in simple and transparent terms. Generaliza-tions to vetor mesons and relativisti fermions or to non-relativisti kinematis, as wellas to multi-omponent systems, as disussed for the example in set. 8, and to intera-tions with derivative oupling are straightforward, though in some ases tehnially moreinvolved.
2 PrerequisitesWe onsider a system of relativisti salar bosons, spei�ed by the free Klein-GordonLagrangians [41℄ 3



bL 0 = 8>><>>: 12 ��� b� � �� b� �m2 b�2� for neutral bosons;�� b�y � �� b� �m2 b�y b� for harged bosons; (2.1)where b�(x) and b�y(x) are bosoni �eld operators. The onvention of units is suh that~ =  = 1 and symbols for �eld operators arry a hat. The interation LagrangiansbL intf b�g (for neutral bosons) and bL intf b�; b�yg (for harged bosons) are assumed to beloal, i.e. without derivative oupling. Under these onditions the Lagrangians are hargesymmetri. Charges are understood as the eletri harge, strangeness, iso-spin, et.The variational priniple of stationary ation leads to the Euler{Lagrange equations ofmotion for the �eld operators�Sx b�(x)= bJ (x) = � bL int� b�y ; where Sx = ����� �m2; (2.2)and similarly for the orresponding adjoint equation. Thereby, the bJ (x) operator is a loalsoure urrent of the �eld b�, while Sx is the di�erential operator of the free evolution withthe free propagator �0(y; x) as resolvent.Invarianes of the Lagrangian provide a set of onservation laws, the most prominentof whih are those for the energy{momentum and ertain urrents. In addition to thestandard anonial energy{momentum tensor [41℄, di�erent representations of this ten-sor both in lassial ase and for the operator form in quantum �eld theory have beenonsidered [42,43℄. Using the Euler{Lagrange equations of motion and the de�nition ofthe soure urrent (2.2), one an show that the following form also de�nes a onservingenergy momentum tensorb���(x)= 14� h�(bp�x)� + bp�y� �(bp�x)� + bp�y� � b�y(x) b�(y) + b�(y) b�y(x)�ix=y+ g�� � bE int(x)� bEpot(x)� ; (2.3)wherebp�x = i��x ; and � = 8>><>>: 1=2 for neutral bosons;1 for harged bosons: (2.4)We use this expression, sine it represents the operator form of the energy{momentumtensor later derived at the expetation value level from the invariane of the �-funtional(see set. 6). For notational simpliity, expression (2.3) and similar expressions below,whih appear symmetri in b� and b�y, are written in suh a way that they diretly applyto omplex �elds with � = 1. For real �elds � = 1=2 and the orresponding expressions are4



obtained by equating b�y = b�. Above, we have introdued the operators of the interationenergy density bE int(x) of the system, whih aounts for the total interation part of theenergy density, and the potential energy density bEpot(x), both given asbE int(x)=� bL int(x);bEpot(x)=�12� � bJ y(x) b�(x) + b�y(x) bJ (x)� :For a multi-omponent system, the latter de�nes the sum of the potential energies pervolume of any partile with the urrent bJ (x) in the �eld b�(x) indued by the otherpartiles in the system.For spei� interations there are simple relations between bE int(x) and bEpot(x). E.g., if allverties of bL int have the same number  of �eld operators attahed, one simply deduesbE int(x) = 2 bEpot(x); e.g. for bL int = ����s )  = 4: (2.5)As shown, for two-body interations or the �4-theory, where  = 4, the interation energyis half of the potential energy.If the Lagrangian is invariant under some global transformation of harged �elds (withthe harge e), e.g., b�(x)) e�ie� b�(x); b�y(x)) eie� b�y(x); (2.6)there exists a Noether urrent de�ned as [41℄bj �(x) = e12 h�(bp�x)� + bp�y� � b�y(x) b�(y) + b�(y) b�y(x)�ix=y ; (2.7)whih is onserved, i.e. �� bj � = 0: This urrent naturally vanishes for the neutral partiles(e = 0).One may also de�ne the tensor M���, whih is assoiated with the Lorentz invariane ofthe Lagrangian and provides the angular momentum onservation. However, we do nottreat this tensor in this paper, sine it is of no ommon use in kinetis.3 Real-Time ContoursIn the non-equilibrium ase, one assumes that the system has been prepared at someinitial time t0 desribed in terms of a given density operator b�0 = Pa Pa jai haj, where5



the jai form a omplete set of eigenstates of b�0. All observables an be expressed throughn-point Wightman funtions of Heisenberg operators bA(t1); : : : ; bO(tn) at some later timesD bO(tn) : : : bB (t2) bA(t1)E=:Tr bO(tn) : : : bB (t2) bA(t1) b�0(t0)=Xa Pa haj bO(tn) : : : bB (t2) bA(t1) jai : (3.1)Note that due to the �xed operator ordering for Wightman funtions, they are analytiand permit analyti extensions to omplex-time arguments.
t0 t-�� �1t+xt�y tt

Figure 1: Closed real-time ontour with two external points x; y on the ontour.The non-equilibrium theory an entirely be formulated on a speial ontour|the losedreal-time ontour (see �gure 1) with the time argument running from t0 to 1 along thetime-ordered branh and bak to t0 along the anti-time-ordered branh. Contour-orderedmulti-point funtions are de�ned as expetation values of ontour ordered produts ofoperators DTC bA(x1) bB (x2) : : :E = *TC bA I(x1) bB I(x2) : : : exp8<:i ZC bL intI dx9=;+ ; (3.2)where TC denotes the speial time-ordering operator, whih orders the operators aordingto a time parameter running along the time ontour C. The l.h.s. of eq. (3.2) is written inthe Heisenberg representation, whereas the r.h.s. is given in the interation (I) represen-tation. Here and below, the subsript "I" indiates the interation piture. Note that atthis level the ontour is not a ontour in the omplex plane, as the �gure may suggest, butrather it runs along real time arguments. It is through the plaement of external pointson the ontour that the ontour ordering obtains its partiular sense.In ertain alulations, e.g., in those that apply the Fourier and Wigner transformations,it is neessary to deompose the full ontour into its two branhes|the time-ordered andanti-time-ordered branhes. One then has to distinguish between the physial spae-timeoordinates x; : : : and the orresponding ontour oordinates xC whih for a given x taketwo values x� = (x�� ) and x+ = (x+� ) (� 2 f0; 1; 2; 3g) on the time ordered and anti-timeordered branhes, respetively (see �gure 1). Closed real-time ontour integrations anthen be deomposed as 6



ZC dxC : : : = 1Zt0 dx� : : :+ t0Z1 dx+ : : : = 1Zt0 dx� : : :� 1Zt0 dx+ : : : ; (3.3)where only the time limits are expliitly given. Thus, the anti-time-ordered branh aquiresan extra minus sign if integrated over physial times. For any two-point funtion F , theontour values on the di�erent branhes de�ne a e� 2-matrix funtionF ij(x; y) := F (xi; yj); i; j 2 f�;+g; (3.4)depending on the physial oordinates (x; y). The ontour Æ-funtion is de�ned asÆi;jC (x; y) = ÆC(xi; yj) = �ijÆ4(x� y); �ij = 0B� 1 00 �11CA (3.5)where the matrix �ik aounts for the integration sense on the two branhes. For anymulti-point funtion, the external point xmax, whih has the largest physial time, anbe plaed on either branh of the ontour without hanging the value, sine the ontour-time evolution from x�max to x+max provides unity. Therefore, one-point funtions have thesame value on both sides of the ontour. Due to the hange of operator ordering, genuinemulti-point funtions are disontinuous in general, when two ontour oordinates beomeidential. The orresponding properties of two-point funtions and their equilibrium rela-tions are summarized in Appendix A.Boson �elds may take non-vanishing expetation values of the �eld operators �(x) = D b�E,alled lassial �elds. The orresponding equations of motion are provided by the ensembleaverage of the operator equations of motion (2.2)Sx�(x) = �J(x); or �(x) = �0(x)� ZC dy�0(x; y)J(y): (3.6)Here J(x) = D bJ (x)E, while �0(x) = D b� I(x)E is the freely evolving lassial �eld whihstarts from �0(t0;x) at time t0. Thereby, �0(x; y) is the free ontour Green's funtioni�0(x; y) = DTC b� I(x) b�yI(y)E� �0(x)(�0(y))� (3.7)whih resolves the equationSx�0(x; y)= ÆC(x; y) (3.8)on the ontour, where ÆC(x; y) is the ontour Æ-funtion (3.5). The reader an easilyverify the equivalene of the ontour form (3.6) with the standard retarded lassial �eld7



