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tWithin the non-equilibrium Green's fun
tion te
hnique on the real-time 
ontour,the �-fun
tional method of Baym is generalized to arbitrary non-equilibriummany-parti
le systems. The s
heme may be 
losed at any desired order in the number ofloops or verti
es of the generating fun
tional. It de�nes e�e
tive theories, whi
hprovide a 
losed set of 
oupled 
lassi
al-�eld and Dyson equations, whi
h are self-
onsistent, 
onserving and thermodynami
ally 
onsistent. The approa
h permits toin
lude unstable parti
les and therefore uni�es the des
ription of resonan
es with allother parti
les, whi
h obtain a mass width by 
ollisions, de
ays or 
reation pro
essesin dense matter. The in
lusion of 
lassi
al �elds enables the treatment of soft modesand phase instabilities. The method 
an be taken as a starting point for adequateand 
onsistent quantum improvements of the in-medium rates in transport theories.Properties of resonan
es are dis
ussed within the dilute density limit in terms ofs
attering phase shifts.1 Introdu
tionNon-equilibrium Green's fun
tion te
hnique, developed by S
hwinger, Kadano�, Baymand Keldysh [1{4℄, is the appropriate 
on
ept to study the spa
e{time evolution of many-parti
le quantum systems. This formalism �nds now appli
ations in various �elds, su
h asquantum 
hromodynami
s [5℄, nu
lear physi
s [6{13℄, astrophysi
s [10,14,15℄, 
osmology[16℄, spin systems [17℄, lasers [18℄, physi
s of plasma [19,20℄, physi
s of liquid 3He [21℄, 
riti-
al phenomena, quen
hed random systems and disordered systems [22℄, normal metals andsuper-
ondu
tors [14,23,24℄, semi
ondu
tors [25℄, tunneling and se
ondary emission [26℄,et
. The Green's fun
tion te
hnique provides des
ription in terms of one- and two-pointGSI-98-34, revised, Nu
l. Phys. A in press



fun
tions. Compared to the various equal-time operator formulations of transport theo-ries, 
.f. [27℄, and within the path-integral formulation [28℄, the Green's fun
tion approa
hwith its non-lo
alities in time o�ers a 
onvenient des
ription of spe
tral information su
has the damping width of parti
les. Su
h mass-width e�e
ts be
ome in
reasingly importantespe
ially in the realm of high-energy nu
lear 
ollisions.For a
tual 
al
ulations 
ertain approximation steps are ne
essary. In many 
ases pertur-bative approa
hes are insuÆ
ient, as for systems with strong 
ouplings treated in nu
learphysi
s. In su
h 
ases, one has to re-sum 
ertain sub-series of diagrams in order to ob-tain a reasonable approximation s
heme. In 
ontrast to perturbation theory for su
hre-summations one frequently en
ounters the 
ompli
ation that the resulting equationsof motion may no longer 
omply with the 
onservation laws, e.g., of 
harge, energy andmomentum, in parti
ular, if the mass width of the parti
les is no longer negligible. Thisproblem has �rst been 
onsidered in two pioneering papers by Baym and Kadano� [29,30℄dis
ussing the response to an external perturbation of quantum systems in thermody-nami
 equilibrium. Baym, in parti
ular, showed [30℄ that any approximation, in order tobe 
onserving, must be so-
alled�-derivable. He exploited the properties of a resummationte
hnique in terms of an auxiliary fun
tional, the �-fun
tional, introdu
ed by Luttingerand Ward [31℄ for the formulation of the thermodynami
 potential (see also [32℄). Mean�elds were in
luded in this formalism in ref. [33℄. The �-fun
tional is determined in termsof full, i.e. re-summed, Green's fun
tions and 
lassi
al �elds 
oupled by free verti
es andserves as a generating fun
tional for the driving terms of the equations of motion.In the non-equilibrium formalism the problem of 
onserving approximations is even moresevere than in the 
ase of the systems response to an external perturbation 
lose to thermalequilibrium, sin
e the system may exer
ise a rather violent evolution. Apart from transportmodels, mostly based on the quasi-parti
le approximation like Landau's Fermi liquidtheory, there were only few attempts to dis
uss the issue of 
onserving approximations inthe 
ontext of the non-equilibrium �eld theory (see, e.g., [2,6,9℄), whi
h mainly 
onsideredHatree-Fo
k and T-matrix approximations. However, the general problem of 
onstru
ting
onserving approximations in the non-equilibrium 
ase and, in parti
ular, beyond thequasi-parti
le limit has not expli
itly been addressed yet.Alongside, the question of thermodynami
 
onsisten
y is vital. If, as a result of a non-equilibrium evolution, a system arrives at an equilibrium state, the non-equilibriumGreen'sfun
tions should properly des
ribe thermodynami
 quantities and potentials, su
h thatthermodynami
 relations between them are preserved. This problem is also relevant to thethermodynami
 Green's fun
tion te
hnique, as already 
onsidered by Baym [30℄. Baymdemonstrated that any �-derivable approximation is at the same time thermodynami
ally
onsistent.In this paper we re-address the above problems and extend the 
on
ept to the genuinenon-equilibrium 
ase formulated on the 
losed real-time 
ontour and to the in
lusion of
lassi
al �elds, i.e. non-vanishing expe
tation values of the �eld operators. The generalizeds
heme permits to 
onstru
t self-
onsistent, approximate, 
oupled dynami
al equations of2



motion for the 
lassi
al �elds and Green's fun
tions of the system on the 
losed real-time 
ontour. The in
lusion of 
lassi
al �elds allows to a

ount for the phase-transitionphenomena or to des
ribe the 
oherent dynami
s of soft modes, mu
h in the spirit ofhard-thermal-loop re-summations [34{36,13℄. In this paper we 
on�ne the presentation tothe derivation of 
losed self-
onsistent approximations to the Kadano�-Baym and 
lassi
al�eld equations. This 
onstitutes the basis for various further steps towards 
lassi
al-typetransport s
hemes through the gradient approximation, whi
h will be presented in a forth-
oming paper [37℄.The paper is organized as follows. In se
t. 2 we brie
y re
apitulate the general equations ofmotion and expressions for the 
onserved quantities on the operator level. The equationsof motion for the 
orresponding expe
tation values within the real-time 
losed 
ontourformalism are formulated in se
t. 3. It is advantageous to use the 
on
epts of generatingfun
tionals, where the spe
ial fun
tional � plays a 
entral role (se
t. 4). The latter takesthe same status in the spa
e of Green's fun
tions (two-point fun
tions) and 
lassi
al�elds (one-point fun
tions), as the original Lagrangian on the level of �eld operators.Subsequently, we formulate the diagrammati
 representation for � (se
t. 5). We showthat any approximation, where all 
lassi
al �eld sour
es and self-energies are �-derivablein the sense of a variational prin
iple, has the following properties: (i) it is self-
onsistent,i.e. the equations 
lose, (ii) it is 
onserving, i.e. it provides 
onserved 
urrent and energy{momentum tensor, whi
h are identi
al to the 
orresponding Noether quantities (se
t.6), and (iii) it is at the same time thermodynami
ally 
onsistent (se
t. 7). In se
t. 8we dis
uss the low density limit at the example of an intera
ting �N� system [40℄. Itillustrates how s
attering phase shifts 
an provide the se
ond-order virial 
orre
tions ofthe thermo-dynami
 potential and the self-energies in a 
onsistent way in the sense ofthe �-derivable s
heme. In the summary, we dis
uss the main results and brie
y prospe
tpossible appli
ations of the derived formalism. Appendix A 
ontains some helpful relationsfor 
ontour fun
tions, the list of diagrammati
 rules is deferred to the Appendix B.Ex
ept for the example in se
t. 8 and the appendi
es, the presentation of the general
on
ept in the main part of the paper is restri
ted to the 
ase of relativisti
 s
alar bosons.This allows us to formulate the basi
 ideas in simple and transparent terms. Generaliza-tions to ve
tor mesons and relativisti
 fermions or to non-relativisti
 kinemati
s, as wellas to multi-
omponent systems, as dis
ussed for the example in se
t. 8, and to intera
-tions with derivative 
oupling are straightforward, though in some 
ases te
hni
ally moreinvolved.
2 PrerequisitesWe 
onsider a system of relativisti
 s
alar bosons, spe
i�ed by the free Klein-GordonLagrangians [41℄ 3



bL 0 = 8>><>>: 12 ��� b� � �� b� �m2 b�2� for neutral bosons;�� b�y � �� b� �m2 b�y b� for 
harged bosons; (2.1)where b�(x) and b�y(x) are bosoni
 �eld operators. The 
onvention of units is su
h that~ = 
 = 1 and symbols for �eld operators 
arry a hat. The intera
tion LagrangiansbL intf b�g (for neutral bosons) and bL intf b�; b�yg (for 
harged bosons) are assumed to belo
al, i.e. without derivative 
oupling. Under these 
onditions the Lagrangians are 
hargesymmetri
. Charges are understood as the ele
tri
 
