Self-Consistent Approximations to
Non-Equilibrium Many-Body Theory

Yu. B. Ivanov!?, J. Knoll' and D. N. Voskresensky'?

1Gesellschaft fur Schwerionenforschung mbH, Planckstr. 1, 64291 Darmstadt,
Germany
2 Kurchatov Institute, Kurchatov sq. 1, Moscow 123182, Russia
3 Moscow Institute for Physics and Engineering, Kashirskoe sh. 31, Moscow
115409, Russia

Abstract

Within the non-equilibrium Green’s function technique on the real-time contour,
the @-functional method of Baym is generalized to arbitrary non-equilibrium many-
particle systems. The scheme may be closed at any desired order in the number of
loops or vertices of the generating functional. Tt defines effective theories, which
provide a closed set of coupled classical-field and Dyson equations, which are self-
consistent, conserving and thermodynamically consistent. The approach permits to
include unstable particles and therefore unifies the description of resonances with all
other particles, which obtain a mass width by collisions, decays or creation processes
in dense matter. The inclusion of classical fields enables the treatment of soft modes
and phase instabilities. The method can be taken as a starting point for adequate
and consistent quantum improvements of the in-medium rates in transport theories.
Properties of resonances are discussed within the dilute density limit in terms of
scattering phase shifts.

1 Introduction

Non-equilibrium Green’s function technique, developed by Schwinger, Kadanoff, Baym
and Keldysh [1-4], is the appropriate concept to study the space—time evolution of many-
particle quantum systems. This formalism finds now applications in various fields, such as
quantum chromodynamics [5], nuclear physics [6-13], astrophysics [10,14,15], cosmology
[16], spin systems [17], lasers [18], physics of plasma [19,20], physics of liquid *He [21], criti-
cal phenomena, quenched random systems and disordered systems [22], normal metals and
super-conductors [14,23,24], semiconductors [25], tunneling and secondary emission [26],
etc. The Green’s function technique provides description in terms of one- and two-point
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functions. Compared to the various equal-time operator formulations of transport theo-
ries, c.f. [27], and within the path-integral formulation [28], the Green’s function approach
with its non-localities in time offers a convenient description of spectral information such
as the damping width of particles. Such mass-width effects become increasingly important
especially in the realm of high-energy nuclear collisions.

For actual calculations certain approximation steps are necessary. In many cases pertur-
bative approaches are insufficient, as for systems with strong couplings treated in nuclear
physics. In such cases, one has to re-sum certain sub-series of diagrams in order to ob-
tain a reasonable approximation scheme. In contrast to perturbation theory for such
re-summations one frequently encounters the complication that the resulting equations
of motion may no longer comply with the conservation laws, e.g., of charge, energy and
momentum, in particular, if the mass width of the particles is no longer negligible. This
problem has first been considered in two pioneering papers by Baym and Kadanoff [29,30)]
discussing the response to an external perturbation of quantum systems in thermody-
namic equilibrium. Baym, in particular, showed [30] that any approximation, in order to
be conserving, must be so-called @-derivable. He exploited the properties of a resummation
technique in terms of an auxiliary functional, the @-functional, introduced by Luttinger
and Ward [31] for the formulation of the thermodynamic potential (see also [32]). Mean
fields were included in this formalism in ref. [33]. The &-functional is determined in terms
of full, i.e. re-summed, Green’s functions and classical fields coupled by free vertices and
serves as a generating functional for the driving terms of the equations of motion.

In the non-equilibrium formalism the problem of conserving approximations is even more
severe than in the case of the systems response to an external perturbation close to thermal
equilibrium, since the system may exercise a rather violent evolution. Apart from transport
models, mostly based on the quasi-particle approximation like Landau’s Fermi liquid
theory, there were only few attempts to discuss the issue of conserving approximations in
the context of the non-equilibrium field theory (see, e.g., [2,6,9]), which mainly considered
Hatree-Fock and T-matrix approximations. However, the general problem of constructing
conserving approximations in the non-equilibrium case and, in particular, beyond the
quasi-particle limit has not explicitly been addressed yet.

Alongside, the question of thermodynamic consistency is vital. If, as a result of a non-
equilibrium evolution, a system arrives at an equilibrium state, the non-equilibrium Green’s
functions should properly describe thermodynamic quantities and potentials, such that
thermodynamic relations between them are preserved. This problem is also relevant to the
thermodynamic Green’s function technique, as already considered by Baym [30]. Baym
demonstrated that any ®-derivable approximation is at the same time thermodynamically
consistent.

In this paper we re-address the above problems and extend the concept to the genuine
non-equilibrium case formulated on the closed real-time contour and to the inclusion of
classical fields, i.e. non-vanishing expectation values of the field operators. The generalized
scheme permits to construct self-consistent, approximate, coupled dynamical equations of



motion for the classical fields and Green’s functions of the system on the closed real-
time contour. The inclusion of classical fields allows to account for the phase-transition
phenomena or to describe the coherent dynamics of soft modes, much in the spirit of
hard-thermal-loop re-summations [34-36,13]. In this paper we confine the presentation to
the derivation of closed self-consistent approximations to the Kadanoff-Baym and classical
field equations. This constitutes the basis for various further steps towards classical-type
transport schemes through the gradient approximation, which will be presented in a forth-
coming paper [37].

The paper is organized as follows. In sect. 2 we briefly recapitulate the general equations of
motion and expressions for the conserved quantities on the operator level. The equations
of motion for the corresponding expectation values within the real-time closed contour
formalism are formulated in sect. 3. It is advantageous to use the concepts of generating
functionals, where the special functional @ plays a central role (sect. 4). The latter takes
the same status in the space of Green’s functions (two-point functions) and classical
fields (one-point functions), as the original Lagrangian on the level of field operators.
Subsequently, we formulate the diagrammatic representation for @ (sect. 5). We show
that any approximation, where all classical field sources and self-energies are @-derivable
in the sense of a variational principle, has the following properties: (i) it is self-consistent,
i.e. the equations close, (ii) it is conserving, i.e. it provides conserved current and energy—
momentum tensor, which are identical to the corresponding Noether quantities (sect.
6), and (iii) it is at the same time thermodynamically consistent (sect. 7). In sect. 8
we discuss the low density limit at the example of an interacting T NA system [40]. Tt
illustrates how scattering phase shifts can provide the second-order virial corrections of
the thermo-dynamic potential and the self-energies in a consistent way in the sense of
the @-derivable scheme. In the summary, we discuss the main results and briefly prospect
possible applications of the derived formalism. Appendix A contains some helpful relations
for contour functions, the list of diagrammatic rules is deferred to the Appendix B.

Except for the example in sect. 8 and the appendices, the presentation of the general
concept in the main part of the paper is restricted to the case of relativistic scalar bosons.
This allows us to formulate the basic ideas in simple and transparent terms. Generaliza-
tions to vector mesons and relativistic fermions or to non-relativistic kinematics, as well
as to multi-component systems, as discussed for the example in sect. 8, and to interac-
tions with derivative coupling are straightforward, though in some cases technically more
involved.

2 Prerequisites

We consider a system of relativistic scalar bosons, specified by the free Klein-Gordon
Lagrangians [41]
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~0 > (au¢ LM —m’ @2) for neutral bosons,
2= (2.1)
0,0t 0" —m?¢'o for charged bosons,

where ¢(z) and ¢'(z) are bosonic field operators. The convention of units is such that
hi = ¢ = 1 and symbols for field operators carry a hat. The interaction Lagrangians
Zm{$} (for neutral bosons) and .Z™{ ¢, ¢t} (for charged bosons) are assumed to be
local, i.e. without derivative coupling. Under these conditions the Lagrangians are charge
symmetric. Charges are understood as the electric charge, strangeness, iso-spin, etc.

The variational principle of stationary action leads to the Euler-Lagrange equations of
motion for the field operators

B acéﬂint

—S,p(x)=J(z) = TZ)T’ where S, = —9,0" —m?, (2.2)

and similarly for the corresponding adjoint equation. Thereby, the j(:r:) operator is a local
source current of the field ¢, while S, is the differential operator of the free evolution with
the free propagator A%(y, z) as resolvent.