equation due to eq. (A.2) and the fat that J(x) and �(x) are one-point funtions, whihhave idential values on both sides of the ontour.Subtrating the lassial �elds via b� = � + b', the full propagator in terms of quantum-utuating parts b' of the �elds is de�ned asi�(x; y) = DTC b'(x) b'y(y)E = DTC b�(x) b�y(y)E� �(x)��(y) = DTC b�(x) b�y(y)E : (3.9)Here and below, the sub-label "" indiates that unorrelated parts are subtrated. Interms of diagrams it implies, that the orresponding expetation values are given by sumsof entirely onneted diagrams.Averaging the operator equations of motion (2.2) multiplied by b'y(y) and subtratinglassial �eld parts one obtains the equation of motion for the propagatorSx�(x; y)= ÆC(x; y) + i DTC bJ (x) b'y(y)E ; (3.10)whih is still exat and aounts for the full set of initial orrelations ontained in b�0.In order to proeed further, one may suggest that the typial interation time �int forthe hange of the orrelation funtions is signi�antly shorter than the typial relaxationtime �rel, whih determines the system evolution. Then, desribing the system at timest � t0 � �int, one an neglet the initial orrelations whih are supposed to die outbeyond �int in line with the Bogolyubov's priniple of weakening of initial orrelations 1[44℄. As a result, one an apply the standard Wik deomposition dropping higher orderorrelations for the driving terms on the r.h.s. of both equations of motion (3.6) and(3.10). Then both driving terms an be expressed as funtionals solely of lassial �eldsand one-partile propagators rather than of higher order orrelations. The so obtaineddesription level is then irreversible in general. Thus,i DTC bJ (x) b'y(y)E= i*TC 24exp8<:i ZC dz bL intI 9=; bJ I(x) b'yI(y)35+= i ZC dz *TC �� b' I(z) 24exp8<:i ZC dz0 bL intI 9=; bJ I(x)35+1 DTC b'(z) b'y(y)E= ZC dz� (x; z)�(z; y) (3.11)one reovers Dyson's equation in the di�erential form1 Atually, onsidering a dilute gas limit, Bogolyubov suggested the weakening of all the or-relations, whereas we use a weaker assumption on the weakening of only short-range (� �int)orrelations. 8



Sx�(x; y)= ÆC(x; y) + ZC dz� (x; z)�(z; y); (3.12)(Sy)��(x; y)= ÆC(x; y) + ZC dz�(x; z)� (z; y): (3.13)The resolvent property of the free ontour propagator �0 permits to write down theseequations also in the integral form, whih then inlude the appropriate initial and bound-ary onditions through the inhonogenouos�0 term in the usual manner. Thereby ausalityis inorporated through the ontour formulation. Above � denotes the proper self-energyof the partile. Sine we have separated the full propagator in (3.11), �i� has to beone-partile irreduible (label 1), i.e. the orresponding diagram annot be split into twopiees whih separate x from z by utting a single propagator line. Obviously, � in (3.11)may have singular (Æ-funtional) one-point parts and genuine two-point parts�i� (x; z)=*TC �2i bL int(x)� b�� b�y + ÆC(x; y)� DTC bJ (x) bJ y(y)E1 : (3.14)here given in the Heisenberg piture.In diagrams free and full lassial �elds are represented by "pins" with ross and "o-ross"as heads, .f. (3.15), while free and full propagators are given by thin and thik long lines,respetively. Complex �elds arry a sense, the arrow always pointing towards the b� in theontour ordered expressions. In diagrammati representation, the lassial �eld equations(3.6) and Dyson equations (3.12) are then given byN = � + r����iJ ; (3.15)� = � + � ��� ���i� (3.16)with the one- and two-point funtions iJ(x) and �i� (x; y), as driving terms.The averaged values of onserved quantities an be expressed in terms of the one- and two-point funtions introdued so far. Averaging the operator value of the energy{momentumtensor of eq. (2.3), we arrive at���(x) =: D b���E= 12� ��(bp�x)� + bp�y� �(bp�x)� + bp�y����(x)�(y) + i�sym(y; x)��x=y+ g�� �E int(x)� Epot(x)� ; (3.17)where E int(x) = � D bL int(x)E, and the potential energy density beomes9



Epot(x)= D bEpot(x)E = 12�8<:� [J�(x)�(x) + J(x)��(x)℄+ i ZC dz [� (x; z)�(z; x) +�(x; z)� (z; x)℄9=; : (3.18)due to eqs. (2.5) and (3.11). Note that we do not presribe any ontour indies to x in theintegral term of Epot, sine atually this term is independent of the ontour plaement ofx due to disontinuity property (A.4). The Noether urrent (2.7) takes the formj�(x) =: D bj �E= e ��(bp�x)� + bp�y����(x)�(y) + i�sym(y; x)��x=y : (3.19)In order to keep the expressions ��� and j� harge symmetri we have introdued thesymmetri quantities F sym(x; y) = 12 �F (x�; y+) + F (x+; y�)� ; (3.20)where F (x; y) is any two-point funtion on the real-time ontour. This is not automat-ially provided by the variational methods leading to the Noether energy{momentumtensor and urrent, as they only provide the vanishing of the orresponding divergene.The integrated form of the onserved quantities has to be adjusted suh that harge sym-metry is maintained, thus desribing ontributions of both, partiles and anti-partiles, onequal footing. This way one properly aounts for the modi�ation of the vauum polar-ization in the medium, sine the vauum-polarization energy oinides with the zero pointenergies of the �eld osillations. The orresponding divergene has still to be appropriatelyrenormalized.4 Funtionals W , � and �The standard generating funtional W for onneted n-point funtions with externalone-point soures will be extended in three ways. First, it will be used on the real-timeontour. Seondly, in our non-equilibrium ase we also inlude external bilinear souresK(x; y) [31℄. In addition we introdue a spae-time dependent interation sale �(x) intothe variational onept, whih sales interation verties, i.e.bL int� = �(x) bL int n b�y(x); b�(x)o : (4.1)The latter provides the lue to the proof of the diagrammati representation for theauxiliary funtional � in terms of losed diagrams. The generating funtional then reads10