harge, strangeness, iso-spin, et
.The variational prin
iple of stationary a
tion leads to the Euler{Lagrange equations ofmotion for the �eld operators�Sx b�(x)= bJ (x) = � bL int� b�y ; where Sx = ����� �m2; (2.2)and similarly for the 
orresponding adjoint equation. Thereby, the bJ (x) operator is a lo
alsour
e 
urrent of the �eld b�, while Sx is the di�erential operator of the free evolution withthe free propagator �0(y; x) as resolvent.Invarian
es of the Lagrangian provide a set of 
onservation laws, the most prominentof whi
h are those for the energy{momentum and 
ertain 
urrents. In addition to thestandard 
anoni
al energy{momentum tensor [41℄, di�erent representations of this ten-sor both in 
lassi
al 
ase and for the operator form in quantum �eld theory have been
onsidered [42,43℄. Using the Euler{Lagrange equations of motion and the de�nition ofthe sour
e 
urrent (2.2), one 
an show that the following form also de�nes a 
onservingenergy momentum tensorb���(x)= 14� h�(bp�x)� + bp�y� �(bp�x)� + bp�y� � b�y(x) b�(y) + b�(y) b�y(x)�ix=y+ g�� � bE int(x)� bEpot(x)� ; (2.3)wherebp�x = i��x ; and � = 8>><>>: 1=2 for neutral bosons;1 for 
harged bosons: (2.4)We use this expression, sin
e it represents the operator form of the energy{momentumtensor later derived at the expe
tation value level from the invarian
e of the �-fun
tional(see se
t. 6). For notational simpli
ity, expression (2.3) and similar expressions below,whi
h appear symmetri
 in b� and b�y, are written in su
h a way that they dire
tly applyto 
omplex �elds with � = 1. For real �elds � = 1=2 and the 
orresponding expressions are4



obtained by equating b�y = b�. Above, we have introdu
ed the operators of the intera
tionenergy density bE int(x) of the system, whi
h a

ounts for the total intera
tion part of theenergy density, and the potential energy density bEpot(x), both given asbE int(x)=� bL int(x);bEpot(x)=�12� � bJ y(x) b�(x) + b�y(x) bJ (x)� :For a multi-
omponent system, the latter de�nes the sum of the potential energies pervolume of any parti
le with the 
urrent bJ (x) in the �eld b�(x) indu
ed by the otherparti
les in the system.For spe
i�
 intera
tions there are simple relations between bE int(x) and bEpot(x). E.g., if allverti
es of bL int have the same number 
 of �eld operators atta
hed, one simply dedu
esbE int(x) = 2
 bEpot(x); e.g. for bL int = ����s ) 
 = 4: (2.5)As shown, for two-body intera
tions or the �4-theory, where 
 = 4, the intera
tion energyis half of the potential energy.If the Lagrangian is invariant under some global transformation of 
harged �elds (withthe 
harge e), e.g., b�(x)) e�ie� b�(x); b�y(x)) eie� b�y(x); (2.6)there exists a Noether 
urrent de�ned as [41℄bj �(x) = e12 h�(bp�x)� + bp�y� � b�y(x) b�(y) + b�(y) b�y(x)�ix=y ; (2.7)whi
h is 
onserved, i.e. �� bj � = 0: This 
urrent naturally vanishes for the neutral parti
les(e = 0).One may also de�ne the tensor M���, whi
h is asso
iated with the Lorentz invarian
e ofthe Lagrangian and provides the angular momentum 
onservation. However, we do nottreat this tensor in this paper, sin
e it is of no 
ommon use in kineti
s.3 Real-Time ContoursIn the non-equilibrium 
ase, one assumes that the system has been prepared at someinitial time t0 des
ribed in terms of a given density operator b�0 = Pa Pa jai haj, where5



the jai form a 
omplete set of eigenstates of b�0. All observables 
an be expressed throughn-point Wightman fun
tions of Heisenberg operators bA(t1); : : : ; bO(tn) at some later timesD bO(tn) : : : bB (t2) bA(t1)E=:Tr bO(tn) : : : bB (t2) bA(t1) b�0(t0)=Xa Pa haj bO(tn) : : : bB (t2) bA(t1) jai : (3.1)Note that due to the �xed operator ordering for Wightman fun
tions, they are analyti
and permit analyti
 extensions to 
omplex-time arguments.
t0 t-�� �1t+xt�y tt

Figure 1: Closed real-time 
ontour with two external points x; y on the 
ontour.The non-equilibrium theory 
an entirely be formulated on a spe
ial 
ontour|the 
losedreal-time 
ontour (see �gure 1) with the time argument running from t0 to 1 along thetime-ordered bran
h and ba
k to t0 along the anti-time-ordered bran
h. Contour-orderedmulti-point fun
tions are de�ned as expe
tation values of 
ontour ordered produ
ts ofoperators DTC bA(x1) bB (x2) : : :E = *TC bA I(x1) bB I(x2) : : : exp8<:i ZC bL intI dx9=;+ ; (3.2)where TC denotes the spe
ial time-ordering operator, whi
h orders the operators a

ordingto a time parameter running along the time 
ontour C. The l.h.s. of eq. (3.2) is written inthe Heisenberg representation, whereas the r.h.s. is given in the intera
tion (I) represen-tation. Here and below, the subs
ript "I" indi
ates the intera
tion pi
ture. Note that atthis level the 
ontour is not a 
ontour in the 
omplex plane, as the �gure may suggest, butrather it runs along real time arguments. It is through the pla
ement of external pointson the 
ontour that the 
ontour ordering obtains its parti
ular sense.In 
ertain 
al
ulations, e.g., in those that apply the Fourier and Wigner transformations,it is ne
essary to de
ompose the full 
ontour into its two bran
hes|the time-ordered andanti-time-ordered bran
hes. One then has to distinguish between the physi
al spa
e-time
oordinates x; : : : and the 
orresponding 
ontour 
oordinates xC whi
h for a given x taketwo values x� = (x�� ) and x+ = (x+� ) (� 2 f0; 1; 2; 3g) on the time ordered and anti-timeordered bran
hes, respe
tively (see �gure 1). Closed real-time 
ontour integrations 
anthen be de
omposed as 6



ZC dxC : : : = 1Zt0 dx� : : :+ t0Z1 dx+ : : : = 1Zt0 dx� : : :� 1Zt0 dx+ : : : ; (3.3)where only the time limits are expli
itly given. Thus, the anti-time-ordered bran
h a
quiresan extra minus sign if integrated over physi
al times. For any two-point fun
tion F , the
ontour values on the di�erent bran
hes de�ne a e� 2-matrix fun
tionF ij(x; y) := F (xi; yj); i; j 2 f�;+g; (3.4)depending on the physi
al 
oordinates (x; y). The 
ontour Æ-fun
tion is de�ned asÆi;jC (x; y) = ÆC(xi; yj) = �ijÆ4(x� y); �ij = 0B� 1 00 �11CA (3.5)where the matrix �ik a

ounts for the integration sense on the two bran
hes. For anymulti-point fun
tion, the external point xmax, whi
h has the largest physi
al time, 
anbe pla
ed on either bran
h of the 
ontour without 
hanging the value, sin
e the 
ontour-time evolution from x�max to x+max provides unity. Therefore, one-point fun
tions have thesame value on both sides of the 
ontour. Due to the 
hange of operator ordering, genuinemulti-point fun
tions are dis
ontinuous in general, when two 
ontour 
oordinates be
omeidenti
al. The 
orresponding properties of two-point fun
tions and their equilibrium rela-tions are summarized in Appendix A.Boson �elds may take non-vanishing expe
tation values of the �eld operators �(x) = D b�E,
alled 
lassi
al �elds. The 
orresponding equations of motion are provided by the ensembleaverage of the operator equations of motion (2.2)Sx�(x) = �J(x); or �(x) = �0(x)� ZC dy�0(x; y)J(y): (3.6)Here J(x) = D bJ (x)E, while �0(x) = D b� I(x)E is the freely evolving 
lassi
al �eld whi
hstarts from �0(t0;x) at time t0. Thereby, �0(x; y) is the free 
ontour Green's fun
tioni�0(x; y) = DTC b� I(x) b�yI(y)E� �0(x)(�0(y))� (3.7)whi
h resolves the equationSx�0(x; y)= ÆC(x; y) (3.8)on the 
ontour, where ÆC(x; y) is the 
ontour Æ-fun
tion (3.5). The reader 
an easilyverify the equivalen
e of the 
ontour form (3.6) with the standard retarded 
lassi
al �eld7



equation due to eq. (A.2) and the fa
t that J(x) and �(x) are one-point fun
tions, whi
hhave identi
al values on both sides of the 
ontour.Subtra
ting the 
lassi
al �elds via b� = � + b', the full propagator in terms of quantum-
u
tuating parts b' of the �elds is de�ned asi�(x; y) = DTC b'(x) b'y(y)E = DTC b�(x) b�y(y)E� �(x)��(y) = DTC b�(x) b�y(y)E
 : (3.9)Here and below, the sub-label "
" indi
ates that un
orrelated parts are subtra
ted. Interms of diagrams it implies, that the 
orresponding expe
tation values are given by sumsof entirely 
onne
ted diagrams.Averaging the operator equations of motion (2.2) multiplied by b'y(y) and subtra
ting
lassi
al �eld parts one obtains the equation of motion for the propagatorSx�(x; y)= ÆC(x; y) + i DTC bJ (x) b'y(y)E
 ; (3.10)whi
h is still exa
t and a

ounts for the full set of initial 
orrelations 
ontained in b�0.In order to pro
eed further, one may suggest that the typi
al intera
tion time �int forthe 
hange of the 
orrelation fun
tions is signi�
antly shorter than the typi
al relaxationtime �rel, whi
h determines the system evolution. Then, des
ribing the system at timest � t0 � �int, one 
an negle
t the initial 
orrelations whi
h are supposed to die outbeyond �int in line with the Bogolyubov's prin
iple of weakening of initial 
orrelations 1[44℄. As a result, one 
an apply the standard Wi
k de
omposition dropping higher order
orrelations for the driving terms on the r.h.s. of both equations of motion (3.6) and(3.10). Then both driving terms 
an be expressed as fun
tionals solely of 
lassi
al �eldsand one-parti
le propagators rather than of higher order 
orrelations. The so obtaineddes
ription level is then irreversible in general. Thus,i DTC bJ (x) b'y(y)E
= i*TC 24exp8<:i ZC dz bL intI 9=; bJ I(x) b'yI(y)35+
= i ZC dz *TC �� b' I(z) 24exp8<:i ZC dz0 bL intI 9=; bJ I(x)35+
1 DTC b'(z) b'y(y)E= ZC dz� (x; z)�(z; y) (3.11)one re
overs Dyson's equation in the di�erential form1 A
tually, 
onsidering a dilute gas limit, Bogolyubov suggested the weakening of all the 
or-relations, whereas we use a weaker assumption on the weakening of only short-range (� �int)
orrelations. 8