Invariances of the Lagrangian provide a set of conservation laws, the most prominent
of which are those for the energy—momentum and certain currents. In addition to the
standard canonical energy—momentum tensor [41], different representations of this ten-
sor both in classical case and for the operator form in quantum field theory have been
considered [42,43]. Using the Euler-Lagrange equations of motion and the definition of
the source current (2.2), one can show that the following form also defines a conserving
energy momentum tensor

a 1 * ~y 1\ * N " n n "
O (o) =1 [((B)" +8,) (@) +85) (4T (@) w) + 6 () @)]
_|_guu (gint(x) _ Apot(x)) , (23)
where
1/2  for neutral bosons,
ph =104, and k= (2.4)

1 for charged bosons.

We use this expression, since it represents the operator form of the energy-momentum
tensor later derived at the expectation value level from the invariance of the @-functional
(see sect. 6). For notational simplicity, expression (2.3) and similar expressions below,
which appear symmetric in d; and dAﬁ, are written in such a way that they directly apply
to complex fields with k = 1. For real fields kK = 1/2 and the corresponding expressions are



obtained by equating $T = qAS Above, we have introduced the operators of the interaction
energy density £™(z) of the system, which accounts for the total interaction part of the
energy density, and the potential energy density £P°*(x), both given as

gint(x) _ _gint(x),
~ 1 ~ ~ ~ ~
EP(2) = —5 (T1(2)d(2) + 6'(2) T (1)) .
For a multi-component system, the latter defines the sum of the potential energies per

volume of any particle with the current J(z) in the field ¢(z) induced by the other
particles in the system.

For specific interactions there are simple relations between £ (z) and EP°'(z). E.g., if all
vertices of 2™ have the same number 7 of field operators attached, one simply deduces

E (x) = =EP(x), e.g. for 2= >l< = ~v=4. (2.5)

As shown, for two-body interactions or the ¢*-theory, where v = 4, the interaction energy
is half of the potential energy.

If the Lagrangian is invariant under some global transformation of charged fields (with
the charge e), e.g.,

~ ~

b(x) = e o) bi(a) = ol (@), (2.6)

there exists a Noether current defined as [41]

-~ ~ ~ ~

j' (@) = ; (@) +8L) ('@ o) + o) o' ()] _ | (2.7)

=y

which is conserved, i.e. 8#3'” = (. This current naturally vanishes for the neutral particles
(e =0).

One may also define the tensor M**?  which is associated with the Lorentz invariance of

the Lagrangian and provides the angular momentum conservation. However, we do not
treat this tensor in this paper, since it is of no common use in kinetics.

3 Real-Time Contours

In the non-equilibrium case, one assumes that the system has been prepared at some
initial time ¢y described in terms of a given density operator pg = >, P, |a) (a|, where



the |a) form a complete set of eigenstates of pg. All observables can be expressed through
n-point Wightman functions of Heisenberg operators A (), ..., O(t,) at some later times

(O(tn) ... B(ta) A(t2)) =Tr Oft,) .. ( 2) A(ty) polto)
—ZP a| O B(ts) A(t1) |a) . (3.1)

Note that due to the fixed operator ordering for Wightman functions, they are analytic
and permit analytic extensions to complex-time arguments.
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Figure 1: Closed real-time contour with two external points x,y on the contour.

The non-equilibrium theory can entirely be formulated on a special contour—the closed
real-time contour (see figure 1) with the time argument running from ¢, to oo along the
time-ordered branch and back to ¢y along the anti-time-ordered branch. Contour-ordered
multi-point functions are defined as expectation values of contour ordered products of
operators

-~

(TeA(21)B(xo)...) = <%Al(x1)él(x2)...e><p {i/c?ilntdx}>, (3.2)

where 7¢ denotes the special time-ordering operator, which orders the operators according
to a time parameter running along the time contour C. The Lh.s. of eq. (3.2) is written in
the Heisenberg representation, whereas the r.h.s. is given in the interaction (I) represen-
tation. Here and below, the subscript ”I” indicates the interaction picture. Note that at
this level the contour is not a contour in the complex plane, as the figure may suggest, but
rather it runs along real time arguments. It is through the placement of external points
on the contour that the contour ordering obtains its particular sense.

In certain calculations, e.g., in those that apply the Fourier and Wigner transformations,
it is necessary to decompose the full contour into its two branches—the time-ordered and
anti-time-ordered branches. One then has to distinguish between the physical space-time
coordinates z, ... and the corresponding contour coordinates z¢ which for a given x take
two values 2~ = (z,) and 2% = (z) (u € {0,1,2,3}) on the time ordered and anti-time
ordered branches, respectively (see figure 1). Closed real-time contour integrations can
then be decomposed as



0 to oo 0
/dxc...:/dx_...+/dx+...:/dx_...—/dx+..., (3.3)
C to o] to to

where only the time limits are explicitly given. Thus, the anti-time-ordered branch acquires
an extra minus sign if integrated over physical times. For any two-point function F', the
contour values on the different branches define a e x 2-matrix function

Fx,y) = F(a'y'), ij€{-+}, (3.4)

depending on the physical coordinates (z,y). The contour d-function is defined as

y o (10
0 (1, y) = de(a',y) = 0% (x —y), 0¥ = (3.5)
01

where the matrix ¢* accounts for the integration sense on the two branches. For any

multi-point function, the external point z,,,,, which has the largest physical time, can
be placed on either branch of the contour without changing the value, since the contour-
time evolution from z_ . to z;}  provides unity. Therefore, one-point functions have the
same value on both sides of the contour. Due to the change of operator ordering, genuine
multi-point functions are discontinuous in general, when two contour coordinates become
identical. The corresponding properties of two-point functions and their equilibrium rela-

tions are summarized in Appendix A.

Boson fields may take non-vanishing expectation values of the field operators ¢(z) = <QA5>,
called classical fields. The corresponding equations of motion are provided by the ensemble
average of the operator equations of motion (2.2)

Sao(z) = =J(x), or ¢(z)=¢"(x)— /dyﬂo(fv,y)J(y)- (3.6)

Here J(x) = <j(x)>, while ¢°(z) = <qA51(x)> is the freely evolving classical field which
starts from ¢°(ty, z) at time #,. Thereby, A%(z,y) is the free contour Green’s function

i4%(z,y) = (Tedi (@) B1(y)) — 6" () (6 (9))" (3.7)

which resolves the equation

S, A% (z,y) = bc(,y) (3.8)

on the contour, where dc(z,y) is the contour d-function (3.5). The reader can easily
verify the equivalence of the contour form (3.6) with the standard retarded classical field



equation due to eq. (A.2) and the fact that J(x) and ¢(z) are one-point functions, which
have identical values on both sides of the contour.

Subtracting the classical fields via b=+ @, the full propagator in terms of quantum-
fluctuating parts @ of the fields is defined as

iA(,y) = (Tep(@) 2 ) = (Ted (@) 8 W) - o) () = (Ted@)d' () . (39)

Here and below, the sub-label ”¢” indicates that uncorrelated parts are subtracted. In
terms of diagrams it implies, that the corresponding expectation values are given by sums
of entirely connected diagrams.

Averaging the operator equations of motion (2.2) multiplied by ¢'(y) and subtracting
classical field parts one obtains the equation of motion for the propagator

SpA(@,y) =de(z,y) +1(Te T ()¢ (y)) . (3.10)

which is still exact and accounts for the full set of initial correlations contained in po.
In order to proceed further, one may suggest that the typical interaction time 7, for
the change of the correlation functions is significantly shorter than the typical relaxation
time 7o, Which determines the system evolution. Then, describing the system at times
t —ty > T, one can neglect the initial correlations which are supposed to die out
beyond 7y in line with the Bogolyubov’s principle of weakening of initial correlations !
[44]. As a result, one can apply the standard Wick decomposition dropping higher order
correlations for the driving terms on the r.h.s. of both equations of motion (3.6) and
(3.10). Then both driving terms can be expressed as functionals solely of classical fields
and one-particle propagators rather than of higher order correlations. The so obtained
description level is then irreversible in general. Thus,

i<Tc5(x)@*(y)>c=i<Tc leXp {i/dzi”if“} jl(x)@I(y)D
0

one recovers Dyson’s equation in the differential form

1 Actually, considering a dilute gas limit, Bogolyubov suggested the weakening of all the cor-
relations, whereas we use a weaker assumption on the weakening of only short-range (~ Tint)
correlations.