W f�;K; �g = �i ln*exp 24�i ZC dx bH 0I35 TC exp8<:i ZC dx��(x) bL intI+ � 24�(x) b�yI(x) + ��(x) b� I(x) + i ZC dy b� I(x)K(x; y) b�yI(y)351A9=;+ ; (4.2)with the free Hamiltonian of the system in the interation representation bH 0I . As alreadyintrodued, the fator � takes the value of 1=2 for real �elds thereby equating b� withb�y, else it is 1. Sine the funtional dependene onerns only the external soures, theoperator part an be ast into di�erent pitures, suh as the Heisenberg or interationones. The latter establishes the perturbation expansion. Furthermore, h: : :i denotes thetrae over all states, whih inludes the ensemble average over the density operator b�0(t0)at initial time t0. Aordingly, multi-point funtions are de�ned as ensemble averages of�eld operators with �0 (f. eq. (3.2)).While n-th order funtional variations of (4.2) with respet to � generate the onnetedn-point funtions, the �rst funtional variation with respet to K(x; y) gives the totaltwo-point propagator inluding disonneted pieesÆW f�;K; �g = � 24ZC dx [��(x)Æ�(x) + �(x)Æ��(x)℄+ ZC dx ZC dy [�(x)��(y) +�(x; y)℄ ÆK(y; x)35� ZC dxE int� (x)Æ�(x)=�(x): (4.3)Here, � and � denote the lassial �elds and propagators, respetively, whih now impli-itly depend on �. The term, resulting from the variation of the interation sale funtion�(x), de�nes a one-point funtion E int� (x) = � D bL int� (x)E, whih agrees with the orre-sponding expetation value of (2.5) but for the saled Lagrangian.The step towards a funtional that depends on the lassial �elds � and propagators� rather than on the external soures � and K is provided by the double Legendretransformation of W to �f�; ��;�; �g given as [31℄�f�; ��;�; �g=Wf�;K; �g � � 24ZC dx [��(x)�(x) + �(x)��(x)℄+ ZC dxdy [�(y)��(x) +�(y; x)℄K(y; x)35 : (4.4)Here, the soures � and K have to be expressed through � and �. Apart from the Æ�dependenes, the funtional variation 11



Æ� f�; ��;�; �g = �� 24ZC dx [��(x)Æ�(x) + �(x)Æ��(x)℄+ ZC dx ZC dy [Æ�(y)��(x) + �(y)Æ��(x) + Æ�(y; x)℄K(y; x)35� ZC dxE int� (x)Æ�(x)�(x) (4.5)vanishes at vanishing external soures � and K. The latter together with the ondition� = 1 determines the physial solution. Note also that for the physial solution, i.e. at� = K = 0, the values of the two funtionals � andW are idential. Indeed, the variationsÆ�=Æ� = 0; Æ�=Æ�� = 0; Æ�=Æ� = 0 (4.6)provide us with equations of motion for lassial �elds (3.6) and the omplex onjugatedone, as well as Dyson's equation (3.12).Similarly to equilibrium ase treated by Luttinger, Ward [31℄, and later by Cornwall,Jakiw and Tomboulis [33℄, whih inluded mean bosoni �elds, we represent our � fun-tional related to the real-time quantities in the form�f�; ��;�; �g=� 0 + ZC dxL 0f�; ���g+ i� hln �1���0 � � �+��� � i + � f�; ��;�; �g ; (4.7)this way de�ning the auxiliary funtional � f�; ��;�; �g 2 . Construting � solely in termsof the �elds and one-partile propagators omplies with the assumption of ignoring higherorder orrelations. The � 0 and L 0 parts, where L 0 is the lassial free Lagrangianfuntion, represent the non-interating parts of � . The � 0 term solely depends on theunperturbed propagator �0 and hene is treated as a onstant with respet to funtionalvariations of � . The ln(: : :) is understood in the funtional sense, i.e. by a series of n-folded ontour onvolutions, denoted by the �-symbol, formally resulting from the Taylorexpansion of the ln(1+ x) at x = 0. This ln-term aounts for the hange of � due to theself-energies of the partiles. The � 0, L 0 and ln terms in eq. (4.7) aount for the one-body omponents in � . The remaining��� and � terms orret for the true interationenergy part of � . As shown in the next setion, the form (4.7) presents a re-summationof the orresponding perturbative expansion of the value of � (.f. eq. (4.4)) in terms offull lassial �elds and full propagators.The spei� form (4.7) has important funtional properties, whih provide us with anumber of useful relations. Funtional variation of � f�; ��;�; �g in the form of eq. (4.7)2 Note that we have plaed all bL int-dependent parts into �, i.e. our � inludes zero and one-loop terms and therefore di�ers from the auxiliary quantity �2 de�ned by Cornwall et. al. [33℄whih is void of zero- and one-loop terms. There these terms are rather inluded in de�ning afull lassial Lagrangian that depends on interating lassial �eld and tad-pole terms.12



leads toÆ� f�; ��;�; �g = �8<:ZC dx [Æ�(x)(Sx)���(x) + Æ��(x)Sx�(x)℄ (4.8)�i�� 11���0 � � ��0 ����� Æ� + i ZC dxdy� (x; y)Æ�(y; x)9=;+ Æ� f�; ��;�; �g :Here Æ� is understood as a variation indued by Æ�, Æ�, Æ��, and Æ�, respetively. Forphysial solutions the variations (4.6) of � vanish. They require the round braket term in(4.8) to vanish, whih provides the Dyson equation on the ontour, and from (4.5) furtherimply the following variational rules for the auxiliary � funtionalÆ � f�; ��;�; �g = �8<:ZC dx [J�(x)Æ�(x) + J(x)Æ��(x)℄� i ZC dxdy� (x; y)Æ�(y; x)9=;� ZC dxE int(x)Æ�(x); (4.9)or iJ(x)= Æi�Æ��(x) ; (4.10)�i� (x; y)= Æi�Æi�(y; x) � 8>><>>: 2 for neutral bosons,1 for harged bosons, (4.11)�E int(x)= Æi�Æi�(x) : (4.12)The virtue of the funtional form (4.7) is that these requirements an be met simultane-ously and that there exists a unique form of �, for whih the three derived quantities|theone-body soure urrent J(x), the two-body self-energy �i� (x; y) and the interation en-ergy density E int(x)|take their physial values at the physial solutions of the equationsof motion (3.12) and (3.6). This will beome lear in more detail in the next setion, wherewe disuss the diagrams de�ning the various funtionals. From (4.10) and (4.11) � an beseen as a generating funtional for the soure terms J of lassial �elds and self-energies� for the set of Dyson equations, respetively. Therefore, approximation shemes an bede�ned through partiular approximations to �. Thereby, the invariane properties of �play a entral role to de�ne onservation laws for the approximate dynamis.It is important to emphasize that we do all funtional variations independently of any plaeon the ontour. Thus, di�erent ontour times are onsidered as independent, even though13



they may refer to the same physial time 3 . In priniple, all variational onsiderationsgiven in this setion apply to any kind of time ontour, even to non losed and omplexones as well as to any operator b�0 de�ning the averaging h: : :i = Tr f: : : b�0g inluding theunit operator, as used in Matsubara's imaginary-time formalism. For a partiular hoieof b�0 and of a ontour the physial values of W and � are idential for the orrespondingphysial solutions along this ontour. In the imaginary-time method the value � = Wtakes the meaning of the thermodynami potential (.f. set. 7). In the non-equilibriumlosed real-time formalism, for whih Tr b�0 = 1, the physial values of W and � triviallyvanish, i.e. W = � = � = 0 for physial solutions of �, �, �� on the ontour:An important omment must be given at this stage. One should learly distinguish be-tween the funtional form of a funtional, whih aquires its meaning through variationalmethods, and the physial value that funtional takes one the physial solutions of theequations of motion are inserted. For instane, two funtionals W and � are ompletelydi�erent in their funtional meaning, while they take the same physial value for thephysial solution. Therefore, for all funtionals the funtional dependenes are expliitlygiven in braes. Our strategy below will be �rst to perform general variations of � and�, allowing non-physial values of �, �, �� and �, and only then to put them to theirphysial values. This way, a number of important relations between Green's funtions,self-energies and mean �elds will be obtained.5 Diagrams for � , � and E int� (x)
� ZC dxE int(x) = "� dd��f�f�g; ��f�g;�f�g; �g#�=1 = "� ����f�; ��;�; �g#�=1 ;(5.1)where now � is treated as a global sale parameter (note that only a partial derivative isapplied to �, i.e. the �, �� and � values are kept onstants.). In the perturbation theory,the diagrammati rules to alulate the one-point funtion E int(x) are straightforward�iE int(x) = i*TC bL intI (x) exp 24i ZC dx0 bL intI (x0)35+ =Xn� ����t : (5.2)Here the diagram symbolially denotes all onneted (label ) losed perturbation-theorydiagrams generated by expanding the exponential funtion in (5.2). The full dot denotes3 The fat that for the physial solutions the omponents of � on the di�erent branhes ofthe ontour are not independent (f. (A.2)), has no importane for the variational proedure.The reason is that rules (A.2) only apply to the physial � and �, whih are provided by thestationary \points" of the variational priniple, i.e. solving the equations of motion (3.6), (3.12)and (3.13). 14