Sx�(x; y)= ÆC(x; y) + ZC dz� (x; z)�(z; y); (3.12)(Sy)��(x; y)= ÆC(x; y) + ZC dz�(x; z)� (z; y): (3.13)The resolvent property of the free 
ontour propagator �0 permits to write down theseequations also in the integral form, whi
h then in
lude the appropriate initial and bound-ary 
onditions through the inhonogenouos�0 term in the usual manner. Thereby 
ausalityis in
orporated through the 
ontour formulation. Above � denotes the proper self-energyof the parti
le. Sin
e we have separated the full propagator in (3.11), �i� has to beone-parti
le irredu
ible (label 
1), i.e. the 
orresponding diagram 
annot be split into twopie
es whi
h separate x from z by 
utting a single propagator line. Obviously, � in (3.11)may have singular (Æ-fun
tional) one-point parts and genuine two-point parts�i� (x; z)=*TC �2i bL int(x)� b�� b�y +
 ÆC(x; y)� DTC bJ (x) bJ y(y)E1
 : (3.14)here given in the Heisenberg pi
ture.In diagrams free and full 
lassi
al �elds are represented by "pins" with 
ross and "o-
ross"as heads, 
.f. (3.15), while free and full propagators are given by thin and thi
k long lines,respe
tively. Complex �elds 
arry a sense, the arrow always pointing towards the b� in the
ontour ordered expressions. In diagrammati
 representation, the 
lassi
al �eld equations(3.6) and Dyson equations (3.12) are then given byN = � + r����iJ ; (3.15)� = � + � ��� ���i� (3.16)with the one- and two-point fun
tions iJ(x) and �i� (x; y), as driving terms.The averaged values of 
onserved quantities 
an be expressed in terms of the one- and two-point fun
tions introdu
ed so far. Averaging the operator value of the energy{momentumtensor of eq. (2.3), we arrive at���(x) =: D b���E= 12� ��(bp�x)� + bp�y� �(bp�x)� + bp�y����(x)�(y) + i�sym(y; x)��x=y+ g�� �E int(x)� Epot(x)� ; (3.17)where E int(x) = � D bL int(x)E, and the potential energy density be
omes9



Epot(x)= D bEpot(x)E = 12�8<:� [J�(x)�(x) + J(x)��(x)℄+ i ZC dz [� (x; z)�(z; x) +�(x; z)� (z; x)℄9=; : (3.18)due to eqs. (2.5) and (3.11). Note that we do not pres
ribe any 
ontour indi
es to x in theintegral term of Epot, sin
e a
tually this term is independent of the 
ontour pla
ement ofx due to dis
ontinuity property (A.4). The Noether 
urrent (2.7) takes the formj�(x) =: D bj �E= e ��(bp�x)� + bp�y����(x)�(y) + i�sym(y; x)��x=y : (3.19)In order to keep the expressions ��� and j� 
harge symmetri
 we have introdu
ed thesymmetri
 quantities F sym(x; y) = 12 �F (x�; y+) + F (x+; y�)� ; (3.20)where F (x; y) is any two-point fun
tion on the real-time 
ontour. This is not automat-i
ally provided by the variational methods leading to the Noether energy{momentumtensor and 
urrent, as they only provide the vanishing of the 
orresponding divergen
e.The integrated form of the 
onserved quantities has to be adjusted su
h that 
harge sym-metry is maintained, thus des
ribing 
ontributions of both, parti
les and anti-parti
les, onequal footing. This way one properly a

ounts for the modi�
ation of the va
uum polar-ization in the medium, sin
e the va
uum-polarization energy 
oin
ides with the zero pointenergies of the �eld os
illations. The 
orresponding divergen
e has still to be appropriatelyrenormalized.4 Fun
tionals W , � and �The standard generating fun
tional W for 
onne
ted n-point fun
tions with externalone-point sour
es will be extended in three ways. First, it will be used on the real-time
ontour. Se
ondly, in our non-equilibrium 
ase we also in
lude external bilinear sour
esK(x; y) [31℄. In addition we introdu
e a spa
e-time dependent intera
tion s
ale �(x) intothe variational 
on
ept, whi
h s
ales intera
tion verti
es, i.e.bL int� = �(x) bL int n b�y(x); b�(x)o : (4.1)The latter provides the 
lue to the proof of the diagrammati
 representation for theauxiliary fun
tional � in terms of 
losed diagrams. The generating fun
tional then reads10



W f�;K; �g = �i ln*exp 24�i ZC dx bH 0I35 TC exp8<:i ZC dx��(x) bL intI+ � 24�(x) b�yI(x) + ��(x) b� I(x) + i ZC dy b� I(x)K(x; y) b�yI(y)351A9=;+ ; (4.2)with the free Hamiltonian of the system in the intera
tion representation bH 0I . As alreadyintrodu
ed, the fa
tor � takes the value of 1=2 for real �elds thereby equating b� withb�y, else it is 1. Sin
e the fun
tional dependen
e 
on
erns only the external sour
es, theoperator part 
an be 
ast into di�erent pi
tures, su
h as the Heisenberg or intera
tionones. The latter establishes the perturbation expansion. Furthermore, h: : :i denotes thetra
e over all states, whi
h in
ludes the ensemble average over the density operator b�0(t0)at initial time t0. A

ordingly, multi-point fun
tions are de�ned as ensemble averages of�eld operators with �0 (
f. eq. (3.2)).While n-th order fun
tional variations of (4.2) with respe
t to � generate the 
onne
tedn-point fun
tions, the �rst fun
tional variation with respe
t to K(x; y) gives the totaltwo-point propagator in
luding dis
onne
ted pie
esÆW f�;K; �g = � 24ZC dx [��(x)Æ�(x) + �(x)Æ��(x)℄+ ZC dx ZC dy [�(x)��(y) +�(x; y)℄ ÆK(y; x)35� ZC dxE int� (x)Æ�(x)=�(x): (4.3)Here, � and � denote the 
lassi
al �elds and propagators, respe
tively, whi
h now impli
-itly depend on �. The term, resulting from the variation of the intera
tion s
ale fun
tion�(x), de�nes a one-point fun
tion E int� (x) = � D bL int� (x)E, whi
h agrees with the 
orre-sponding expe
tation value of (2.5) but for the s
aled Lagrangian.The step towards a fun
tional that depends on the 
lassi
al �elds � and propagators� rather than on the external sour
es � and K is provided by the double Legendretransformation of W to �f�; ��;�; �g given as [31℄�f�; ��;�; �g=Wf�;K; �g � � 24ZC dx [��(x)�(x) + �(x)��(x)℄+ ZC dxdy [�(y)��(x) +�(y; x)℄K(y; x)35 : (4.4)Here, the sour
es � and K have to be expressed through � and �. Apart from the Æ�dependen
es, the fun
tional variation 11



Æ� f�; ��;�; �g = �� 24ZC dx [��(x)Æ�(x) + �(x)Æ��(x)℄+ ZC dx ZC dy [Æ�(y)��(x) + �(y)Æ��(x) + Æ�(y; x)℄K(y; x)35� ZC dxE int� (x)Æ�(x)�(x) (4.5)vanishes at vanishing external sour
es � and K. The latter together with the 
ondition� = 1 determines the physi
al solution. Note also that for the physi
al solution, i.e. at� = K = 0, the values of the two fun
tionals � andW are identi
al. Indeed, the variationsÆ�=Æ� = 0; Æ�=Æ�� = 0; Æ�=Æ� = 0 (4.6)provide us with equations of motion for 
lassi
al �elds (3.6) and the 
omplex 
onjugatedone, as well as Dyson's equation (3.12).Similarly to equilibrium 
ase treated by Luttinger, Ward [31℄, and later by Cornwall,Ja
kiw and Tomboulis [33℄, whi
h in
luded mean bosoni
 �elds, we represent our � fun
-tional related to the real-time quantities in the form�f�; ��;�; �g=� 0 + ZC dxL 0f�; ���g+ i� hln �1���0 � � �+��� � i + � f�; ��;�; �g ; (4.7)this way de�ning the auxiliary fun
tional � f�; ��;�; �g 2 . Constru
ting � solely in termsof the �elds and one-parti
le propagators 
omplies with the assumption of ignoring higherorder 
orrelations. The � 0 and L 0 parts, where L 0 is the 
lassi
al free Lagrangianfun
tion, represent the non-intera
ting parts of � . The � 0 term solely depends on theunperturbed propagator �0 and hen
e is treated as a 
onstant with respe
t to fun
tionalvariations of � . The ln(: : :) is understood in the fun
tional sense, i.e. by a series of n-folded 
ontour 
onvolutions, denoted by the �-symbol, formally resulting from the Taylorexpansion of the ln(1+ x) at x = 0. This ln-term a

ounts for the 
hange of � due to theself-energies of the parti
les. The � 0, L 0 and ln terms in eq. (4.7) a