SoA(x,y) = e (,y) + /dz]](x, DA(2, ), (3.12)

(S))" Alw,y) =dea,y) + [ dzA(e, ) (z.y). (3.13)

The resolvent property of the free contour propagator A° permits to write down these
equations also in the integral form, which then include the appropriate initial and bound-
ary conditions through the inhonogenouos A° term in the usual manner. Thereby causality
is incorporated through the contour formulation. Above II denotes the proper self-energy
of the particle. Since we have separated the full propagator in (3.11), —ill has to be
one-particle irreducible (label 1), i.e. the corresponding diagram cannot be split into two
pieces which separate = from z by cutting a single propagator line. Obviously, IT in (3.11)
may have singular (d-functional) one-point parts and genuine two-point parts

8%1.2m (1) L

—ill (z,2) = <7E 93031 (3.14)

here given in the Heisenberg picture.

In diagrams free and full classical fields are represented by ”pins” with cross and ”o-cross”
as heads, c.f. (3.15), while free and full propagators are given by thin and thick long lines,
respectively. Complex fields carry a sense, the arrow always pointing towards the d; in the
contour ordered expressions. In diagrammatic representation, the classical field equations
(3.6) and Dyson equations (3.12) are then given by

®-x 4 , (3.15)

= + —ill (3.16)

A
|

with the one- and two-point functions i.J(x) and —ill (z,y), as driving terms.

The averaged values of conserved quantities can be expressed in terms of the one- and two-
point functions introduced so far. Averaging the operator value of the energy-momentum
tensor of eq. (2.3), we arrive at

o (r) = (0) = L (30" + 85) (0)" +9%) (5" ()6 0) + ()]

+g" (EM(x) - £7Y(x)) | (3.17)

where £t (z) = — <.,2A”i“t (x)>, and the potential energy density becomes



£ (x) = (7 (x)) = %{ — [*(@)¢(x) + J(2)¢" ()]
+ i/dz 11 (z,2) Az, 7) + A(:E,z)]](z,x)]} . (3.18)

due to egs. (2.5) and (3.11). Note that we do not prescribe any contour indices to z in the
integral term of £P°Y, since actually this term is independent of the contour placement of
x due to discontinuity property (A.4). The Noether current (2.7) takes the form

~

)= (7 =e (02 + ) (9 @otw) +iavm.))] (319

=y

In order to keep the expressions ©* and j* charge symmetric we have introduced the
symmetric quantities

F¥™(z,y) = = (F(a",y*) + Fz*,y ), (3.20)

N | —

where F(z,y) is any two-point function on the real-time contour. This is not automat-
ically provided by the variational methods leading to the Noether energy-momentum
tensor and current, as they only provide the vanishing of the corresponding divergence.
The integrated form of the conserved quantities has to be adjusted such that charge sym-
metry is maintained, thus describing contributions of both, particles and anti-particles, on
equal footing. This way one properly accounts for the modification of the vacuum polar-
ization in the medium, since the vacuum-polarization energy coincides with the zero point
energies of the field oscillations. The corresponding divergence has still to be appropriately
renormalized.

4 Functionals W, I' and ¢

The standard generating functional W for connected n-point functions with external
one-point sources will be extended in three ways. First, it will be used on the real-time
contour. Secondly, in our non-equilibrium case we also include external bilinear sources
K(z,y) [31]. In addition we introduce a space-time dependent interaction scale A(z) into
the variational concept, which scales interaction vertices, i.e.

L3 = M) 2™ {61 (2), (@)} . (4.1)

The latter provides the clue to the proof of the diagrammatic representation for the
auxiliary functional @ in terms of closed diagrams. The generating functional then reads

10



Win, K, A} = —iln <exp [—i/dxf[?] T exp {i/dx (A(x).:?ilm
¢ ¢

+ K

1) 31+ (@) ) +1 [ dy$I<x>K<x,y>$I(y>D }> , (42)

with the free Hamiltonian of the system in the interaction representation PAI? As already
introduced, the factor k takes the value of 1/2 for real fields thereby equating ¢ with
$T, else it is 1. Since the functional dependence concerns only the external sources, the
operator part can be cast into different pictures, such as the Heisenberg or interaction
ones. The latter establishes the perturbation expansion. Furthermore, (...) denotes the
trace over all states, which includes the ensemble average over the density operator p(t)
at initial time ¢y. Accordingly, multi-point functions are defined as ensemble averages of
field operators with py (cf. eq. (3.2)).

While n-th order functional variations of (4.2) with respect to n generate the connected
n-point functions, the first functional variation with respect to K(x,y) gives the total
two-point propagator including disconnected pieces

SW {0, K. A} = s [ [ o @on(a) + o(@)on’ (@)

C

+ / dz / dy [6(x)¢" (y) + A(x,ynéK(y,x)] - / dzEP (2)5M(x) /A (x). (4.3)

Here, ¢ and A denote the classical fields and propagators, respectively, which now implic-
itly depend on A. The term, resulting from the variation of the interaction scale function
A(z), defines a one-point function &(z) = — <.§?i§t(:ﬁ)>, which agrees with the corre-
sponding expectation value of (2.5) but for the scaled Lagrangian.

The step towards a functional that depends on the classical fields ¢ and propagators
A rather than on the external sources 7 and K is provided by the double Legendre
transformation of W to I'{¢, ¢*, A, A} given as [31]

I'{p,¢". A, N} =W{n K, \} — & {/ dz [*(z)d(x) + n(z)¢" (z)]
+/dxdy [¢(y) 9" () + A(y,x)]K(y,:v)} - (4.4)

Here, the sources n and K have to be expressed through ¢ and A. Apart from the d\
dependences, the functional variation

11



5T 6,67, 4,0} = —~ [ [ dw i (@)56(z) + n(2)50" (2]

C

+ / dz / dy [66(y)¢" (x) + ¢(y)0¢" (x) + 6 A(y, )] K(y,x>] - [ dugi (@) (4.5)

vanishes at vanishing external sources n and K. The latter together with the condition
A = 1 determines the physical solution. Note also that for the physical solution, i.e. at
n = K = 0, the values of the two functionals I' and W are identical. Indeed, the variations

5T )6¢ =0, 6T /6¢* =0, 6T /6A =0 (4.6)

provide us with equations of motion for classical fields (3.6) and the complex conjugated
one, as well as Dyson’s equation (3.12).

Similarly to equilibrium case treated by Luttinger, Ward [31], and later by Cornwall,
Jackiw and Tomboulis [33], which included mean bosonic fields, we represent our I" func-
tional related to the real-time quantities in the form

I{6.6". A0 ="+ [ da.2°{6.0,0}
C
+ik [1n (1—®A°®H) +@A@U] + & {p, 0", AN}, (4.7)

this way defining the auxiliary functional @ {¢, ¢*, A, A} 2. Constructing @ solely in terms
of the fields and one-particle propagators complies with the assumption of ignoring higher
order correlations. The I'® and .Z° parts, where .#° is the classical free Lagrangian
function, represent the non-interacting parts of I'. The I'® term solely depends on the
unperturbed propagator A° and hence is treated as a constant with respect to functional
variations of I". The In(...) is understood in the functional sense, i.e. by a series of n-
folded contour convolutions, denoted by the ®-symbol, formally resulting from the Taylor
expansion of the In(1+ ) at x = 0. This In-term accounts for the change of I" due to the
self-energies of the particles. The I'’, .#° and In terms in eq. (4.7) account for the one-
body components in I'. The remaining A® Il and & terms correct for the true interaction
energy part of I'. As shown in the next section, the form (4.7) presents a re-summation
of the corresponding perturbative expansion of the value of I" (c.f. eq. (4.4)) in terms of
full classical fields and full propagators.