the external point x whih is not integrated out. Integrating (5.1) with respet to �, wede�ne the quantity i �� given by the following perturbative diagrammati representationi��f�0; �0�;�0; �g = i� 0 n�0o + i ZC dxL 0f�0; ���0g+Xn� 1n� ���� ; (5.3)where the integration onstants have been hosen suh that for physial solutions �� = � .One an see that eah diagram ontributing to �� has to be weighted with its inversenumber of verties 1=n�, due to the formal �-integration of (5.2). It is important to realizethat due to these global fators suh a set of diagrams is not resumable in the standarddiagrammati sense 4 . Also �� in the form of eq. (5.3) is a funtional of �0; �0�;�0; � ratherthan of �; ��;�; �, as required for � and �. However, we an arrive at this funtionaldependene of � as follows. The expression (5.2) for �iE int(x) an be re-summed andentirely expressed in terms of full lassial �elds and full propagators. The re-summeddiagrams are then void of any self-energy insertions and therefore have to be two-partileirreduible�iE int(x) =Xn� ����2t : (5.4)Diagrams of lass 2 annot be deomposed into two piees by utting two propagatorlines. The formal integration of the last equality in (5.1) with respet to � keeping � and� onstant provides the diagrammati expression for � in terms of full Green's funtionsand lassial �elds. Therefore, i� f�; ��;�; �g an be expressed in terms of the followingdiagrams (.f. eq. (4.7))i� f�; ��;�; �g = i� 0 n�0o + i ZC dxL 0f�; ���g
+�8>>>>><>>>>>:Xn� 1n� �� ���i� �� ���i��� ���i�. . . . . .� �� �| {z }� ln �1���0 � � � ��� ���i�� �� �| {z }���� �

9>>>>>=>>>>>;+Xn� 1n� ����2| {z }+ i� : (5.5)
Here n� ounts the number of � insertions in the ring diagrams providing the ln-terms,while for the losed diagrams of � the value n� ounts the number of verties building4 Diagrammati re-summation implies that sub-diagrams with the same external struture (i.e.same number of external points and types of propagators to be attahed at eah external point)an be summed up to give a total re-summed expression that an then be embedded into moreompliated diagrams, e.g. self-energy insertions an be re-summed to full Green's funtions.15



up the funtional �. Contrary to the perturbative diagrams of i �� , .f. eq. (5.3), herethe diagrams ontributing to � are given in terms of full propagators � and full time-dependent lassial �elds �. As a onsequene, these diagrams have to be two-partileirreduible (label 2). The latter property is required beause of the re-summations ofE int(x). This also mathes the diagrammati rules for the re-summed self-energy � (x; y),whih results from funtional variation of � with respet to any propagator �(y; x). Ingraphial terms, this variation is realized by opening a propagator line in all diagramsof �. The resulting set of thus opened diagrams must then be that of proper skeletondiagrams of � in terms of full propagators, i.e. void of any self-energy insertion.The diagrammati rules for �, E int(x), J and � are determined by the following steps:(a) For all bosoni �elds in i bL int, replae b� by �+ b' in order to aount for the lassial�elds;(b) onsider all possible pair ontrations of the �eld operator b'(x) with b'y(y) in theformal expressions (5.6){(5.9) given below and replae them by i�(x; y);() keep only those terms that orrespond to two-partile irreduible diagrams for � , i.e.whih annot be split into two piees by utting two di�erent propagator lines.Further details are given in Appendix B. The diagrams of i�, �iE int(x) , iJ(x) and�i� (x; y) are then generated by applying the above general rules to the following formalexpressions
i�=*TC exp0�i ZC dx0 bL int(x0)1A+2f�g (5.6)=Xn 1n! ZC dx1 : : :dxn DTCi bL int(x1) : : : i bL int(xn)E2f�g ;�iE int(x)=*TCi bL int(x) exp0�i ZC dx0 bL int(x0)1A+2f�g ; (5.7)iJ(x)=*TC ÆÆ��(x) exp0�i ZC dx0 bL int(x0)1A+2f�g ; (5.8)�i� (x; y)=*TC Æ2Æ b'y(x)Æ b'(y) exp0�i ZC dx0 bL int(x0)1A+2f�g ; (5.9)where the sub-label 2 f�g refers to the above point ().As an example, we quote the diagrams in neutral salar g b�4=4! theory. The funtional �is given by the following expressions 16



i�= �ig4! ZC dx ��4(x) + 6�2(x) h b'(x) b'(x)i + 3 h b'(x) b'(x)i2� (5.10)+ 12 ��ig4! �2 ZC dx ZC dy �4 � 4!�(x)�(y) h b'(x) b'(y)i3 + 4! h b'(x) b'(y)i4�+ : : : ;where only the terms up to two verties are expliitly presented. In terms of diagrams(.f. also Appendix B) we geti� = ����rL LL L + ����rL L����+ r��������+12 8>><>>: N Nr r + r r 9>>=>>;+ 13 : : :h 14!i h 12�2!i h 122�2!i h 13!i h 14!i (5.11)The 1=n� fators are expliitly given, while the ombinatorial fators aording to rule (vii)in Appendix B are given in square brakets below eah diagram. Funtional derivativeswith respet to � (pins) and propagators (full lines), .f. eq.(4.9), determine the soureJ(x) of the lassial �eld and the self-energy � (x; y), respetively,iJ(x) = vNNN + vN����+ Nv r + : : : ;h 13!i h12i h 13!i�i� (x; y) = ����vL L + v����+ N Nv v + v v + : : :h 12!i h12i h 12!i h 13!i
(5.12)

Small full dots de�ne verties whih are to be integrated over, while big full dots speifythe external points x or y; the �rst two diagrams of � (x; y) give the singular ÆC(x; y)parts arising from lassial �elds and tad-poles.6 �-Derivable Approximations and Invarianes of �The expressions for W , � and � given so far are exat and represent a onvenient for-mulation of the theory in terms of full propagators and self-energies. However, for anypratial alulation one needs to trunate the sheme. We onsider so-alled �-derivable17



approximations, �rst introdued by Baym [30℄ within the imaginary time method. Suhapproximations are onstruted by on�ning the in�nite diagrammati series for � eitherto a set of a few diagrams or to some sub-series of diagrams. Note that the approximate�(appr.) itself is onstruted in terms of \full" Green's funtions and \full" lassial �elds,where \full" now implies that we have to self-onsistently solve the lassial-�eld andDyson equations with the driving terms derived from this �(appr.) through relations (4.10)and (4.11). It means that even restriting ourselves to a single diagram in �(appr.), in fat,we deal with a whole sub-series of diagrams in perturbation theory. Thereby, the term\full" takes the sense of the sum of this whole sub-series. Thus, a �-derivable approxima-tion o�ers a natural way of introduing losed, and therefore self-onsistent approximationshemes based on summation of diagrammati sub-series. In order to preserve the sym-metry of the exat � with respet to permutations among i bL int(x1) : : : i bL int(xn) (seeeq. (5.6)), we postulate that � omplies with the original symmetries. As a onsequene,approximate forms of �(appr.) de�ne e�etive theories, where �(appr.) serves as a generatingfuntional for the approximate soure urrents J (appr.)(x) and self-energies � (appr.)(x; y)(see eqs. (4.10) and (4.11)) iJ (appr.)(x) = Æi�(appr.)Æ (�(appr.)�(x)) ; (6.1)�i� (appr.)(x; y) = Æi�(appr.)Æi�(appr.)(y; x) � 8><>: 2 for neutral �elds,1 for harged �elds, (6.2)whih then are the driving terms for the equations of motion for the lassial �elds andpropagators. The approximate � also provides the orresponding expression for E int (seeeq. (4.12)). While �-funtionals with only one internal point lead to the standard Hatreeapproximation (tadpole insertions), whih is entropy onserving, the approximation levelwith two and more internal points for � generate genuine transport terms, whih areentropy generating and for whih an H-theorem an be derived in speial ases [37℄.Below, we omit the supersript \appr.".Below, we omit the supersript \appr.".We now like to demonstrate that �-derivable approximations possess a number of remark-able properties. For suh approximations, the invarianes of � play as entral a role asthe invarianes of the Lagrangian for the full theory. Thereby, the variational priniple,where the interation strength �(x), the lassial �elds �(x), and propagators �(x; y) anbe varied independently, provides a set of useful identities and relations.A general invariane of � is provided by the substitution x) x+ �(x) for all integrationvariables in the ontour integrations de�ning �. The Jakobi determinant required for eahintegration variable an be aommodated by a simultaneous hange of the sale funtion�(x) at eah vertex. Thus, the simultaneous variation�(x) ) �(x+ �(x)); 18