ount for the one-body 
omponents in � . The remaining��� and � terms 
orre
t for the true intera
tionenergy part of � . As shown in the next se
tion, the form (4.7) presents a re-summationof the 
orresponding perturbative expansion of the value of � (
.f. eq. (4.4)) in terms offull 
lassi
al �elds and full propagators.The spe
i�
 form (4.7) has important fun
tional properties, whi
h provide us with anumber of useful relations. Fun
tional variation of � f�; ��;�; �g in the form of eq. (4.7)2 Note that we have pla
ed all bL int-dependent parts into �, i.e. our � in
ludes zero and one-loop terms and therefore di�ers from the auxiliary quantity �2 de�ned by Cornwall et. al. [33℄whi
h is void of zero- and one-loop terms. There these terms are rather in
luded in de�ning afull 
lassi
al Lagrangian that depends on intera
ting 
lassi
al �eld and tad-pole terms.12



leads toÆ� f�; ��;�; �g = �8<:ZC dx [Æ�(x)(Sx)���(x) + Æ��(x)Sx�(x)℄ (4.8)�i�� 11���0 � � ��0 ����� Æ� + i ZC dxdy� (x; y)Æ�(y; x)9=;+ Æ� f�; ��;�; �g :Here Æ� is understood as a variation indu
ed by Æ�, Æ�, Æ��, and Æ�, respe
tively. Forphysi
al solutions the variations (4.6) of � vanish. They require the round bra
ket term in(4.8) to vanish, whi
h provides the Dyson equation on the 
ontour, and from (4.5) furtherimply the following variational rules for the auxiliary � fun
tionalÆ � f�; ��;�; �g = �8<:ZC dx [J�(x)Æ�(x) + J(x)Æ��(x)℄� i ZC dxdy� (x; y)Æ�(y; x)9=;� ZC dxE int(x)Æ�(x); (4.9)or iJ(x)= Æi�Æ��(x) ; (4.10)�i� (x; y)= Æi�Æi�(y; x) � 8>><>>: 2 for neutral bosons,1 for 
harged bosons, (4.11)�E int(x)= Æi�Æi�(x) : (4.12)The virtue of the fun
tional form (4.7) is that these requirements 
an be met simultane-ously and that there exists a unique form of �, for whi
h the three derived quantities|theone-body sour
e 
urrent J(x), the two-body self-energy �i� (x; y) and the intera
tion en-ergy density E int(x)|take their physi
al values at the physi
al solutions of the equationsof motion (3.12) and (3.6). This will be
ome 
lear in more detail in the next se
tion, wherewe dis
uss the diagrams de�ning the various fun
tionals. From (4.10) and (4.11) � 
an beseen as a generating fun
tional for the sour
e terms J of 
lassi
al �elds and self-energies� for the set of Dyson equations, respe
tively. Therefore, approximation s
hemes 
an bede�ned through parti
ular approximations to �. Thereby, the invarian
e properties of �play a 
entral role to de�ne 
onservation laws for the approximate dynami
s.It is important to emphasize that we do all fun
tional variations independently of any pla
eon the 
ontour. Thus, di�erent 
ontour times are 
onsidered as independent, even though13



they may refer to the same physi
al time 3 . In prin
iple, all variational 
onsiderationsgiven in this se
tion apply to any kind of time 
ontour, even to non 
losed and 
omplexones as well as to any operator b�0 de�ning the averaging h: : :i = Tr f: : : b�0g in
luding theunit operator, as used in Matsubara's imaginary-time formalism. For a parti
ular 
hoi
eof b�0 and of a 
ontour the physi
al values of W and � are identi
al for the 
orrespondingphysi
al solutions along this 
ontour. In the imaginary-time method the value � = Wtakes the meaning of the thermodynami
 potential (
.f. se
t. 7). In the non-equilibrium
losed real-time formalism, for whi
h Tr b�0 = 1, the physi
al values of W and � triviallyvanish, i.e. W = � = � = 0 for physi
al solutions of �, �, �� on the 
ontour:An important 
omment must be given at this stage. One should 
learly distinguish be-tween the fun
tional form of a fun
tional, whi
h a
quires its meaning through variationalmethods, and the physi
al value that fun
tional takes on
e the physi
al solutions of theequations of motion are inserted. For instan
e, two fun
tionals W and � are 
ompletelydi�erent in their fun
tional meaning, while they take the same physi
al value for thephysi
al solution. Therefore, for all fun
tionals the fun
tional dependen
es are expli
itlygiven in bra
es. Our strategy below will be �rst to perform general variations of � and�, allowing non-physi
al values of �, �, �� and �, and only then to put them to theirphysi
al values. This way, a number of important relations between Green's fun
tions,self-energies and mean �elds will be obtained.5 Diagrams for � , � and E int� (x)
� ZC dxE int(x) = "� dd��f�f�g; ��f�g;�f�g; �g#�=1 = "� ����f�; ��;�; �g#�=1 ;(5.1)where now � is treated as a global s
ale parameter (note that only a partial derivative isapplied to �, i.e. the �, �� and � values are kept 
onstants.). In the perturbation theory,the diagrammati
 rules to 
al
ulate the one-point fun
tion E int(x) are straightforward�iE int(x) = i*TC bL intI (x) exp 24i ZC dx0 bL intI (x0)35+ =Xn� ����
t : (5.2)Here the diagram symboli
ally denotes all 
onne
ted (label 
) 
losed perturbation-theorydiagrams generated by expanding the exponential fun
tion in (5.2). The full dot denotes3 The fa
t that for the physi
al solutions the 
omponents of � on the di�erent bran
hes ofthe 
ontour are not independent (
f. (A.2)), has no importan
e for the variational pro
edure.The reason is that rules (A.2) only apply to the physi
al � and �, whi
h are provided by thestationary \points" of the variational prin
iple, i.e. solving the equations of motion (3.6), (3.12)and (3.13). 14



the external point x whi
h is not integrated out. Integrating (5.1) with respe
t to �, wede�ne the quantity i �� given by the following perturbative diagrammati
 representationi��f�0; �0�;�0; �g = i� 0 n�0o + i ZC dxL 0f�0; ���0g+Xn� 1n� ����
 ; (5.3)where the integration 
onstants have been 
hosen su
h that for physi
al solutions �� = � .One 
an see that ea
h diagram 
ontributing to �� has to be weighted with its inversenumber of verti
es 1=n�, due to the formal �-integration of (5.2). It is important to realizethat due to these global fa
tors su
h a set of diagrams is not resumable in the standarddiagrammati
 sense 4 . Also �� in the form of eq. (5.3) is a fun
tional of �0; �0�;�0; � ratherthan of �; ��;�; �, as required for � and �. However, we 
an arrive at this fun
tionaldependen
e of � as follows. The expression (5.2) for �iE int(x) 
an be re-summed andentirely expressed in terms of full 
lassi
al �elds and full propagators. The re-summeddiagrams are then void of any self-energy insertions and therefore have to be two-parti
leirredu
ible�iE int(x) =Xn� ����
2t : (5.4)Diagrams of 
lass 
2 
annot be de
omposed into two pie
es by 
utting two propagatorlines. The formal integration of the last equality in (5.1) with respe
t to � keeping � and� 
onstant provides the diagrammati
 expression for � in terms of full Green's fun
tionsand 
lassi
al �elds. Therefore, i� f�; ��;�; �g 
an be expressed in terms of the followingdiagrams (
.f. eq. (4.7))i� f�; ��;�; �g = i� 0 n�0o + i ZC dxL 0f�; ���g
+�8>>>>><>>>>>:Xn� 1n� �� ���i� �� ���i��� ���i�. . . . . .� �� �| {z }� ln �1���0 � � � ��� ���i�� �� �| {z }���� �

9>>>>>=>>>>>;+Xn� 1n� ����
2| {z }+ i� : (5.5)
Here n� 
ounts the number of � insertions in the ring diagrams providing the ln-terms,while for the 
losed diagrams of � the value n� 
ounts the number of verti
es building4 Diagrammati
 re-summation implies that sub-diagrams with the same external stru
ture (i.e.same number of external points and types of propagators to be atta
hed at ea
h external point)
an be summed up to give a total re-summed expression that 
an then be embedded into more
ompli
ated diagrams, e.g. self-energy insertions 
an be re-summed to full Green's fun
tions.15



up the fun
tional �. Contrary to the perturbative diagrams of i �� , 
.f. eq. (5.3), herethe diagrams 
ontributing to � are given in terms of full propagators � and full time-dependent 
lassi
al �elds �. As a 
onsequen
e, these diagrams have to be two-parti
leirredu
ible (label 
2). The latter property is required be
ause of the re-summations ofE int(x). This also mat
hes the diagrammati
 rules for the re-summed self-energy � (x; y),whi
h results from fun
tional variation of � with respe
t to any propagator �(y; x). Ingraphi
al terms, this variation is realized by opening a propagator line in all diagramsof �. The resulting set of thus opened diagrams must then be that of proper skeletondiagrams of � in terms of full propagators, i.e. void of any self-energy insertion.The diagrammati
 rules for �, E int(x), J and � are determined by the following steps:(a) For all bosoni
 �elds in i bL int, repla
e b� by �+ b' in order to a

ount for the 
lassi
al�elds;(b) 
onsider all possible pair 
ontra
tions of the �eld operator b'(x) with b'y(y) in theformal expressions (5.6){(5.9) given below and repla
e them by i�(x; y);(
) keep only those terms that 
orrespond to two-parti
le irredu
ible diagrams for � , i.e.whi
h 
annot be split into two pie
es by 
utting two di�erent propagator lines.Further details are given in Appendix B. The diagrams of i�, �iE int(x) , iJ(x) and�i� (x; y) are then generated by applying the above general rules to the following formalexpressions
i�=*TC exp0�i ZC dx0 bL int(x0)1A+2
f�g (5.6)=Xn 1n! ZC dx1 : : :dxn DTCi bL int(x1) : : : i bL int(xn)E2
f�g ;�iE int(x)=*TCi bL int(x) exp0�i ZC dx0 bL int(x0)1A+2
f�g ; (5.7)iJ(x)=*TC ÆÆ��(x) exp0�i ZC dx0 bL int(x0)1A+2
f�g ; (5.8)�i� (x; y)=*TC Æ2Æ b'y(x)Æ b'(y) exp0�i ZC dx0 bL int(x0)1A+2
f�g ; (5.9)where the sub-label 2
 f�g refers to the above point (
).As an example, we quote the diagrams in neutral s
alar g b�4=4! theory. The fun
tional �is given by the following expressions 16