The specific form (4.7) has important functional properties, which provide us with a
number of useful relations. Functional variation of I" {¢, ¢*, A, A} in the form of eq. (4.7)

2 Note that we have placed all D‘?int—dependent parts into @, i.e. our @ includes zero and one-
loop terms and therefore differs from the auxiliary quantity I'y defined by Cornwall et. al. [33]
which is void of zero- and one-loop terms. There these terms are rather included in defining a
full classical Lagrangian that depends on interacting classical field and tad-pole terms.

12



leads to

3T (6,6, A} = { [ 42 [56()(.)°6" (@) + 56" ()5, (43)
—i (G)m ® A% — @A) @I + ic/dxdyﬂ(x,y)(SA(y,x)} +00{p, 0", A, \}.

Here 611 is understood as a variation induced by 0A4, d¢, d¢*, and J\, respectively. For
physical solutions the variations (4.6) of I" vanish. They require the round bracket term in
(4.8) to vanish, which provides the Dyson equation on the contour, and from (4.5) further
imply the following variational rules for the auxiliary @ functional

5 {6,0", AN} =k {/ dz [T (2)66(x) + J(2)8¢" ()]

_i / dxdyﬂ(x,y)&A(y,x)} - / Az ()0 (), (4.9)
C c
or
P
iJ(x)= , 4.10
)= 5559 (110
Sid 2 for neutral bosons,
—iH(:z:,y):é,T X (4.11)
iA(y, z) 1 for charged bosons,
. P
_gint () = _ 4.12
&M (x) Y0 (4.12)

The virtue of the functional form (4.7) is that these requirements can be met simultane-
ously and that there exists a unique form of @, for which the three derived quantities—the
one-body source current .J(z), the two-body self-energy —iIl (z,y) and the interaction en-
ergy density £ (x)—take their physical values at the physical solutions of the equations
of motion (3.12) and (3.6). This will become clear in more detail in the next section, where
we discuss the diagrams defining the various functionals. From (4.10) and (4.11) ¢ can be
seen as a generating functional for the source terms J of classical fields and self-energies
IT for the set of Dyson equations, respectively. Therefore, approximation schemes can be
defined through particular approximations to . Thereby, the invariance properties of @
play a central role to define conservation laws for the approximate dynamics.

It is important to emphasize that we do all functional variations independently of any place
on the contour. Thus, different contour times are considered as independent, even though

13



they may refer to the same physical time?®. In principle, all variational considerations
given in this section apply to any kind of time contour, even to non closed and complex
ones as well as to any operator p, defining the averaging (...) = Tr{... p,} including the
unit operator, as used in Matsubara’s imaginary-time formalism. For a particular choice
of p, and of a contour the physical values of W and I' are identical for the corresponding
physical solutions along this contour. In the imaginary-time method the value I' = W
takes the meaning of the thermodynamic potential (c.f. sect. 7). In the non-equilibrium
closed real-time formalism, for which Trp, = 1, the physical values of W and I' trivially
vanish, i.e. W =1 = & =0 for physical solutions of A, ¢, ¢* on the contour.

An important comment must be given at this stage. One should clearly distinguish be-
tween the functional form of a functional, which acquires its meaning through variational
methods, and the physical value that functional takes once the physical solutions of the
equations of motion are inserted. For instance, two functionals W and I' are completely
different in their functional meaning, while they take the same physical value for the
physical solution. Therefore, for all functionals the functional dependences are explicitly
given in braces. Our strategy below will be first to perform general variations of I and
&, allowing non-physical values of A, ¢, ¢* and A, and only then to put them to their
physical values. This way, a number of important relations between Green’s functions,
self-energies and mean fields will be obtained.

5 Diagrams for I', & and £i"(x)

~ [ dag(a) = [Aj—Arw{A},qﬁ*{A},A{A},A}] _ [Aa%w, s an| 6

A=1 A=1

where now A is treated as a global scale parameter (note that only a partial derivative is
applied to @, i.e. the ¢, ¢* and A values are kept constants.). In the perturbation theory,
the diagrammatic rules to calculate the one-point function £™(z) are straightforward

—i&M(g) =1 <7{;.§‘Im(:c) exp [i/d:c'.ﬁ”if‘t(:r')] > =Y : (5.2)

LN

C

Here the diagram symbolically denotes all connected (label ¢) closed perturbation-theory
diagrams generated by expanding the exponential function in (5.2). The full dot denotes

3 The fact that for the physical solutions the components of A on the different branches of
the contour are not independent (cf. (A.2)), has no importance for the variational procedure.
The reason is that rules (A.2) only apply to the physical A and ¢, which are provided by the
stationary “points” of the variational principle, i.e. solving the equations of motion (3.6), (3.12)
and (3.13).
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the external point 2 which is not integrated out. Integrating (5.1) with respect to A, we
define the quantity il" given by the following perturbative diagrammatic representation

ir{e®, ¢, A% \} = iFU{AO} +i/dx$0{¢0,8u¢0}+zni : (5.3)
c ny 1A

C

where the integration constants have been chosen such that for physical solutions I' = I'.
One can see that each diagram contributing to I' has to be weighted with its inverse
number of vertices 1/n,, due to the formal A-integration of (5.2). It is important to realize
that due to these global factors such a set of diagrams is not resumable in the standard
diagrammatic sense * . Also I in the form of eq. (5.3) is a functional of ¢°, ¢%*, A%, X rather
than of ¢, ¢*, A, A\, as required for I' and @. However, we can arrive at this functional
dependence of I' as follows. The expression (5.2) for —i£™(z) can be re-summed and
entirely expressed in terms of full classical fields and full propagators. The re-summed
diagrams are then void of any self-energy insertions and therefore have to be two-particle
irreducible

—iEM(z) =" : (5.4)
" c2

Diagrams of class ¢2 cannot be decomposed into two pieces by cutting two propagator
lines. The formal integration of the last equality in (5.1) with respect to A keeping ¢ and
A constant provides the diagrammatic expression for @ in terms of full Green’s functions
and classical fields. Therefore, il" {¢, ¢*, A, A} can be expressed in terms of the following
diagrams (c.f. eq. (4.7))

i {4, 0%, 4,\} =il {4%) +i/d:c.$0{¢, 0,6}
C

1
+k — (-in +y— : (5.5)
ny nx
c2
—1n(1—®AU®H) — oA +id

Here ny counts the number of I insertions in the ring diagrams providing the In-terms,
while for the closed diagrams of @ the value n) counts the number of vertices building

4 Diagrammatic re-summation implies that sub-diagrams with the same external structure (i.e.
same number of external points and types of propagators to be attached at each external point)
can be summed up to give a total re-summed expression that can then be embedded into more
complicated diagrams, e.g. self-energy insertions can be re-summed to full Green’s functions.
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up the functional @. Contrary to the perturbative diagrams of iI', c.f. eq. (5.3), here
the diagrams contributing to @ are given in terms of full propagators A and full time-
dependent classical fields ¢. As a consequence, these diagrams have to be two-particle
irreducible (label ¢2). The latter property is required because of the re-summations of
EM(z). This also matches the diagrammatic rules for the re-summed self-energy I7(z, ),
which results from functional variation of @ with respect to any propagator A(y, ). In
graphical terms, this variation is realized by opening a propagator line in all diagrams
of @. The resulting set of thus opened diagrams must then be that of proper skeleton
diagrams of I in terms of full propagators, i.e. void of any self-energy insertion.

The diagrammatic rules for @, £™(x), J and IT are determined by the following steps:

(a) For all bosonic fields in i.,@i“t, replace d; by ¢ + ¢ in order to account for the classical
fields;

(b) consider all possible pair contractions of the field operator @(x) with @f(y) in the
formal expressions (5.6)—(5.9) given below and replace them by iA(z, y);

(c) keep only those terms that correspond to two-particle irreducible diagrams for @ | i.e
which cannot be split into two pieces by cutting two different propagator lines.

Further details are given in Appendix B. The diagrams of i¢, —i€®(z) , iJ(z) and
—ill(x,y) are then generated by applying the above general rules to the following formal
expressions

6= <Tc exp (i/dx'iﬂim(:p')) >

:Z /dxl dzy, <7Zlgmt($1) i"?im(%»zcm}’

_igint (g :< Tl 2 (2 exp( / da' 2™ (5 ))> , (5.7)

2c{A}

2c{A}
= <7Z exp ( /dx L (x ))> : (5.8)
2c{A}
—ill (z,y) = <%m exp (i(j/d:r'.ﬁ”int(:r')) >QC{A} : (5.9)

where the sub-label 2¢ {A} refers to the above point (c).