�(x; y) ) �(x+ �(x); y + �(y)); (6.3)�(x) = 1 ) �(x) = det Æ�� + ����x� ! ; i.e. Æ�(x) = ����x� ;leaves � invariant. This way, one deduesÆ� = �8<:ZC dx "J�(x)��(x)�x� + J(x)���(x)�x� # ��(x)� i ZC dxdy� (x; y) "��(y; x)�x� ��(x) + ��(y; x)�y� ��(y)#9=;� ZC dxE int(x) ����x� = 0: (6.4)Interhanging x and y in the seond � term in squared brakets, using partial integrationand that the transformation �(x) an be hosen arbitrarily, one obtains the followingrelation ��x�E int(x) + �("J�(x)��(x)�x� + J(x)���(x)�x� #� i ZC dy "� (x; y)��(y; x)�x� + ��(x; y)�x� � (y; x)#9=; = 0: (6.5)
This is the key relation to prove energy{momentum onservation. It has features similarto a Ward identity, as it links derivatives of one-point funtions with those of two-pointfuntions. The two-point funtion ontribution to this expression is of type of eq. (A.5),so that in eq. (6.5) the di�erentiations of the disontinuities indeed anel out.With the help of the equations of motion (3.6), (3.12) and (3.13), the divergene of thekineti term of the energy{momentum tensor ��� (3.17) an be ast into12��� ��(bp�x)� + bp�y� �(bp�x)� + bp�y����(x)�(y) + i�sym(y; x)��x=y= ��g��Epot(x) + �8<: [J(x)����(x) + J�(x)���(x)℄�i ZC dz [� (x; z) � �x��(z; x) + �x��(x; z) � � (z; x)℄9=;= �� nEpot(x)� E int(x)o (6.6)with the last line resulting from eq. (6.5). This is reognized as the energy{momentumonservation law �����(x) = 0 with the energy{momentum tensor given by the Noetherexpression (3.17). Hene, the existene of a onserved energy{momentum tensor is provenfor any �-derivable approximation. 19



Along similar lines harge onservation an be proven, assuming that � is invariant underthe following simultaneous variation of lassial �elds and propagators�(x)) e�ie�(x)�(x); ��(x)) eie�(x)��(x); �(x; y)) e�ie�(x)�(x; y)eie�(y): (6.7)Applying the rule (4.9) of the � variation, to linear order in the phase �, one obtainsÆ�= e ZC dx8<:J�(x)�(x)� J(x)��(x)+ ie ZC dy [� (x; y)�(y; x)��(x; y)� (y; x)℄9=; [�i�(x)℄ = 0; (6.8)whih implies the brae expression to vanish. Note that the integral term in the braeexpression is independent of the ontour plaement of the x variable due to disontinuityrelation (A.3) and, therefore, it is only a funtion of the physial value of x. By means ofequations of motion (3.6), (3.12) and (3.13), the divergene of the Noether urrent of eq.(3.19) is seen to vanishi��j� = e8<:J�(x)�(x)� J(x)��(x)+i ZC dy [� (x; y)�(y; x)��(x; y)� (y; x)℄9=; = 0; (6.9)aording to eq. (6.8). Thus, we have arrived at the urrent onservation for any �-derivable approximation, whih is invariant under (6.7).Similarly, one may derive the relation, resulting from the Lorentz invariane of the �funtional, whih permits to demonstrate the onservation of the angular momentum.However, we do not onsider it here, sine the angular-momentum onservation is not ofpratial use in kinetis. Further invarianes generally depend on the properties of theinteration verties in the theory onsidered. An example is the invariane disussed inthe ontext of eq. (2.5) whih now transribes to the orresponding expetation values.7 Thermodynami ConsistenyIn the thermal equilibrium the density matrix is expliitly known, .f. [45℄,b�eq = exp ��� bH f�g�Z ; (7.1)where � = 1=T is the inverse temperature, and Z is the partition funtion whih is diretlyrelated to the thermodynamial potential, 20




 = �T lnZ: (7.2)Sine we deal now with thermodynamis, we have introdued the hemial potential � inthe onventional way, i.e. by adding to the Hamiltonian the relevant termbH f�g = bH � � Z d3x bj 0(x); (7.3)where bj 0 is the time-omponent of the harged urrent eq. (2.7), now with e = 1.We an use the same trik as that in the Matsubara tehnique, i.e. use the fat that theequilibrium density matrix formally oinides with evolution operator in the imaginarytime. In the de�nition of the W funtional (4.2) we expliitly write Trb�eq::: instead ofh:::i. Thus, taking into aount that � = W at vanishing external soures, we arrive atthe following form of � funtional in equilibrium� eq f�; ��;�; �g = �i ln0B� 1ZTr exp 264�i ZCeq dt bH 0If�g375 TC exp 264i ZCeq dx bL intI 3751CA ; (7.4)with the integration ontour Ceq now being the sum of the real-time Shwinger-Keldyshontour (see �gure 1) and the imaginary-time Matsubara ontour, i.e. it starts from aninitial time t0 goes to in�nity, then bak to this initial time and after that, to t0 � i�.Taking into aount the fat that � = 0 for the physial values of �, ��, and �, we obtainfor the value of the thermodynami potential (7.2)
f�; ��;�; �g = �T ln8><>:Tr0B�exp 264�i ZCeq dt bH 0If�g375TC exp 264i ZCeq dx bL intI 3751CA9>=>; ; (7.5)where the integral over the real-time setion of the ontour gives zero. Hene, in eq. (7.5)we an make the replaementZCeq dt::: = �i�Z0 dt::: : (7.6)Thus, we have arrived at the proper thermodynami representation of the thermodynamipotential originally proposed by Luttinger and Ward [31℄. Indeed, sine all quantitiesunder the integral are analytially ontinued from the Shwinger{Keldysh ontour to theMatsubara ontour, 
 is determined by the same expression as the � funtional (4.7)but in terms of the Matsubara Green's funtions with the thermodynami �T funtionalrepresented by the same set of losed diagrams. Thus, in the momentum representationfrom eq. (7.5) we arrive at 21