i�= �ig4! ZC dx ��4(x) + 6�2(x) h b'(x) b'(x)i
 + 3 h b'(x) b'(x)i2
� (5.10)+ 12 ��ig4! �2 ZC dx ZC dy �4 � 4!�(x)�(y) h b'(x) b'(y)i3
 + 4! h b'(x) b'(y)i4
�+ : : : ;where only the terms up to two verti
es are expli
itly presented. In terms of diagrams(
.f. also Appendix B) we geti� = ����rL LL L + ����rL L����+ r��������+12 8>><>>: N Nr r + r r 9>>=>>;+ 13 : : :h 14!i h 12�2!i h 122�2!i h 13!i h 14!i (5.11)The 1=n� fa
tors are expli
itly given, while the 
ombinatorial fa
tors a

ording to rule (vii)in Appendix B are given in square bra
kets below ea
h diagram. Fun
tional derivativeswith respe
t to � (pins) and propagators (full lines), 
.f. eq.(4.9), determine the sour
eJ(x) of the 
lassi
al �eld and the self-energy � (x; y), respe
tively,iJ(x) = vNNN + vN����+ Nv r + : : : ;h 13!i h12i h 13!i�i� (x; y) = ����vL L + v����+ N Nv v + v v + : : :h 12!i h12i h 12!i h 13!i
(5.12)

Small full dots de�ne verti
es whi
h are to be integrated over, while big full dots spe
ifythe external points x or y; the �rst two diagrams of � (x; y) give the singular ÆC(x; y)parts arising from 
lassi
al �elds and tad-poles.6 �-Derivable Approximations and Invarian
es of �The expressions for W , � and � given so far are exa
t and represent a 
onvenient for-mulation of the theory in terms of full propagators and self-energies. However, for anypra
ti
al 
al
ulation one needs to trun
ate the s
heme. We 
onsider so-
alled �-derivable17



approximations, �rst introdu
ed by Baym [30℄ within the imaginary time method. Su
happroximations are 
onstru
ted by 
on�ning the in�nite diagrammati
 series for � eitherto a set of a few diagrams or to some sub-series of diagrams. Note that the approximate�(appr.) itself is 
onstru
ted in terms of \full" Green's fun
tions and \full" 
lassi
al �elds,where \full" now implies that we have to self-
onsistently solve the 
lassi
al-�eld andDyson equations with the driving terms derived from this �(appr.) through relations (4.10)and (4.11). It means that even restri
ting ourselves to a single diagram in �(appr.), in fa
t,we deal with a whole sub-series of diagrams in perturbation theory. Thereby, the term\full" takes the sense of the sum of this whole sub-series. Thus, a �-derivable approxima-tion o�ers a natural way of introdu
ing 
losed, and therefore self-
onsistent approximations
hemes based on summation of diagrammati
 sub-series. In order to preserve the sym-metry of the exa
t � with respe
t to permutations among i bL int(x1) : : : i bL int(xn) (seeeq. (5.6)), we postulate that � 
omplies with the original symmetries. As a 
onsequen
e,approximate forms of �(appr.) de�ne e�e
tive theories, where �(appr.) serves as a generatingfun
tional for the approximate sour
e 
urrents J (appr.)(x) and self-energies � (appr.)(x; y)(see eqs. (4.10) and (4.11)) iJ (appr.)(x) = Æi�(appr.)Æ (�(appr.)�(x)) ; (6.1)�i� (appr.)(x; y) = Æi�(appr.)Æi�(appr.)(y; x) � 8><>: 2 for neutral �elds,1 for 
harged �elds, (6.2)whi
h then are the driving terms for the equations of motion for the 
lassi
al �elds andpropagators. The approximate � also provides the 
orresponding expression for E int (seeeq. (4.12)). While �-fun
tionals with only one internal point lead to the standard Hatreeapproximation (tadpole insertions), whi
h is entropy 
onserving, the approximation levelwith two and more internal points for � generate genuine transport terms, whi
h areentropy generating and for whi
h an H-theorem 
an be derived in spe
ial 
ases [37℄.Below, we omit the supers
ript \appr.".Below, we omit the supers
ript \appr.".We now like to demonstrate that �-derivable approximations possess a number of remark-able properties. For su
h approximations, the invarian
es of � play as 
entral a role asthe invarian
es of the Lagrangian for the full theory. Thereby, the variational prin
iple,where the intera
tion strength �(x), the 
lassi
al �elds �(x), and propagators �(x; y) 
anbe varied independently, provides a set of useful identities and relations.A general invarian
e of � is provided by the substitution x) x+ �(x) for all integrationvariables in the 
ontour integrations de�ning �. The Jakobi determinant required for ea
hintegration variable 
an be a

ommodated by a simultaneous 
hange of the s
ale fun
tion�(x) at ea
h vertex. Thus, the simultaneous variation�(x) ) �(x+ �(x)); 18



�(x; y) ) �(x+ �(x); y + �(y)); (6.3)�(x) = 1 ) �(x) = det Æ�� + ����x� ! ; i.e. Æ�(x) = ����x� ;leaves � invariant. This way, one dedu
esÆ� = �8<:ZC dx "J�(x)��(x)�x� + J(x)���(x)�x� # ��(x)� i ZC dxdy� (x; y) "��(y; x)�x� ��(x) + ��(y; x)�y� ��(y)#9=;� ZC dxE int(x) ����x� = 0: (6.4)Inter
hanging x and y in the se
ond � term in squared bra
kets, using partial integrationand that the transformation �(x) 
an be 
hosen arbitrarily, one obtains the followingrelation ��x�E int(x) + �("J�(x)��(x)�x� + J(x)���(x)�x� #� i ZC dy "� (x; y)��(y; x)�x� + ��(x; y)�x� � (y; x)#9=; = 0: (6.5)
This is the key relation to prove energy{momentum 
onservation. It has features similarto a Ward identity, as it links derivatives of one-point fun
tions with those of two-pointfun
tions. The two-point fun
tion 
ontribution to this expression is of type of eq. (A.5),so that in eq. (6.5) the di�erentiations of the dis
ontinuities indeed 
an
el out.With the help of the equations of motion (3.6), (3.12) and (3.13), the divergen
e of thekineti
 term of the energy{momentum tensor ��� (3.17) 
an be 
ast into12��� ��(bp�x)� + bp�y� �(bp�x)� + bp�y����(x)�(y) + i�sym(y; x)��x=y= ��g��Epot(x) + �8<: [J(x)����(x) + J�(x)���(x)℄�i ZC dz [� (x; z) � �x��(z; x) + �x��(x; z) � � (z; x)℄9=;= �� nEpot(x)� E int(x)o (6.6)with the last line resulting from eq. (6.5). This is re
ognized as the energy{momentum
onservation law �����(x) = 0 with the energy{momentum tensor given by the Noetherexpression (3.17). Hen
e, the existen
e of a 
onserved energy{momentum tensor is provenfor any �-derivable approximation. 19



Along similar lines 
harge 
onservation 
an be proven, assuming that � is invariant underthe following simultaneous variation of 
lassi
al �elds and propagators�(x)) e�ie�(x)�(x); ��(x)) eie�(x)��(x); �(x; y)) e�ie�(x)�(x; y)eie�(y): (6.7)Applying the rule (4.9) of the � variation, to linear order in the phase �, one obtainsÆ�= e ZC dx8<:J�(x)�(x)� J(x)��(x)+ ie ZC dy [� (x; y)�(y; x)��(x; y)� (y; x)℄9=; [�i�(x)℄ = 0; (6.8)whi
h implies the bra
e expression to vanish. Note that the integral term in the bra
eexpression is independent of the 
ontour pla
ement of the x variable due to dis
ontinuityrelation (A.3) and, therefore, it is only a fun
tion of the physi
al value of x. By means ofequations of motion (3.6), (3.12) and (3.13), the divergen
e of the Noether 
urrent of eq.(3.19) is seen to vanishi��j� = e8<:J�(x)�(x)� J(x)��(x)+i ZC dy [� (x; y)�(y; x)��(x; y)� (y; x)℄9=; = 0; (6.9)a

ording to eq. (6.8). Thus, we have arrived at the 
urrent 
onservation for any �-derivable approximation, whi
h is invariant under (6.7).Similarly, one may derive the relation, resulting from the Lorentz invarian
e of the �fun
tional, whi
h permits to demonstrate the 
onservation of the angular momentum.However, we do not 
onsider it here, sin
e the angular-momentum 
onservation is not ofpra
ti
al use in kineti
s. Further invarian
es generally depend on the properties of theintera
tion verti
es in the theory 
onsidered. An example is the invarian
e dis
ussed inthe 
ontext of eq. (2.5) whi
h now trans
ribes to the 
orresponding expe
tation values.7 Thermodynami
 Consisten
yIn the thermal equilibrium the density matrix is expli
itly known, 
.f. [45℄,b�eq = exp ��� bH f�g�Z ; (7.1)where � = 1=T is the inverse temperature, and Z is the partition fun
tion whi
h is dire
tlyrelated to the thermodynami
al potential, 20