As an example, we quote the diagrams in neutral scalar quS4/4! theory. The functional @
is given by the following expressions
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(5.10)

where only the terms up to two vertices are explicitly presented. In terms of diagrams
(c.f. also Appendix B) we get

H &= 5] 4] (5.11)

The 1/n, factors are explicitly given, while the combinatorial factors according to rule (vii)
in Appendix B are given in square brackets below each diagram. Functional derivatives
with respect to ¢ (pins) and propagators (full lines), c.f. eq.(4.9), determine the source
J(z) of the classical field and the self-energy IT(zx,y), respectively,

wo-sor (P e

5] k

]
(
—ill(z,y) = ®b’® + Q + @ + +...
| )

[ El [5
Small full dots define vertices which are to be integrated over, while big full dots specify

the external points = or y; the first two diagrams of IT(z,y) give the singular dc(z,y)
parts arising from classical fields and tad-poles.

1
2

5.12)

6 @-Derivable Approximations and Invariances of &

The expressions for W, I' and @ given so far are exact and represent a convenient for-
mulation of the theory in terms of full propagators and self-energies. However, for any
practical calculation one needs to truncate the scheme. We consider so-called @-derivable
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approximations, first introduced by Baym [30] within the imaginary time method. Such
approximations are constructed by confining the infinite diagrammatic series for @ either
to a set of a few diagrams or to some sub-series of diagrams. Note that the approximate
®@rrr) jtself is constructed in terms of “full” Green’s functions and “full” classical fields,
where “full” now implies that we have to self-consistently solve the classical-field and
Dyson equations with the driving terms derived from this ¢PP™) through relations (4.10)
and (4.11). It means that even restricting ourselves to a single diagram in @®PP) in fact,
we deal with a whole sub-series of diagrams in perturbation theory. Thereby, the term
“full” takes the sense of the sum of this whole sub-series. Thus, a #-derivable approxima-
tion offers a natural way of introducing closed, and therefore self-consistent approximation
schemes based on summation of diagrammatic sub-series. In order to preserve the sym-
metry of the exact @ with respect to permutations among 1.2 (z)...1.2" (z,) (see
eq. (5.6)), we postulate that ¢ complies with the original symmetries. As a consequence,
approximate forms of @(@PP™) define effective theories, where ¢(PP") serves as a generating
functional for the approximate source currents .J@P™)(z) and self-energies ITPP™) (g, )
(see egs. (4.10) and (4.11))

5i p(appr.)
.J(appr.) — 6.1
1 (1') 5 (¢(appr-)*(gj)) ) ( )
§iplappr.) 2 for neutral fields,
IRy (G DI P X (6.2)

- Gk (y, 7) 1 for charged fields,

which then are the driving terms for the equations of motion for the classical fields and
propagators. The approximate @ also provides the corresponding expression for £™ (see
eq. (4.12)). While ¢-functionals with only one internal point lead to the standard Hatree
approximation (tadpole insertions), which is entropy conserving, the approximation level
with two and more internal points for @ generate genuine transport terms, which are
entropy generating and for which an H-theorem can be derived in special cases [37].
Below, we omit the superscript “appr.”.Below, we omit the superscript “appr.”.

We now like to demonstrate that @-derivable approximations possess a number of remark-
able properties. For such approximations, the invariances of @ play as central a role as
the invariances of the Lagrangian for the full theory. Thereby, the variational principle,
where the interaction strength A(z), the classical fields ¢(z), and propagators A(z, y) can
be varied independently, provides a set of useful identities and relations.

A general invariance of @ is provided by the substitution z = x + &(x) for all integration
variables in the contour integrations defining @. The Jakobi determinant required for each
integration variable can be accommodated by a simultaneous change of the scale function
A(z) at each vertex. Thus, the simultaneous variation

¢(r) = oz +¢(x)),
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Az, y) = Alz +&(x),y+£(y), (6.3)
AMz) =1 = Ax) = det (6; + 2§“> . de. 0A(z) = %

T, ox,’

leaves @ invariant. This way, one deduces

oz, oz,

6q3:/<;{/d:1: [J*(x)aqﬁ(:r) N J(x)aqﬁ*(:c)] ()

0A(y, x)

— i/dxdyﬂ(a?,y) lT%f”(x) + %ix)f#(y)]} - /dxgint(x)g_il; =0. (6.4)

Interchanging x and y in the second I term in squared brackets, using partial integration
and that the transformation £(z) can be chosen arbitrarily, one obtains the following
relation

g
_ ic/dy [H(“’“’y)ma(f;x) N aAa(iy)H(%x)]} N (6.5)

This is the key relation to prove energy—momentum conservation. It has features similar
to a Ward identity, as it links derivatives of one-point functions with those of two-point
functions. The two-point function contribution to this expression is of type of eq. (A.5),
so that in eq. (6.5) the differentiations of the discontinuities indeed cancel out.

With the help of the equations of motion (3.6), (3.12) and (3.13), the divergence of the
kinetic term of the energy-momentum tensor ©# (3.17) can be cast into

20, (0" +5) ()" +25) (¢ @)0) +147(y,2)]

=y

= O0ug" €Y () + K { [J(2)0,¢" () + J*(2)0,¢()]

—i [ dz[lI(z,2) - 0 A(z,x) + O A(x, 2) - H(z,a:)]}

=0, {£7(z) - £™(x)} (6.6)

with the last line resulting from eq. (6.5). This is recognized as the energy-momentum
conservation law 0,0 (z) = 0 with the energy-momentum tensor given by the Noether
expression (3.17). Hence, the existence of a conserved energy—-momentum tensor is proven
for any @-derivable approximation.
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Along similar lines charge conservation can be proven, assuming that @ is invariant under
the following simultaneous variation of classical fields and propagators

B(z) = e N g(a), ¢'(x) = N @), Aley) = e AW Az, )N, (6.7)

Applying the rule (4.9) of the ¢ variation, to linear order in the phase A, one obtains

5= e/da: {J*(x)¢(x) ~ J(2)¢* (@)

+ ie/dy [T (z,y)Aly, x) — A(x,y)ﬂ(y,fv)]} [—iA(z)] =0, (6.8)

which implies the brace expression to vanish. Note that the integral term in the brace
expression is independent of the contour placement of the x variable due to discontinuity
relation (A.3) and, therefore, it is only a function of the physical value of z. By means of
equations of motion (3.6), (3.12) and (3.13), the divergence of the Noether current of eq.
(3.19) is seen to vanish

i0,5" = e {J*(fv)¢>($) - J($)¢*(fv)+i/dy [ (2, y) Ay, =) — Az, y)ﬂ(y,fv)]} =0,(6.9)

c

according to eq. (6.8). Thus, we have arrived at the current conservation for any ¢-
derivable approximation, which is invariant under (6.7).

Similarly, one may derive the relation, resulting from the Lorentz invariance of the &
functional, which permits to demonstrate the conservation of the angular momentum.
However, we do not consider it here, since the angular-momentum conservation is not of
practical use in kinetics. Further invariances generally depend on the properties of the
interaction vertices in the theory considered. An example is the invariance discussed in
the context of eq. (2.5) which now transcribes to the corresponding expectation values.

7 Thermodynamic Consistency

In the thermal equilibrium the density matrix is explicitly known, c.f. [45],

exp (—BH{p})

~eq _
P 7 ’

(7.1)

where 3 = 1/T is the inverse temperature, and Z is the partition function which is directly
related to the thermodynamical potential,
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2=-ThZ (7.2)

Since we deal now with thermodynamics, we have introduced the chemical potential x in
the conventional way, i.e. by adding to the Hamiltonian the relevant term

Alpy =0 - p [ @]), (7.3)
where ;j° is the time-component of the charged current eq. (2.7), now with e = 1.