 f�; ��;�; �g=� Z d3xL 0f�; ���g+ T�X!n Z d3x d3p(2�)3 exp(i!n�)��� ln[��(!n;p)℄ + � (!n;p)�(!n;p)�+ �T ; � ! 0; (7.7)where �T = �iT�, !n = 2�inT , and summation runs over Matsubara frequenies. In thestandard way (see, e.g., ref. [32℄) by onverting the !n-sum in eq. (7.7) into the energyintegral, this thermodynami potential is also easily expressed in terms of the real-timequantities (A.7) and (A.8) (in the rest frame of the system)
 f�; ��;�; �g=� Z d3xL 0f�; ���g+ � Z d3x d4p(2�)4n(p0 � �)���2Im ln h��R(p0 + i0;p)i � Re�R�� ARe� R� +�T ; (7.8)where p = (p0;p) is the 4-momentum,n(") = [exp("=T )� 1℄�1 (7.9)is the thermal Bose{Einstein oupation number, andA(p) = �2Im �R(p); �(p) = �2Im � R(p) (7.10)are the spetral funtion A and spetral width 5 �, respetively, de�ned in terms of re-tarded quantities, .f. eq. (A.2). Note that the exat form of equilibrium distribution (7.9)is a funtion of the partile energy only (whih an be o�-shell for partiles with width),rather than a funtion of momenta p through the on-shell energy momentum dispersionrelation, as often enountered in text books whih deal with the quasi-partile piture.Thus, the problem of the thermodynami onsisteny an immediately be re-addressedfrom the Shwinger{Keldysh approah to the Matsubara one. Within the Matsubara for-malism, this problem was onsidered by Baym [30℄. He has shown that any �-derivableapproximation to the thermodynami potential is thermodynamially onsistent. Hene,we have proved that our � derivable approximations to the � -funtional are also thermo-dynamially onsistent.The stationary property of the � funtional (and, hene, of 
) with respet to variationsin full Green's funtions and lassial �elds, eq. (4.6), is the key feature that providesthe thermodynami onsisteny. It implies that any derivative of the thermodynamipotential with respet to any thermodynami parameter like � or � is determined only bythe expliit dependene of 
 on these parameters, sine the impliit dependenes through� and � drop out due to the stationary property. Therefore, �-derivable approximationspreserve the orresponding thermodynami relations as for the exat partition sum, andthus provide thermodynami onsisteny.5 Please, do not onfuse with the �f: : :g-funtional22



8 Virial limitA partiular simpli�ation is obtained in the dilute density limit (virial limit). It has theadvantage that the orresponding self-energies of the partiles and intermediate resonanesare entirely determined by two-body sattering properties, in partiular, by satteringphase shifts. We illustrate this at the example of the interating system of nuleons,pions and delta resonanes, whih has reently been investigated by Weinhold et al. [40℄.Following their study we onsider a pedagogial example, where the �NN -interation isomitted. Then with a p-wave �N�-oupling vertex among the three �elds the �rst andonly diagram of � up to two verties and the orresponding three self-energies are givenby� = �N = �� = �� = (8.1)Here the solid, dashed and double lines denote the propagators ofN , � and �, respetively.In non-relativisti approximation for the baryons we ignore ontributions from the baryonDira-sea. Then the bare pion mass agrees with its vauum value, while the nuleon anddelta masses require appropriate mass ounter terms. The � self-energy �� attains thevauum width and position of the delta resonane due to the deay into a pion and anuleon. The orresponding sattering diagrams are obtained by opening two propagatorlines of � with the prominent feature that the �N -sattering proeeds through the deltaresonane. Sine in this ase a single resonane ouples to a single sattering hannel, thevauum spetral funtion of the resonane an diretly be expressed through the satteringT -matrix and hene through measured sattering phase shifts
j T33 j2 = 4 sin2 Æ33(p) = �va� (p)Ava� (p); (8.2)where p = pN + p�. Thus through (8.2) the vauum properties of the delta an almostmodel-independently be obtained from sattering data. Further details and extensions tomulti-hannel and multi-resonane ases an be found in ref. [46℄.For the multi-omponent system the renormalized thermodynami potential inludingvauum ounter terms, .f. eq. (7.8), an be written 6 as
 f��;�N ;��g = T Xa2f�;N;�g��Tr n� ln h��Ra (p0 + i0;p)i +�Ra� Ra oT;� +�T : (8.3)6 We generalize the boson expressions (7.7) and (7.8) to the ase multi-omponent system offermions and bosons. 23



Here for any funtion f(p) the thermodynami trae Trf:::gT;� is de�ned asTrff(p)gT;� (8.4):= dV Z d3p(2�)3 Xm exp(i!m�)f(!m � �;p)= �dVT Z d4p(2�)4n(p0 � �) 2 Imf(p0 + i0;p) ��������� � ! +0!m = 2m�iT (bosons)!m = (2m+ 1)�iT (fermions),either expressed in terms of the Matsubara summation over frequenies !m, or onvertedinto an energy integral over thermal oupations n(") = [exp("=T )� 1℄�1, of Fermi{Dira/Bose{Einstein type, .f. eqs (7.7) and (7.8) above. The upper sign appears forfermions, d is the degeneray in that partile hannel, and V denotes the volume. Eq.(8.3) still has the funtional property to provide the retarded Dyson equations for the �Rafrom the stationary ondition whih we use in order to determine the physial value of 
 .For the partiular ase here one further an exploit that the value�T = �� T Trf�a�agT;�; for a 2 fN; �;�g and � of form (8.1); (8.5)valid for this �T whih linearly depends on all three propagators. Compatible with thelow density limit one an expand the Tr lnf��g terms for the pion and nuleon aroundthe free propagators, and �nally obtains
�N� = 
 f��;�N ;��g ���stationary= 
 freeN + 
 free� + TTrnln h��R�(p0 + i0;p)ioT;� (8.6)= 
 freeN + 
 free� + d�TV Z d4p(2�)42�Æ33(p)�p0 ln [1� n� (p0 � ��)℄ (8.7)for the physial value of 
 . Here the 
 freea are the free single-partile thermodynamipotentials 7 , while �� and d� = 16 are the hemial potential and degeneray fator ofthe � resonane, respetively. The last term in (8.7) obtained through (8.2), representsa famous result derived by Beth-Uhlenbek [47,48℄, later generalized by Dashen, Ma andBernstein [49℄ and applied to nulear resonane matter in refs. [50,51,40,46℄. It illustratesthat the virial orretions of the system's level density due to interations are entirely givenby the energy variation of the orresponding two-body sattering phase shifts �Æ=�p0.All thermodynami properties an be obtained from 
 through partial di�erentiationswith respet to T and the �. The �nal form (8.7) may give the impression that one deals7 The appropriate anellation of terms for the result (8.6) is only ahieved, if one uses 
 free, i.e.the partition sum of free partiles with the free energy{momentum dispersion relation. Withinthis model already on the vauum level the nuleon would aquire loop orretions to its self-energy whih would lead to deviations between 
va and 
 free, as well as between the orre-sponding propagators o� their mass shell. 24



with non-interating nuleons and pions. This is however not the ase. For instane thedensities of baryons and pions derived from (8.7) beome�B = �
�N���N = �freeN + �� + �orr; �� = �
�N���� = �free� + �� + �orr; (8.8)with��= d� Z d4p(2�)4n�(p0 � ��)A�(p); �orr = d� Z d4p(2�)4n�(p0 � ��)Borr(p); (8.9)and �� = �N + �� 8 . Here the density of deltas �� is determined by the delta spetralfuntion. The interation ontribution ontained in the orrelation density �orr dependson the di�erene between the phase-shift variation and the spetral funtionBorr=2�Æ33(p0)�p0 � A�(p) = 2Im "�� R� (p)�p0 �R�(p)# : (8.10)Due to the fat that ��(p) grows with energy and the real part of �� hanges sign at theresonane energy, Borr beomes positive below and negative above resonane, respetively.It leads to an enhanement of both densities at low energies, i.e. below resonane and thisway to a further softening of the resulting equation of state ompared to the naive spetralfuntion treatment ignoring the Borr terms. This illustrates that an interating resonanegas annot onsistently be desribed by a set of free partiles (here the pions and nuleons)plus vauum resonanes (here the delta), desribed by their spetral funtion. Rather theoupling of a bare resonane to the stable partiles determines its width, and thus itsspetral properties in vauum. At the same time the stable partiles are modi�ed dueto the interation with the resonane. Only the aount of all three self-energies in (8.1)provides a onserving and thermodynamially onsistent approximation.Alternatively to the piture above, the properties of the system an be disussed entirelyin terms of the stable partiles, i.e. the pion and the nuleon, thus eliminating the delta.The thermodynami potential is then still given by (8.7). This form is valid even withoutintermediate resonanes and the phase-shifts just aount for the �N interation proper-ties. Also the self-energy of the lightest partile in the system, the pion, an be obtainedfrom phase shifts by means of the optial theorem [52,53℄. To linear order in the nuleondensity �N one determines the pion self energy�� = 4��NF�N(0) = �d�d� 2�k �NdN 2 sin Æ33eiÆ33 ; (8.11)from the forward �N -sattering amplitude F�N(0). The degeneray fators dN : d� : d� =4 : 3 : 16 just provide the proper spin/isospin ounting. This self-energy, whih determines8 In equilibrium �� has to be put to zero after di�erentiation.25