 = �T lnZ: (7.2)Sin
e we deal now with thermodynami
s, we have introdu
ed the 
hemi
al potential � inthe 
onventional way, i.e. by adding to the Hamiltonian the relevant termbH f�g = bH � � Z d3x bj 0(x); (7.3)where bj 0 is the time-
omponent of the 
harged 
urrent eq. (2.7), now with e = 1.We 
an use the same tri
k as that in the Matsubara te
hnique, i.e. use the fa
t that theequilibrium density matrix formally 
oin
ides with evolution operator in the imaginarytime. In the de�nition of the W fun
tional (4.2) we expli
itly write Trb�eq::: instead ofh:::i. Thus, taking into a

ount that � = W at vanishing external sour
es, we arrive atthe following form of � fun
tional in equilibrium� eq f�; ��;�; �g = �i ln0B� 1ZTr exp 264�i ZCeq dt bH 0If�g375 TC exp 264i ZCeq dx bL intI 3751CA ; (7.4)with the integration 
ontour Ceq now being the sum of the real-time S
hwinger-Keldysh
ontour (see �gure 1) and the imaginary-time Matsubara 
ontour, i.e. it starts from aninitial time t0 goes to in�nity, then ba
k to this initial time and after that, to t0 � i�.Taking into a

ount the fa
t that � = 0 for the physi
al values of �, ��, and �, we obtainfor the value of the thermodynami
 potential (7.2)
f�; ��;�; �g = �T ln8><>:Tr0B�exp 264�i ZCeq dt bH 0If�g375TC exp 264i ZCeq dx bL intI 3751CA9>=>; ; (7.5)where the integral over the real-time se
tion of the 
ontour gives zero. Hen
e, in eq. (7.5)we 
an make the repla
ementZCeq dt::: = �i�Z0 dt::: : (7.6)Thus, we have arrived at the proper thermodynami
 representation of the thermodynami
potential originally proposed by Luttinger and Ward [31℄. Indeed, sin
e all quantitiesunder the integral are analyti
ally 
ontinued from the S
hwinger{Keldysh 
ontour to theMatsubara 
ontour, 
 is determined by the same expression as the � fun
tional (4.7)but in terms of the Matsubara Green's fun
tions with the thermodynami
 �T fun
tionalrepresented by the same set of 
losed diagrams. Thus, in the momentum representationfrom eq. (7.5) we arrive at 21




 f�; ��;�; �g=� Z d3xL 0f�; ���g+ T�X!n Z d3x d3p(2�)3 exp(i!n�)��� ln[��(!n;p)℄ + � (!n;p)�(!n;p)�+ �T ; � ! 0; (7.7)where �T = �iT�, !n = 2�inT , and summation runs over Matsubara frequen
ies. In thestandard way (see, e.g., ref. [32℄) by 
onverting the !n-sum in eq. (7.7) into the energyintegral, this thermodynami
 potential is also easily expressed in terms of the real-timequantities (A.7) and (A.8) (in the rest frame of the system)
 f�; ��;�; �g=� Z d3xL 0f�; ���g+ � Z d3x d4p(2�)4n(p0 � �)���2Im ln h��R(p0 + i0;p)i � Re�R�� ARe� R� +�T ; (7.8)where p = (p0;p) is the 4-momentum,n(") = [exp("=T )� 1℄�1 (7.9)is the thermal Bose{Einstein o

upation number, andA(p) = �2Im �R(p); �(p) = �2Im � R(p) (7.10)are the spe
tral fun
tion A and spe
tral width 5 �, respe
tively, de�ned in terms of re-tarded quantities, 
.f. eq. (A.2). Note that the exa
t form of equilibrium distribution (7.9)is a fun
tion of the parti
le energy only (whi
h 
an be o�-shell for parti
les with width),rather than a fun
tion of momenta p through the on-shell energy momentum dispersionrelation, as often en
ountered in text books whi
h deal with the quasi-parti
le pi
ture.Thus, the problem of the thermodynami
 
onsisten
y 
an immediately be re-addressedfrom the S
hwinger{Keldysh approa
h to the Matsubara one. Within the Matsubara for-malism, this problem was 
onsidered by Baym [30℄. He has shown that any �-derivableapproximation to the thermodynami
 potential is thermodynami
ally 
onsistent. Hen
e,we have proved that our � derivable approximations to the � -fun
tional are also thermo-dynami
ally 
onsistent.The stationary property of the � fun
tional (and, hen
e, of 
) with respe
t to variationsin full Green's fun
tions and 
lassi
al �elds, eq. (4.6), is the key feature that providesthe thermodynami
 
onsisten
y. It implies that any derivative of the thermodynami
potential with respe
t to any thermodynami
 parameter like � or � is determined only bythe expli
it dependen
e of 
 on these parameters, sin
e the impli
it dependen
es through� and � drop out due to the stationary property. Therefore, �-derivable approximationspreserve the 
orresponding thermodynami
 relations as for the exa
t partition sum, andthus provide thermodynami
 
onsisten
y.5 Please, do not 
onfuse with the �f: : :g-fun
tional22



8 Virial limitA parti
ular simpli�
ation is obtained in the dilute density limit (virial limit). It has theadvantage that the 
orresponding self-energies of the parti
les and intermediate resonan
esare entirely determined by two-body s
attering properties, in parti
ular, by s
atteringphase shifts. We illustrate this at the example of the intera
ting system of nu
leons,pions and delta resonan
es, whi
h has re
ently been investigated by Weinhold et al. [40℄.Following their study we 
onsider a pedagogi
al example, where the �NN -intera
tion isomitted. Then with a p-wave �N�-
oupling vertex among the three �elds the �rst andonly diagram of � up to two verti
es and the 
orresponding three self-energies are givenby� = �N = �� = �� = (8.1)Here the solid, dashed and double lines denote the propagators ofN , � and �, respe
tively.In non-relativisti
 approximation for the baryons we ignore 
ontributions from the baryonDira
-sea. Then the bare pion mass agrees with its va
uum value, while the nu
leon anddelta masses require appropriate mass 
ounter terms. The � self-energy �� attains theva
uum width and position of the delta resonan
e due to the de
ay into a pion and anu
leon. The 
orresponding s
attering diagrams are obtained by opening two propagatorlines of � with the prominent feature that the �N -s
attering pro
eeds through the deltaresonan
e. Sin
e in this 
ase a single resonan
e 
ouples to a single s
attering 
hannel, theva
uum spe
tral fun
tion of the resonan
e 
an dire
tly be expressed through the s
atteringT -matrix and hen
e through measured s
attering phase shifts
j T33 j2 = 4 sin2 Æ33(p) = �va
� (p)Ava
� (p); (8.2)where p = pN + p�. Thus through (8.2) the va
uum properties of the delta 
an almostmodel-independently be obtained from s
attering data. Further details and extensions tomulti-
hannel and multi-resonan
e 
ases 
an be found in ref. [46℄.For the multi-
omponent system the renormalized thermodynami
 potential in
ludingva
uum 
ounter terms, 
.f. eq. (7.8), 
an be written 6 as
 f��;�N ;��g = T Xa2f�;N;�g��Tr n� ln h��Ra (p0 + i0;p)i +�Ra� Ra oT;� +�T : (8.3)6 We generalize the boson expressions (7.7) and (7.8) to the 
ase multi-
omponent system offermions and bosons. 23



Here for any fun
tion f(p) the thermodynami
 tra
e Trf:::gT;� is de�ned asTrff(p)gT;� (8.4):= dV Z d3p(2�)3 Xm exp(i!m�)f(!m � �;p)= �dVT Z d4p(2�)4n(p0 � �) 2 Imf(p0 + i0;p) ��������� � ! +0!m = 2m�iT (bosons)!m = (2m+ 1)�iT (fermions),either expressed in terms of the Matsubara summation over frequen
ies !m, or 
onvertedinto an energy integral over thermal o

upations n(") = [exp("=T )� 1℄�1, of Fermi{Dira
/Bose{Einstein type, 
.f. eqs (7.7) and (7.8) above. The upper sign appears forfermions, d is the degenera
y in that parti
le 
hannel, and V denotes the volume. Eq.(8.3) still has the fun
tional property to provide the retarded Dyson equations for the �Rafrom the stationary 
ondition whi
h we use in order to determine the physi
al value of 
 .For the parti
ular 
ase here one further 
an exploit that the value�T = �� T Trf�a�agT;�; for a 2 fN; �;�g and � of form (8.1); (8.5)valid for this �T whi
h linearly depends on all three propagators. Compatible with thelow density limit one 
an expand the Tr lnf��g terms for the pion and nu
leon aroundthe free propagators, and �nally obtains
�N� = 
 f��;�N ;��g ���stationary= 
 freeN + 
 free� + TTrnln h��R�(p0 + i0;p)ioT;� (8.6)= 
 freeN + 
 free� + d�TV Z d4p(2�)42�Æ33(p)�p0 ln [1� n� (p0 � ��)℄ (8.7)for the physi
al value of 
 . Here the 
 freea are the free single-parti
le thermodynami
potentials 7 , while �� and d� = 16 are the 
hemi
al potential and degenera
y fa
tor ofthe � resonan
e, respe
tively. The last term in (8.7) obtained through (8.2), representsa famous result derived by Beth-Uhlenbe
k [47,48℄, later generalized by Dashen, Ma andBernstein [49℄ and applied to nu
lear resonan
e matter in refs. [50,51,40,46℄. It illustratesthat the virial 
orre
tions of the system's level density due to intera
tions are entirely givenby the energy variation of the 
orresponding two-body s
attering phase shifts �Æ=�p0.All thermodynami
 properties 
an be obtained from 
 through partial di�erentiationswith respe
t to T and the �. The �nal form (8.7) may give the impression that one deals7 The appropriate 
an
ellation of terms for the result (8.6) is only a
hieved, if one uses 
 free, i.e.the partition sum of free parti
les with the free energy{momentum dispersion relation. Withinthis model already on the va
uum level the nu
leon would a
quire loop 
orre
tions to its self-energy whi
h would lead to deviations between 
va
 and 
 free, as well as between the 
orre-sponding propagators o� their mass shell. 24