We can use the same trick as that in the Matsubara technique, i.e. use the fact that the
equilibrium density matrix formally coincides with evolution operator in the imaginary
time. In the definition of the W functional (4.2) we explicitly write Trp®... instead of
(...). Thus, taking into account that I' = W at vanishing external sources, we arrive at
the following form of I' functional in equilibrium

1 N ~ .
rev{e,¢", A, u} = —iln ETrexp —i/dtH?{u} T exp i/dx.,?‘lnt : (7.4)

Ceq Ceq

with the integration contour Ceq now being the sum of the real-time Schwinger-Keldysh
contour (see figure 1) and the imaginary-time Matsubara contour, i.e. it starts from an
initial time t; goes to infinity, then back to this initial time and after that, to ¢, — i5.
Taking into account the fact that I' = 0 for the physical values of ¢, ¢*, and A, we obtain
for the value of the thermodynamic potential (7.2)

2{p,0*, A, u} = —T1In< Tr | exp —i/dtﬁ?{u} Te exp i/dx,?ilm : (7.5)

Ceq Ceq

where the integral over the real-time section of the contour gives zero. Hence, in eq. (7.5)
we can make the replacement

/wm:/a”. (7.6)

Thus, we have arrived at the proper thermodynamic representation of the thermodynamic
potential originally proposed by Luttinger and Ward [31]. Indeed, since all quantities
under the integral are analytically continued from the Schwinger-Keldysh contour to the
Matsubara contour, {2 is determined by the same expression as the I' functional (4.7)
but in terms of the Matsubara Green’s functions with the thermodynamic & functional
represented by the same set of closed diagrams. Thus, in the momentum representation
from eq. (7.5) we arrive at
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d3
219 ¢*,A,u}=—/d3x$°{¢, Oup} +THZ/d3«’1? 7:)93 exp (iwnn)

(2
x (_ In[—A(wn, p)] + H(wn,p)A(wn,p)> L by, 0, (T7)
where &7 = —iT @, w, = 2winT, and summation runs over Matsubara frequencies. In the

standard way (see, e.g., ref. [32]) by converting the w,-sum in eq. (7.7) into the energy
integral, this thermodynamic potential is also easily expressed in terms of the real-time
quantities (A.7) and (A.8) (in the rest frame of the system)

d*p
(2m)
X <—21m In [—AR(pU + io,p)] — ReA®D — AReHR> + &p,  (7.8)

2{0.¢". Ay == [ 5. 26,0,0} + [ Ao Lon(po — )

where p = (po, p) is the 4-momentum,

n(e) = [exp(e/T) = 1] (7.9)

is the thermal Bose—Einstein occupation number, and

A(p) = —2Im A%(p), T(p) = —2Im 11" (p) (7.10)

are the spectral function A and spectral width?® T, respectively, defined in terms of re-
tarded quantities, c.f. eq. (A.2). Note that the exact form of equilibrium distribution (7.9)
is a function of the particle energy only (which can be off-shell for particles with width),
rather than a function of momenta p through the on-shell energy momentum dispersion
relation, as often encountered in text books which deal with the quasi-particle picture.
Thus, the problem of the thermodynamic consistency can immediately be re-addressed
from the Schwinger-Keldysh approach to the Matsubara one. Within the Matsubara for-
malism, this problem was considered by Baym [30]. He has shown that any ¢-derivable
approximation to the thermodynamic potential is thermodynamically consistent. Hence,
we have proved that our @ derivable approximations to the I'-functional are also thermo-
dynamically consistent.

The stationary property of the I" functional (and, hence, of 2) with respect to variations
in full Green’s functions and classical fields, eq. (4.6), is the key feature that provides
the thermodynamic consistency. It implies that any derivative of the thermodynamic
potential with respect to any thermodynamic parameter like 3 or i is determined only by
the explicit dependence of {2 on these parameters, since the implicit dependences through
A and ¢ drop out due to the stationary property. Therefore, @-derivable approximations
preserve the corresponding thermodynamic relations as for the exact partition sum, and
thus provide thermodynamic consistency.

5 Please, do not confuse with the I'{...}-functional
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8 Virial limit

A particular simplification is obtained in the dilute density limit (virial limit). It has the
advantage that the corresponding self-energies of the particles and intermediate resonances
are entirely determined by two-body scattering properties, in particular, by scattering
phase shifts. We illustrate this at the example of the interacting system of nucleons,
pions and delta resonances, which has recently been investigated by Weinhold et al. [40].
Following their study we consider a pedagogical example, where the 7 N N-interaction is
omitted. Then with a p-wave m NA-coupling vertex among the three fields the first and
only diagram of @ up to two vertices and the corresponding three self-energies are given
by

@— HN—-m- ]LT—-@- HA—()\;(SJ)

Here the solid, dashed and double lines denote the propagators of NV, m and A, respectively.
In non-relativistic approximation for the baryons we ignore contributions from the baryon
Dirac-sea. Then the bare pion mass agrees with its vacuum value, while the nucleon and
delta masses require appropriate mass counter terms. The A self-energy IIn attains the
vacuum width and position of the delta resonance due to the decay into a pion and a
nucleon. The corresponding scattering diagrams are obtained by opening two propagator
lines of @ with the prominent feature that the m/N-scattering proceeds through the delta
resonance. Since in this case a single resonance couples to a single scattering channel, the
vacuum spectral function of the resonance can directly be expressed through the scattering
T-matrix and hence through measured scattering phase shifts

_l ‘[
s g .
where p = py + pr. Thus through (8.2) the vacuum properties of the delta can almost

model-independently be obtained from scattering data. Further details and extensions to
multi-channel and multi-resonance cases can be found in ref. [46].

\ 133 |2 = 4 sin’ 533(19) = vac(p)AvAac(p)a (8-2)

Y

For the multi-component system the renormalized thermodynamic potential including
vacuum counter terms, c.f. eq. (7.8), can be written® as

2 {A’TH AN) AA} =T Z FrTr {_ In [_Af(pﬂ + loap)] + AfHaR}TM + ¢T' (83)

a€{m,N,A} ’

6 We generalize the boson expressions (7.7) and (7.8) to the case multi-component system of
fermions and bosons.
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Here for any function f(p) the thermodynamic trace Tr{...}r , is defined as

Te{f(p)}ru (8.4)

= dV/ E ZeXp iwm) f (wm = 11, P) n— +0
W = 2mmiT (bosons)

d4 .
= :Fdf / W” po — p) 2Imf(po +1i0,p)  |w, = (2m + 1)@iT (fermions),

either expressed in terms of the Matsubara summation over frequencies w,,, or converted
into an energy integral over thermal occupations n(s) = [exp(¢/T) +1]"", of Fermi-
Dirac/Bose—Einstein type, c.f. eqs (7.7) and (7.8) above. The upper sign appears for
fermions, d is the degeneracy in that particle channel, and V' denotes the volume. Eq.
(8.3) still has the functional property to provide the retarded Dyson equations for the A%
from the stationary condition which we use in order to determine the physical value of {2.
For the particular case here one further can exploit that the value

Op =+k T Te{Ill,Ap}r,; for a€ {N,m,A} and & of form (8.1), (8.5)
valid for this & which linearly depends on all three propagators. Compatible with the

low density limit one can expand the Trln{—A} terms for the pion and nucleon around
the free propagators, and finally obtains

2ena = 2{Ar, Ay, Ar} ‘

stationary
= Q8 + 28 4+ TTr {In [~ AX (po + i0, p)| }Tu (8.6)
d'p _06
= Qftee | pfree 4 g va p4 63;439( P) In[1 —na (po — pa)] (8.7)
0

for the physical value of 2. Here the 2 are the free single-particle thermodynamic
potentials ", while pa and da = 16 are the chemical potential and degeneracy factor of
the A resonance, respectively. The last term in (8.7) obtained through (8.2), represents
a famous result derived by Beth-Uhlenbeck [47,48], later generalized by Dashen, Ma and
Bernstein [49] and applied to nuclear resonance matter in refs. [50,51,40,46]. It illustrates
that the virial corrections of the system’s level density due to interactions are entirely given
by the energy variation of the corresponding two-body scattering phase shifts 96/0py.