an optial potential or index of refration, is attrative below the delta resonane energyand repulsive above. It agrees with a related e�et in optis, where a resonane in themedium auses an anomalous behavior of the real part of the index of refration, whihis larger than 1 below the resonane frequeny and less than 1 above the resonane.Thus, absorption, e.g. by exiting a resonane, is always aompanied by a hange of thereal part of the index of refration of the sattered partile. The �-derivable prinipleautomatially takes are about these features.As has been disussed in [54℄, the orretions to the system's level density (last term in(8.7)) an also be inferred from the time shifts (or time delays) indued by the satteringproesses. From ergodiity arguments [54℄ one obtains for a single partial wave��p0 �Nlevel(p0)�N freelevel(p0)�= �forward + �satt: = �delay=2 ��p0 [sin Æ33 os Æ33℄ + 4 sin2 Æ33�Æ33�p0 = 2�Æ33�p0 : (8.12)Here the forward delay time �forward is idential to the hange of the mean free propagationtime in between suessive sattering due to the hange of the group veloity indued bythe real part of the optial potential, .f. (8.11). The sattering time �satt: �nally resultsfrom the delayed re-emission of the pion from the intermediate resonane to angles o� theforward diretion.Similar onsiderations as presented in this setion apply for example to the interating��-meson system, e.g. on the basis of a renormalizable hidden gauge model [55℄.9 ConlusionWith the aim to develop self-onsistent approximations to quantum transport we inves-tigated the �-funtional method introdued by Luttinger and Ward [31℄ and later usedby Baym [30℄. We have employed funtional methods for Green's funtions within theformalism of non-equilibrium Green's funtions on the real-time ontour, developed byShwinger, Kadano�, Baym and Keldysh [1{3℄.In diagramati terms the main quantity, the funtional �, is determined by the sum ofall losed (i.e. without external points) skeleton diagrams in terms of lassial �elds andfull Green's funtions on the real-time ontour. It is a generating funtional whih al-lows all important quantities of a system (suh as soures of lassial �elds, self-energies,interation energy, et.) to be derived by respetive variations of the � funtional. There-fore this � funtional plays a entral role in the spae of lassial �elds and full Green'sfuntions on the ontour similar to that of the interation Lagrangian on the operatorlevel. Our treatment extends the de�nition of the � funtional to any non-equilibriumsystem inluding non-vanishing lassial bosoni �elds. This last generalization allows to26



self-onsistently desribe the dynamis of both the order parameter (the lassial �eld)and utuations on equal footing, e.g. in the theory of phase-transition phenomena.The advantage of the � funtional is that we may formulate various approximations atthe level of �, thus de�ning so alled �-derivable approximations. In partiular, we mayonstrut e�etive theories right at the level of Green's funtions and e�etive verties.These approximations possess some important features: they respet exat onservationlaws on the level of expetation values (with the Noether values for the onserved quan-tities) and have a proper thermodynami limit. Note that other approximation shemes,e.g. at the level of self-energies, far not always possess suh properties.The question of onsisteny beomes espeially important for a multi-omponent system,where the properties of one speies an hange due to the presene of interations withthe others and vie versa. The "vie versa" is very important and orresponds to thepriniple of atio = re-atio. This implies that the self-energy of one speies annot behanged through the interation with other speies without a�eting the self-energiesof the latter ones also. The �-derivable sheme o�ers a natural and onsistent way toaount for this priniple. Within thermodynami onsiderations this has reently beenonsidered for the interating pion{nuleon{delta-resonane system, where the ouplingto the delta resonane leads to a softening of the pion modes below the resonane mass[40℄, as we have disussed it in set. 8, and for a relativisti QED plasma in [56℄. We alsoexpet a onsistent desription of hiral �-, �- ondensates together with utuations, asan immediate appliation of our results to multi-omponent systems.For the relativisti sheme onsidered here we argue that a areful onstrution of on-served quantities requires symmetri expressions in terms of ��+ and �+� Green's fun-tions (�< and �> in the Kadano�{Baym notation, respetively). This is in ontrast toexpressions only involving ��+ Green's funtion, whih are often used in the literature.These symmetri expressions desribe ontributions of both partiles and anti-partileson equal footing, as well as take proper aount of modi�ations of the vauum polariza-tion in the medium. Of ourse, these symmetri expressions still require a proper vauumrenormalization to be done in any atual alulation.The dynamial equations of motion disussed within this paper are still on the level ofDyson's equation, i.e. they are time non-loal with two time arguments for any two pointfuntion formulated on the non-equilibrium time ontour. As initial ondition they requirethe statistial operator be given at initial time t0, a irumstane whih may not be verypratial, sine one may like the initial onditions rather be formulated in terms of theGreen's funtions themselves. There are two simplifying ases where the initial onditionsan be formulated easily. Both require the system to be stationary for a ertain whileprior to the genuine non-equilibrium dynamis. This e�etively pushes the initial timet0 bak to �1. The �rst ase is realized in ollision proesses, where two omplex ob-jets in a stationary state, generally the ground state, eventually ollide. This situationis relevant to the problem of heavy-ion ollisions whih we are mostly interested in. Theinitial on�guration onsisting of two ground-state nulei inident on eah other an be27



desribed in terms of asual �nite-density Green's funtions (e.g., see [57,58℄) whih thenshould be translated into the ontour Green's funtions by means of relations (A.1). Theseond situation is realized by systems prepared in thermodynami equilibrium withinsome on�ned volume, whih in the ourse of time are driven out of equilibrium by anexternal perturbation. In this ase, mostly applying to ondensed matter physis, the sys-tem is no longer losed and an external perturbation has to be inluded in the dynamialequations of motion with orresponding expliitly time-dependent external terms for theonservation laws, while the �-derivable properties disussed here still refer to the inter-nal motion of the system. In this ase the stationary initial situation an be alulatedby the Matsubara formalism, whih then has to be transformed to the orresponding realtime form, e.g. by means of identity (8.4). The �nite volume onditions have to be im-posed during the entire non-equilibrium evolution. Suh onditions are quite ompliatedalready in the Boltzmann kinetis (e.g., see [59℄) and have to be formulated separately ineah partiular ase. Note that in both ases the initial stationary on�guration shouldbe alulated at the very same level of �-approximation as the non-equilibrium dynamisitself.Apart from the Hatree level, whih implies trunating � at the one-time-point level, theresulting ontour Dyson equations of motion are not as pratial yet for numerial ap-pliations. Still, the here presented sheme of onstruting self-onsistent approximationsprovides a solid basis for the derivation of suitable kineti equations whih apply beyondthe limitations of the quasi-partile approximation. In that ase the time non-loality istransformed into a spetral distribution in energy by means of a time Wigner transfor-mation. Suh generalized transport shemes respet parts of the quantum nature of thepartiles and, in partiular, take due aount of their �nite mass-widths. The �nite mass-width may be either an inherent vauum property of the partile (e.g. resonane) or maybe aquired by a stable partile in a dense environment due to frequent interations. Inthe ase of nulear ollisions at intermediate (� 1 GeV/nuleon) to ultra-relativisti ener-gies, for example, one enounters mean single-partile energies in the range of the typialtemperature of T = 50 - 200 MeV. Important resonanes, like the delta-resonane or therho-meson, have deay widths beyond 100 MeV, while typial ollision rates estimatedfrom presently used quasi-partile transport shemes are also in the order of T . Theseirumstanes de�nitely prevent quasi-partile based transport odes from providing re-liable results for suh ollisions. The main steps in the derivation of self-onsistent andnumerially tratable transport equations for partiles with �nite width are fomulatedand will be published in a forthoming paper [37℄, brief aounts are given in [38,39℄.AknowledgementsWe are grateful to G.E. Brown, P. Danielewiz, B. Friman, H. van Hees, E.E. Kolomeitsev,M.A. Nowak and W. Weinhold for fruitful disussions and suggestions. Two of us (Y.B.I.and D.N.V.) highly appreiate the hospitality and support a�orded to them at Gesellshaftf�ur Shwerionenforshung. This work has been supported in part by BMBF under the28