with non-intera
ting nu
leons and pions. This is however not the 
ase. For instan
e thedensities of baryons and pions derived from (8.7) be
ome�B = �
�N���N = �freeN + �� + �
orr; �� = �
�N���� = �free� + �� + �
orr; (8.8)with��= d� Z d4p(2�)4n�(p0 � ��)A�(p); �
orr = d� Z d4p(2�)4n�(p0 � ��)B
orr(p); (8.9)and �� = �N + �� 8 . Here the density of deltas �� is determined by the delta spe
tralfun
tion. The intera
tion 
ontribution 
ontained in the 
orrelation density �
orr dependson the di�eren
e between the phase-shift variation and the spe
tral fun
tionB
orr=2�Æ33(p0)�p0 � A�(p) = 2Im "�� R� (p)�p0 �R�(p)# : (8.10)Due to the fa
t that ��(p) grows with energy and the real part of �� 
hanges sign at theresonan
e energy, B
orr be
omes positive below and negative above resonan
e, respe
tively.It leads to an enhan
ement of both densities at low energies, i.e. below resonan
e and thisway to a further softening of the resulting equation of state 
ompared to the naive spe
tralfun
tion treatment ignoring the B
orr terms. This illustrates that an intera
ting resonan
egas 
annot 
onsistently be des
ribed by a set of free parti
les (here the pions and nu
leons)plus va
uum resonan
es (here the delta), des
ribed by their spe
tral fun
tion. Rather the
oupling of a bare resonan
e to the stable parti
les determines its width, and thus itsspe
tral properties in va
uum. At the same time the stable parti
les are modi�ed dueto the intera
tion with the resonan
e. Only the a

ount of all three self-energies in (8.1)provides a 
onserving and thermodynami
ally 
onsistent approximation.Alternatively to the pi
ture above, the properties of the system 
an be dis
ussed entirelyin terms of the stable parti
les, i.e. the pion and the nu
leon, thus eliminating the delta.The thermodynami
 potential is then still given by (8.7). This form is valid even withoutintermediate resonan
es and the phase-shifts just a

ount for the �N intera
tion proper-ties. Also the self-energy of the lightest parti
le in the system, the pion, 
an be obtainedfrom phase shifts by means of the opti
al theorem [52,53℄. To linear order in the nu
leondensity �N one determines the pion self energy�� = 4��NF�N(0) = �d�d� 2�k �NdN 2 sin Æ33eiÆ33 ; (8.11)from the forward �N -s
attering amplitude F�N(0). The degenera
y fa
tors dN : d� : d� =4 : 3 : 16 just provide the proper spin/isospin 
ounting. This self-energy, whi
h determines8 In equilibrium �� has to be put to zero after di�erentiation.25



an opti
al potential or index of refra
tion, is attra
tive below the delta resonan
e energyand repulsive above. It agrees with a related e�e
t in opti
s, where a resonan
e in themedium 
auses an anomalous behavior of the real part of the index of refra
tion, whi
his larger than 1 below the resonan
e frequen
y and less than 1 above the resonan
e.Thus, absorption, e.g. by ex
iting a resonan
e, is always a

ompanied by a 
hange of thereal part of the index of refra
tion of the s
attered parti
le. The �-derivable prin
ipleautomati
ally takes 
are about these features.As has been dis
ussed in [54℄, the 
orre
tions to the system's level density (last term in(8.7)) 
an also be inferred from the time shifts (or time delays) indu
ed by the s
atteringpro
esses. From ergodi
ity arguments [54℄ one obtains for a single partial wave��p0 �Nlevel(p0)�N freelevel(p0)�= �forward + �s
att: = �delay=2 ��p0 [sin Æ33 
os Æ33℄ + 4 sin2 Æ33�Æ33�p0 = 2�Æ33�p0 : (8.12)Here the forward delay time �forward is identi
al to the 
hange of the mean free propagationtime in between su

essive s
attering due to the 
hange of the group velo
ity indu
ed bythe real part of the opti
al potential, 
.f. (8.11). The s
attering time �s
att: �nally resultsfrom the delayed re-emission of the pion from the intermediate resonan
e to angles o� theforward dire
tion.Similar 
onsiderations as presented in this se
tion apply for example to the intera
ting��-meson system, e.g. on the basis of a renormalizable hidden gauge model [55℄.9 Con
lusionWith the aim to develop self-
onsistent approximations to quantum transport we inves-tigated the �-fun
tional method introdu
ed by Luttinger and Ward [31℄ and later usedby Baym [30℄. We have employed fun
tional methods for Green's fun
tions within theformalism of non-equilibrium Green's fun
tions on the real-time 
ontour, developed byS
hwinger, Kadano�, Baym and Keldysh [1{3℄.In diagramati
 terms the main quantity, the fun
tional �, is determined by the sum ofall 
losed (i.e. without external points) skeleton diagrams in terms of 
lassi
al �elds andfull Green's fun
tions on the real-time 
ontour. It is a generating fun
tional whi
h al-lows all important quantities of a system (su
h as sour
es of 
lassi
al �elds, self-energies,intera
tion energy, et
.) to be derived by respe
tive variations of the � fun
tional. There-fore this � fun
tional plays a 
entral role in the spa
e of 
lassi
al �elds and full Green'sfun
tions on the 
ontour similar to that of the intera
tion Lagrangian on the operatorlevel. Our treatment extends the de�nition of the � fun
tional to any non-equilibriumsystem in
luding non-vanishing 
lassi
al bosoni
 �elds. This last generalization allows to26



self-
onsistently des
ribe the dynami
s of both the order parameter (the 
lassi
al �eld)and 
u
tuations on equal footing, e.g. in the theory of phase-transition phenomena.The advantage of the � fun
tional is that we may formulate various approximations atthe level of �, thus de�ning so 
alled �-derivable approximations. In parti
ular, we may
onstru
t e�e
tive theories right at the level of Green's fun
tions and e�e
tive verti
es.These approximations possess some important features: they respe
t exa
t 
onservationlaws on the level of expe
tation values (with the Noether values for the 
onserved quan-tities) and have a proper thermodynami
 limit. Note that other approximation s
hemes,e.g. at the level of self-energies, far not always possess su
h properties.The question of 
onsisten
y be
omes espe
ially important for a multi-
omponent system,where the properties of one spe
ies 
an 
hange due to the presen
e of intera
tions withthe others and vi
e versa. The "vi
e versa" is very important and 
orresponds to theprin
iple of a
tio = re-a
tio. This implies that the self-energy of one spe
ies 
annot be
hanged through the intera
tion with other spe
ies without a�e
ting the self-energiesof the latter ones also. The �-derivable s
heme o�ers a natural and 
onsistent way toa

ount for this prin
iple. Within thermodynami
 
onsiderations this has re
ently been
onsidered for the intera
ting pion{nu
leon{delta-resonan
e system, where the 
ouplingto the delta resonan
e leads to a softening of the pion modes below the resonan
e mass[40℄, as we have dis
ussed it in se
t. 8, and for a relativisti
 QED plasma in [56℄. We alsoexpe
t a 
onsistent des
ription of 
hiral �-, �- 
ondensates together with 
u
tuations, asan immediate appli
ation of our results to multi-
omponent systems.For the relativisti
 s
heme 
onsidered here we argue that a 
areful 
onstru
tion of 
on-served quantities requires symmetri
 expressions in terms of ��+ and �+� Green's fun
-tions (�< and �> in the Kadano�{Baym notation, respe
tively). This is in 
ontrast toexpressions only involving ��+ Green's fun
tion, whi
h are often used in the literature.These symmetri
 expressions des
ribe 
ontributions of both parti
les and anti-parti
leson equal footing, as well as take proper a

ount of modi�
ations of the va
uum polariza-tion in the medium. Of 
ourse, these symmetri
 expressions still require a proper va
uumrenormalization to be done in any a
tual 
al
ulation.The dynami
al equations of motion dis
ussed within this paper are still on the level ofDyson's equation, i.e. they are time non-lo
al with two time arguments for any two pointfun
tion formulated on the non-equilibrium time 
ontour. As initial 
ondition they requirethe statisti
al operator be given at initial time t0, a 
ir
umstan
e whi
h may not be verypra
ti
al, sin
e one may like the initial 
onditions rather be formulated in terms of theGreen's fun
tions themselves. There are two simplifying 
ases where the initial 
onditions
an be formulated easily. Both require the system to be stationary for a 
ertain whileprior to the genuine non-equilibrium dynami
s. This e�e
tively pushes the initial timet0 ba
k to �1. The �rst 
ase is realized in 
ollision pro
esses, where two 
omplex ob-je
ts in a stationary state, generally the ground state, eventually 
ollide. This situationis relevant to the problem of heavy-ion 
ollisions whi
h we are mostly interested in. Theinitial 
on�guration 
onsisting of two ground-state nu
lei in
ident on ea
h other 
an be27