All thermodynamic properties can be obtained from {2 through partial differentiations
with respect to 7" and the p. The final form (8.7) may give the impression that one deals

T The appropriate cancellation of terms for the result (8.6) is only achieved, if one uses 2, i.e.
the partition sum of free particles with the free energy—momentum dispersion relation. Within
this model already on the vacuum level the nucleon would acquire loop corrections to its self-
energy which would lead to deviations between 2V2° and 027 as well as between the corre-
sponding propagators off their mass shell.
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with non-interacting nucleons and pions. This is however not the case. For instance the
densities of baryons and pions derived from (8.7) become

o éa!Qﬂ]VZk
PB = Blin

Z)JQWJVZX
Olir

free

= a4 pa + Peorrs (8-8)

free

= PN + pA + Peorrs Pr =

with

d*p d*p
PA = dA / WnA(pU - ,UA)AA(p): Pcorr = dA/ (27T)4nA(pU - /LA)Bcorr(p)a (89)

and pa = py + pr S . Here the density of deltas pa is determined by the delta spectral
function. The interaction contribution contained in the correlation density peo depends
on the difference between the phase-shift variation and the spectral function

0033 (po)
dpo

- Aalp) =2 | P8 g )] (510

Beoyr =2
CO. apo

Due to the fact that T'a(p) grows with energy and the real part of Aa changes sign at the
resonance energy, B.,; becomes positive below and negative above resonance, respectively.
It leads to an enhancement of both densities at low energies, i.e. below resonance and this
way to a further softening of the resulting equation of state compared to the naive spectral
function treatment ignoring the B, terms. This illustrates that an interacting resonance
gas cannot consistently be described by a set of free particles (here the pions and nucleons)
plus vacuum resonances (here the delta), described by their spectral function. Rather the
coupling of a bare resonance to the stable particles determines its width, and thus its
spectral properties in vacuum. At the same time the stable particles are modified due
to the interaction with the resonance. Only the account of all three self-energies in (8.1)
provides a conserving and thermodynamically consistent approximation.

Alternatively to the picture above, the properties of the system can be discussed entirely
in terms of the stable particles, i.e. the pion and the nucleon, thus eliminating the delta.
The thermodynamic potential is then still given by (8.7). This form is valid even without
intermediate resonances and the phase-shifts just account for the 7N interaction proper-
ties. Also the self-energy of the lightest particle in the system, the pion, can be obtained
from phase shifts by means of the optical theorem [52,53]. To linear order in the nucleon
density py one determines the pion self energy

da 2T pNn

H?T:47rpNF7rN(0):_d kd_
ﬂ N

2 sin 0336192, (8.11)

from the forward 7 N-scattering amplitude F,x(0). The degeneracy factors dy : d, : da =
4 :3:16 just provide the proper spin/isospin counting. This self-energy, which determines

8 In equilibrium p, has to be put to zero after differentiation.
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an optical potential or index of refraction, is attractive below the delta resonance energy
and repulsive above. It agrees with a related effect in optics, where a resonance in the
medium causes an anomalous behavior of the real part of the index of refraction, which
is larger than 1 below the resonance frequency and less than 1 above the resonance.
Thus, absorption, e.g. by exciting a resonance, is always accompanied by a change of the
real part of the index of refraction of the scattered particle. The @-derivable principle
automatically takes care about these features.

As has been discussed in [54], the corrections to the system’s level density (last term in
(8.7)) can also be inferred from the time shifts (or time delays) induced by the scattering
processes. From ergodicity arguments [54] one obtains for a single partial wave

0
8—])(] (N]evel (pO) - ngsgl (po)) = Ttorward T Tscatt. = Tdelay

J .. . 0033 0033
— 92— [8in 33 COS O33] + 4 8in? G35 —— = 22 8.12
0 [ 33 33 33 0 o0 ( )

Here the forward delay time 7¢o warq is identical to the change of the mean free propagation
time in between successive scattering due to the change of the group velocity induced by
the real part of the optical potential, c.f. (8.11). The scattering time 7y, finally results
from the delayed re-emission of the pion from the intermediate resonance to angles off the
forward direction.

Similar considerations as presented in this section apply for example to the interacting
mp-meson system, e.g. on the basis of a renormalizable hidden gauge model [55].

9 Conclusion

With the aim to develop self-consistent approximations to quantum transport we inves-
tigated the @-functional method introduced by Luttinger and Ward [31] and later used
by Baym [30]. We have employed functional methods for Green’s functions within the
formalism of non-equilibrium Green’s functions on the real-time contour, developed by
Schwinger, Kadanoff, Baym and Keldysh [1-3].

In diagramatic terms the main quantity, the functional &, is determined by the sum of
all closed (i.e. without external points) skeleton diagrams in terms of classical fields and
full Green’s functions on the real-time contour. It is a generating functional which al-
lows all important quantities of a system (such as sources of classical fields, self-energies,
interaction energy, etc.) to be derived by respective variations of the ¢ functional. There-
fore this @ functional plays a central role in the space of classical fields and full Green’s
functions on the contour similar to that of the interaction Lagrangian on the operator
level. Our treatment extends the definition of the @ functional to any non-equilibrium
system including non-vanishing classical bosonic fields. This last generalization allows to
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self-consistently describe the dynamics of both the order parameter (the classical field)
and fluctuations on equal footing, e.g. in the theory of phase-transition phenomena.

The advantage of the @ functional is that we may formulate various approximations at
the level of @, thus defining so called ®-derivable approximations. In particular, we may
construct effective theories right at the level of Green’s functions and effective vertices.
These approximations possess some important features: they respect exact conservation
laws on the level of expectation values (with the Noether values for the conserved quan-
tities) and have a proper thermodynamic limit. Note that other approximation schemes,
e.g. at the level of self-energies, far not always possess such properties.

The question of consistency becomes especially important for a multi-component system,
where the properties of one species can change due to the presence of interactions with
the others and wice versa. The ”wvice versa” is very important and corresponds to the
principle of actio = re-actio. This implies that the self-energy of one species cannot be
changed through the interaction with other species without affecting the self-energies
of the latter ones also. The @-derivable scheme offers a natural and consistent way to
account for this principle. Within thermodynamic considerations this has recently been
considered for the interacting pion—nucleon—delta-resonance system, where the coupling
to the delta resonance leads to a softening of the pion modes below the resonance mass
[40], as we have discussed it in sect. 8, and for a relativistic QED plasma in [56]. We also
expect a consistent description of chiral o-, 7- condensates together with fluctuations, as
an immediate application of our results to multi-component systems.

For the relativistic scheme considered here we argue that a careful construction of con-
served quantities requires symmetric expressions in terms of A=+ and A*~ Green’s func-
tions (A< and A~ in the Kadanoff-Baym notation, respectively). This is in contrast to
expressions only involving A~" Green’s function, which are often used in the literature.
These symmetric expressions describe contributions of both particles and anti-particles
on equal footing, as well as take proper account of modifications of the vacuum polariza-
tion in the medium. Of course, these symmetric expressions still require a proper vacuum
renormalization to be done in any actual calculation.

The dynamical equations of motion discussed within this paper are still on the level of
Dyson’s equation, i.e. they are time non-local with two time arguments for any two point
function formulated on the non-equilibrium time contour. As initial condition they require
the statistical operator be given at initial time ¢;, a circumstance which may not be very
practical, since one may like the initial conditions rather be formulated in terms of the
Green’s functions themselves. There are two simplifying cases where the initial conditions
can be formulated easily. Both require the system to be stationary for a certain while
prior to the genuine non-equilibrium dynamics. This effectively pushes the initial time
to back to —oo. The first case is realized in collision processes, where two complex ob-
jects in a stationary state, generally the ground state, eventually collide. This situation
is relevant to the problem of heavy-ion collisions which we are mostly interested in. The
initial configuration consisting of two ground-state nuclei incident on each other can be
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described in terms of casual finite-density Green’s functions (e.g., see [57,58]) which then
should be translated into the contour Green’s functions by means of relations (A.1). The
second situation is realized by systems prepared in thermodynamic equilibrium within
some confined volume, which in the course of time are driven out of equilibrium by an
external perturbation. In this case, mostly applying to condensed matter physics, the sys-
tem is no longer closed and an external perturbation has to be included in the dynamical
equations of motion with corresponding explicitly time-dependent external terms for the
conservation laws, while the @-derivable properties discussed here still refer to the inter-
nal motion of the system. In this case the stationary initial situation can be calculated
by the Matsubara formalism, which then has to be transformed to the corresponding real
time form, e.g. by means of identity (8.4). The finite volume conditions have to be im-
posed during the entire non-equilibrium evolution. Such conditions are quite complicated
already in the Boltzmann kinetics (e.g., see [59]) and have to be formulated separately in
each particular case. Note that in both cases the initial stationary configuration should
be calculated at the very same level of ¢-approximation as the non-equilibrium dynamics
itself.