program on sienti�-tehnologial ollaboration (WTZ projet RUS-656-96).APPENDICESA Contour Funtion RelationsFor ompleteness we give all relations both for fermions (upper sign) and bosons (lowersign). Due to the hange of operator ordering, genuine multi-point funtions are disontin-uous in general, when two ontour oordinates beome idential. In partiular, two-pointfuntions like iF (x; y) = DTC bA(x) bB (y)E beome 9
iF (x; y)=0BB� iF��(x; y) iF�+(x; y)iF+�(x; y) iF++(x; y)1CCA = 0BBB�DT bA(x) bB (y)E � D bB (y) bA(x)ED bA(x) bB (y)E DT �1 bA(x) bB (y)E1CCCA ; (A.1)where T and T �1 are the usual time and anti-time ordering operators. Sine there arealtogether only two possible orderings of the two operators, in fat given by the Wightmanfuntions F�+ and F+�, whih are both ontinuous, not all four omponents of F areindependent. From eq. (A.1) follow relations between non-equilibrium and the retardedand advaned funtionsFR(x; y) = F��(x; y)� F�+(x; y) = F+�(x; y)� F++(x; y):=�(x0 � y0) �F+�(x; y)� F�+(x; y)� ;FA(x; y) = F��(x; y)� F+�(x; y) = F�+(x; y)� F++(x; y):=��(y0 � x0) �F+�(x; y)� F�+(x; y)� ; (A.2)where �(x0 � y0) is the step funtion of the time di�erene.Disontinuities of a two-point funtion may ause problems for di�erentiations, in partiu-lar, sine they often our simultaneously in produts of two or more two-point funtions.The proper proedure is, �rst, with the help of eq. (A.2) to represent the disontinuousparts in F�� and F++ by the ontinuous F�+ and F+� times �-funtions, then to om-bine all disontinuities, e.g. with respet to x0 � y0, into a single term proportional to�(x0 � y0), and �nally to apply the di�erentiations. One an easily hek that in thefollowing partiularly relevant ases9 Quite ommonly, like in refs. [2,6℄, the notation F = 0� F  F<F> F a 1A is used for two-point fun-tions instead of (A.1). We prefer the more exible f�+g labelling of ontour points.29



ZC dz �F (xi; z)G(z; xj)�G(xi; z)F (z; xj)� ; (A.3)��x� ZC dz �F (xi; z)G(z; xj) +G(xi; z)F (z; xj)� ; (A.4)24 ��x� � ��y�!ZC dz �F (xi; z)G(z; yj)�G(xi; z)F (z; yj)�35x=y (A.5)all disontinuities exatly anel. Thereby, these values are independent of the plaementof xi and xj on the ontour, i.e. the values are only funtions of the physial oordinatex.Equilibrium relations between quantities on the real-time ontour basially follow fromthe Kubo{Martin{Shwinger ondition [60℄��+(p) = �+�(p)e�"=T ; ��+(p) = �+�(p)e�"=T ; (A.6)where " = p�U��� with U� and � being a global 4-veloity of the system and a hemialpotential related to the harge, respetively. All the Green's funtions an be expressedthrough retarded or advaned Green's funtions:��i;j(p)� = 0BB� [1� n(")℄�R(p)� n(")�A(p) �in(")A(p)�i [1� n(")℄A(p) � [1� n(")℄�A(p)� n(")�R(p)1CCA ; (A.7)i; j 2 f+;�g, and the self-energies take a similar form�� i;j(p)� = 0BB�� R(p)� in(")�(p) �in(")�(p)�i [1� n(")℄ �(p) �� A(p)� in(")�(p)1CCA : (A.8)Here n(") is the thermal Fermi{Dira or Bose{Einstein oupation number (.f. eq. (7.9)for bosons), and A and � are the spetral funtion and spetral width, respetively, de�nedin (7.10).B Diagram Rules for �, J, and �The interation vertex funtion V (x) entering the diagram is normalized in the standardway, .f. [41℄, i.e. with fators n! relative to bL int(x) for eah type of operator ourringwith multipliity n in the vertex. E.g., the vertex funtion simply beomes �iV (xk) = �ig30



for bL int = �g�4=4! (4 idential operators) and for bL int = �g(���)2=(2! � 2!) (twie twoidential operators). The diagrammati rules to alulate i�, iJ(x) and �i� for a giventheory are as follows(i) Draw all topologially distint, losed and entirely onneted diagrams with N internalverties x1; x2; :::xN , where lassial �eld pins and propagator lines saturate the valenesof all verties in the diagram, .f. (5.11) above. Closed diagrams for i� have no externalpoints, while iJ(x) has one external point, and �i� has two external points. For hargedbosons, pins and propagator lines have an arrows sense, distinguishing b� from b�y atthe verties, the sense diretion pointing towards b�.(ii) For i�, iJ(x) and �iE int(x) keep only those diagrams that are two-partile irreduible,i.e. whih annot be split into two piees by utting two di�erent propagator lines. For�i� keep only those diagrams whih result from � by opening one propagator line.(iii) To eah line, onneting xl �! xk, assign the fator i�(xk; xl).(iv) To eah pin attahed to xk, assign the fator �(xk) or ��(xk) depending on the sense.(v) To eah vertex xk assign the vertex fator �iV (xk) as determined by bL int(x).(vi) Integrate all internal x1; x2; :::xN over the ontour.(vii) Multiply the result by the symmetry fator S, whih is alulated as follows1=NG! fator for every NG equivalent internal lines,1=N�! fator for every N� lassial �elds entering eah vertex,1=2 fator for every self-losed line loop (tad-poles) for real �elds.(viii) Sum all diagrams. For the alulation of i� (ontrary to iJ(x) and �i�), an extra fator1=n� appears for eah diagram, where n� ounts the number of verties in the diagram.This fator has however been given expliitly in all diagram formulae onerning �!(ix) For fermions eah losed fermion loop ontributes a fator (�1).In many ases like in transport treatments, it is advantages to onsider the diagramsdeomposed into the two ontour setions at eah vertex, e.g., to alulate quantities like��+ and �+� self-energies in terms of exat Green's funtions. Therefore, "physial"-time diagrammati rules in the matrix sheme are also required. Here we present onlythose rules whih di�er from the above ones on the real-time ontour, bearing in mindthat all other rules remain valid:(iii0) To eah internal vertex xk �rst assign a sign ik 2 f+;�g de�ning the ontour plaementxikk . To eah line, onneting xill �! xikk , assign the fator i�ikil(xk; xl), ik; il 2 f+;�g.(vi0) For all internal points integrate all x1; x2; :::xN over the real-time axis and spae, foreah internal " + " vertex multiply by (�1) and �nally sum over all internal ontourplaements i1; i2; :::iN (ik 2 f+;�g).Referenes[1℄ J. Shwinger, J. Math. Phys. 2 (1961) 407.[2℄ L.P. Kadano� and G. Baym, Quantum Statistial Mehanis, Benjamin, 1962.31
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