des
ribed in terms of 
asual �nite-density Green's fun
tions (e.g., see [57,58℄) whi
h thenshould be translated into the 
ontour Green's fun
tions by means of relations (A.1). These
ond situation is realized by systems prepared in thermodynami
 equilibrium withinsome 
on�ned volume, whi
h in the 
ourse of time are driven out of equilibrium by anexternal perturbation. In this 
ase, mostly applying to 
ondensed matter physi
s, the sys-tem is no longer 
losed and an external perturbation has to be in
luded in the dynami
alequations of motion with 
orresponding expli
itly time-dependent external terms for the
onservation laws, while the �-derivable properties dis
ussed here still refer to the inter-nal motion of the system. In this 
ase the stationary initial situation 
an be 
al
ulatedby the Matsubara formalism, whi
h then has to be transformed to the 
orresponding realtime form, e.g. by means of identity (8.4). The �nite volume 
onditions have to be im-posed during the entire non-equilibrium evolution. Su
h 
onditions are quite 
ompli
atedalready in the Boltzmann kineti
s (e.g., see [59℄) and have to be formulated separately inea
h parti
ular 
ase. Note that in both 
ases the initial stationary 
on�guration shouldbe 
al
ulated at the very same level of �-approximation as the non-equilibrium dynami
sitself.Apart from the Hatree level, whi
h implies trun
ating � at the one-time-point level, theresulting 
ontour Dyson equations of motion are not as pra
ti
al yet for numeri
al ap-pli
ations. Still, the here presented s
heme of 
onstru
ting self-
onsistent approximationsprovides a solid basis for the derivation of suitable kineti
 equations whi
h apply beyondthe limitations of the quasi-parti
le approximation. In that 
ase the time non-lo
ality istransformed into a spe
tral distribution in energy by means of a time Wigner transfor-mation. Su
h generalized transport s
hemes respe
t parts of the quantum nature of theparti
les and, in parti
ular, take due a

ount of their �nite mass-widths. The �nite mass-width may be either an inherent va
uum property of the parti
le (e.g. resonan
e) or maybe a
quired by a stable parti
le in a dense environment due to frequent intera
tions. Inthe 
ase of nu
lear 
ollisions at intermediate (� 1 GeV/nu
leon) to ultra-relativisti
 ener-gies, for example, one en
ounters mean single-parti
le energies in the range of the typi
altemperature of T = 50 - 200 MeV. Important resonan
es, like the delta-resonan
e or therho-meson, have de
ay widths beyond 100 MeV, while typi
al 
ollision rates estimatedfrom presently used quasi-parti
le transport s
hemes are also in the order of T . These
ir
umstan
es de�nitely prevent quasi-parti
le based transport 
odes from providing re-liable results for su
h 
ollisions. The main steps in the derivation of self-
onsistent andnumeri
ally tra
table transport equations for parti
les with �nite width are fomulatedand will be published in a forth
oming paper [37℄, brief a

ounts are given in [38,39℄.A
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t RUS-656-96).APPENDICESA Contour Fun
tion RelationsFor 
ompleteness we give all relations both for fermions (upper sign) and bosons (lowersign). Due to the 
hange of operator ordering, genuine multi-point fun
tions are dis
ontin-uous in general, when two 
ontour 
oordinates be
ome identi
al. In parti
ular, two-pointfun
tions like iF (x; y) = DTC bA(x) bB (y)E be
ome 9
iF (x; y)=0BB� iF��(x; y) iF�+(x; y)iF+�(x; y) iF++(x; y)1CCA = 0BBB�DT bA(x) bB (y)E � D bB (y) bA(x)ED bA(x) bB (y)E DT �1 bA(x) bB (y)E1CCCA ; (A.1)where T and T �1 are the usual time and anti-time ordering operators. Sin
e there arealtogether only two possible orderings of the two operators, in fa
t given by the Wightmanfun
tions F�+ and F+�, whi
h are both 
ontinuous, not all four 
omponents of F areindependent. From eq. (A.1) follow relations between non-equilibrium and the retardedand advan
ed fun
tionsFR(x; y) = F��(x; y)� F�+(x; y) = F+�(x; y)� F++(x; y):=�(x0 � y0) �F+�(x; y)� F�+(x; y)� ;FA(x; y) = F��(x; y)� F+�(x; y) = F�+(x; y)� F++(x; y):=��(y0 � x0) �F+�(x; y)� F�+(x; y)� ; (A.2)where �(x0 � y0) is the step fun
tion of the time di�eren
e.Dis
ontinuities of a two-point fun
tion may 
ause problems for di�erentiations, in parti
u-lar, sin
e they often o

ur simultaneously in produ
ts of two or more two-point fun
tions.The proper pro
edure is, �rst, with the help of eq. (A.2) to represent the dis
ontinuousparts in F�� and F++ by the 
ontinuous F�+ and F+� times �-fun
tions, then to 
om-bine all dis
ontinuities, e.g. with respe
t to x0 � y0, into a single term proportional to�(x0 � y0), and �nally to apply the di�erentiations. One 
an easily 
he
k that in thefollowing parti
ularly relevant 
ases9 Quite 
ommonly, like in refs. [2,6℄, the notation F = 0� F 
 F<F> F a 1A is used for two-point fun
-tions instead of (A.1). We prefer the more 
exible f�+g labelling of 
ontour points.29



ZC dz �F (xi; z)G(z; xj)�G(xi; z)F (z; xj)� ; (A.3)��x� ZC dz �F (xi; z)G(z; xj) +G(xi; z)F (z; xj)� ; (A.4)24 ��x� � ��y�!ZC dz �F (xi; z)G(z; yj)�G(xi; z)F (z; yj)�35x=y (A.5)all dis
ontinuities exa
tly 
an
el. Thereby, these values are independent of the pla
ementof xi and xj on the 
ontour, i.e. the values are only fun
tions of the physi
al 
oordinatex.Equilibrium relations between quantities on the real-time 
ontour basi
ally follow fromthe Kubo{Martin{S
hwinger 
ondition [60℄��+(p) = �+�(p)e�"=T ; ��+(p) = �+�(p)e�"=T ; (A.6)where " = p�U��� with U� and � being a global 4-velo
ity of the system and a 
hemi
alpotential related to the 
harge, respe
tively. All the Green's fun
tions 
an be expressedthrough retarded or advan
ed Green's fun
tions:��i;j(p)� = 0BB� [1� n(")℄�R(p)� n(")�A(p) �in(")A(p)�i [1� n(")℄A(p) � [1� n(")℄�A(p)� n(")�R(p)1CCA ; (A.7)i; j 2 f+;�g, and the self-energies take a similar form�� i;j(p)� = 0BB�� R(p)� in(")�(p) �in(")�(p)�i [1� n(")℄ �(p) �� A(p)� in(")�(p)1CCA : (A.8)Here n(") is the thermal Fermi{Dira
 or Bose{Einstein o

upation number (
.f. eq. (7.9)for bosons), and A and � are the spe
tral fun
tion and spe
tral width, respe
tively, de�nedin (7.10).B Diagram Rules for �, J, and �The intera
tion vertex fun
tion V (x) entering the diagram is normalized in the standardway, 
.f. [41℄, i.e. with fa
tors n! relative to bL int(x) for ea
h type of operator o

urringwith multipli
ity n in the vertex. E.g., the vertex fun
tion simply be
omes �iV (xk) = �ig30



for bL int = �g�4=4! (4 identi
al operators) and for bL int = �g(���)2=(2! � 2!) (twi
e twoidenti
al operators). The diagrammati
 rules to 
al
ulate i�, iJ(x) and �i� for a giventheory are as follows(i) Draw all topologi
ally distin
t, 
losed and entirely 
onne
ted diagrams with N internalverti
es x1; x2; :::xN , where 
lassi
al �eld pins and propagator lines saturate the valen
esof all verti
es in the diagram, 
.f. (5.11) above. Closed diagrams for i� have no externalpoints, while iJ(x) has one external point, and �i� has two external points. For 
hargedbosons, pins and propagator lines have an arrows sense, distinguishing b� from b�y atthe verti
es, the sense dire
tion pointing towards b�.(ii) For i�, iJ(x) and �iE int(x) keep only those diagrams that are two-parti
le irredu
ible,i.e. whi
h 
annot be split into two pie
es by 
utting two di�erent propagator lines. For�i� keep only those diagrams whi
h result from � by opening one propagator line.(iii) To ea
h line, 
onne
ting xl �! xk, assign the fa
tor i�(xk; xl).(iv) To ea
h pin atta
hed to xk, assign the fa
tor �(xk) or ��(xk) depending on the sense.(v) To ea
h vertex xk assign the vertex fa
tor �iV (xk) as determined by bL int(x).(vi) Integrate all internal x1; x2; :::xN over the 
ontour.(vii) Multiply the result by the symmetry fa
tor S, whi
h is 
al
ulated as follows1=NG! fa
tor for every NG equivalent internal lines,1=N�! fa
tor for every N� 
lassi
al �elds entering ea
h vertex,1=2 fa
tor for every self-
losed line loop (tad-poles) for real �elds.(viii) Sum all diagrams. For the 
al
ulation of i� (
ontrary to iJ(x) and �i�), an extra fa
tor1=n� appears for ea
h diagram, where n� 
ounts the number of verti
es in the diagram.This fa
tor has however been given expli
itly in all diagram formulae 
on
erning �!(ix) For fermions ea
h 
losed fermion loop 
ontributes a fa
tor (�1).In many 
ases like in transport treatments, it is advantages to 
onsider the diagramsde
omposed into the two 
ontour se
tions at ea
h vertex, e.g., to 
al
ulate quantities like��+ and �+� self-energies in terms of exa
t Green's fun
tions. Therefore, "physi
al"-time diagrammati
 rules in the matrix s
heme are also required. Here we present onlythose rules whi
h di�er from the above ones on the real-time 
ontour, bearing in mindthat all other rules remain valid:(iii0) To ea
h internal vertex xk �rst assign a sign ik 2 f+;�g de�ning the 
ontour pla
ementxikk . To ea
h line, 
onne
ting xill �! xikk , assign the fa
tor i�ikil(xk; xl), ik; il 2 f+;�g.(vi0) For all internal points integrate all x1; x2; :::xN over the real-time axis and spa
e, forea
h internal " + " vertex multiply by (�1) and �nally sum over all internal 
ontourpla
ements i1; i2; :::iN (ik 2 f+;�g).Referen
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