Apart from the Hatree level, which implies truncating @ at the one-time-point level, the
resulting contour Dyson equations of motion are not as practical yet for numerical ap-
plications. Still, the here presented scheme of constructing self-consistent approximations
provides a solid basis for the derivation of suitable kinetic equations which apply beyond
the limitations of the quasi-particle approximation. In that case the time non-locality is
transformed into a spectral distribution in energy by means of a time Wigner transfor-
mation. Such generalized transport schemes respect parts of the quantum nature of the
particles and, in particular, take due account of their finite mass-widths. The finite mass-
width may be either an inherent vacuum property of the particle (e.g. resonance) or may
be acquired by a stable particle in a dense environment due to frequent interactions. In
the case of nuclear collisions at intermediate (~ 1 GeV /nucleon) to ultra-relativistic ener-
gies, for example, one encounters mean single-particle energies in the range of the typical
temperature of 7' = 50 - 200 MeV. Important resonances, like the delta-resonance or the
rho-meson, have decay widths beyond 100 MeV, while typical collision rates estimated
from presently used quasi-particle transport schemes are also in the order of 7. These
circumstances definitely prevent quasi-particle based transport codes from providing re-
liable results for such collisions. The main steps in the derivation of self-consistent and
numerically tractable transport equations for particles with finite width are fomulated
and will be published in a forthcoming paper [37], brief accounts are given in [38,39].
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APPENDICES
A Contour Function Relations

For completeness we give all relations both for fermions (upper sign) and bosons (lower
sign). Due to the change of operator ordering, genuine multi-point functions are discontin-
uous in general, when two contour coordinates become identical. In particular, two-point

functions like iF(x,y) = <7Z;;1(x)§(y)> become ?

P (r,y) iF () (TA@)B(y)) F(B(y)A(x))
iF(z,y)= = . (A1)

iFt=(z,y) iFtt(z,y) <21(:c)§(y)> <7'_1;1(«T)§(y)>

where 7 and 7! are the usual time and anti-time ordering operators. Since there are
altogether only two possible orderings of the two operators, in fact given by the Wightman
functions F~* and F*~, which are both continuous, not all four components of F' are
independent. From eq. (A.1) follow relations between non-equilibrium and the retarded
and advanced functions

Ff(z,y) = F~(2,y) = F " (z, y) lay) - F(a,y)
::@(l‘o—yg)(F+ (z, F+xy)
Fi(z,y) = F (z,y) = F* (x, ) F*(z,y) = F™(z,y)
i=—O(yo — o) (F* (w,9) = F *(x,9)), (A-2)

where O(x¢ — yp) is the step function of the time difference.

Discontinuities of a two-point function may cause problems for differentiations, in particu-
lar, since they often occur simultaneously in products of two or more two-point functions.
The proper procedure is, first, with the help of eq. (A.2) to represent the discontinuous
parts in F~~ and F™* by the continuous F'~ " and F'*~ times O-functions, then to com-
bine all discontinuities, e.g. with respect to xy — 10, into a single term proportional to
O©(zo — yo), and finally to apply the differentiations. One can easily check that in the
following particularly relevant cases

F¢ F<
F~> F°
tions instead of (A.1). We prefer the more flexible {—+} labelling of contour points.

9 Quite commonly, like in refs. [2,6], the notation F = ( ) is used for two-point func-
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/dz (F(a',2)G(z,27) — G(a, 2)F(z,47)) | (A.3)

5 [ 4 (P G G) + G )P ). (A4)
Kai - o) [ @ (Pl 6 Le) - GGt P ) (A5)

all discontinuities exactly cancel. Thereby, these values are independent of the placement
of ' and 27 on the contour, i.e. the values are only functions of the physical coordinate
T

Equilibrium relations between quantities on the real-time contour basically follow from
the Kubo-Martin-Schwinger condition [60]

A™H(p) = AT (p)eT, T (p) = T (p)e™/", (A.6)

where ¢ = p,U" — pu with U” and p being a global 4-velocity of the system and a chemical
potential related to the charge, respectively. All the Green’s functions can be expressed
through retarded or advanced Green’s functions:

N [1F n(e)] A%(p) £ n(e) A%(p) +in(e) A(p)
(A”’ (p)) = ., (A7)
—i[1F n(e)] A(p) —[1F n(e)] A (p) T n(e) AR (p)

i,j € {+,—}, and the self-energies take a similar form

. IE(p) £ in(e)T(p) +in(e)T(p)
(9 (p) = . (A.8)
—i[1Fn(e)]T(p) —H(p)xin(e)T(p)

Here n(e) is the thermal Fermi-Dirac or Bose-Einstein occupation number (c.f. eq. (7.9)

for bosons), and A and T" are the spectral function and spectral width, respectively, defined
in (7.10).

B Diagram Rules for ¢, J, and I

The interaction vertex function V(z) entering the diagram is normalized in the standard
way, c.f. [41], i.e. with factors n! relative to £ (z) for each type of operator occurring
with multiplicity n in the vertex. E.g., the vertex function simply becomes —iV (x;) = —ig
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for £ = —g¢* /41 (4 identical operators) and for Z™ = —g(¢*$)2/(2! - 2!) (twice two
identical operators). The diagrammatic rules to calculate i®, i.J(xz) and —iIl for a given
theory are as follows

(i) Draw all topologically distinct, closed and entirely connected diagrams with N internal
vertices x1, xs, ...« y, Where classical field pins and propagator lines saturate the valences
of all vertices in the diagram, c.f. (5.11) above. Closed diagrams for i® have no external
points, while i.J(z) has one external point, and —ilT has two external points. For charged
bosons, pins and propagator lines have an arrows sense, distinguishing qz from @T at
the vertices, the sense direction pointing towards q3

(ii) For i@, iJ(x) and —i€™(z) keep only those diagrams that are two-particle irreducible,

i.e. which cannot be split into two pieces by cutting two different propagator lines. For

—ill keep only those diagrams which result from @ by opening one propagator line.

) To each line, connecting x; — xy, assign the factor iA(zy, x;).

iv) To each pin attached to xy, assign the factor ¢(zy) or ¢*(zx) depending on the sense.

(v) To each vertex z; assign the vertex factor —iV (z)) as determined by 2™ (z).

) Integrate all internal xy, 25, ...xy over the contour.

) Multiply the result by the symmetry factor S, which is calculated as follows

1/Ng! factor for every Ng equivalent internal lines,

1/Ny! factor for every N, classical fields entering each vertex,

1/2 factor for every self-closed line loop (tad-poles) for real fields.

(viii) Sum all diagrams. For the calculation of i® (contrary toiJ(z) and —ill), an extra factor

1/ny appears for each diagram, where n, counts the number of vertices in the diagram.
This factor has however been given explicitly in all diagram formulae concerning ¢!
(ix) For fermions each closed fermion loop contributes a factor (—1).

In many cases like in transport treatments, it is advantages to consider the diagrams
decomposed into the two contour sections at each vertex, e.g., to calculate quantities like
II=* and IT"~ self-energies in terms of exact Green’s functions. Therefore, ”physical”-
time diagrammatic rules in the matrix scheme are also required. Here we present only
those rules which differ from the above ones on the real-time contour, bearing in mind
that all other rules remain valid:

(iii") To each internal vertex xy, first assign a sign iy, € {+, —} defining the contour placement
zi%. To each line, connecting z}' — ¥, assign the factor iA™" (zy, 2,), i, € {4+, —}.

(vi') For all internal points integrate all xy,zy,...xy over the real-time axis and space, for
each internal ” +” vertex multiply by (—1) and finally sum over all internal contour
placements iy, 4o, ...ix (i € {+, —}).
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