The Coulomb potential in SMASH includes the electric and magnetic field. For simplicity we assume magnetostatics such that the fields can be directly calculated as
\[ \mathbf{E}(\mathbf{r}) = -\boldsymbol{\nabla} \phi(\mathbf{r}) = -\boldsymbol{\nabla}\int\frac{\rho(\mathbf{r}')} {|\mathbf{r}-\mathbf{r}'|} dV' = \int\frac{\rho(\mathbf{r}')(\mathbf{r}-\mathbf{r}')} {|\mathbf{r}-\mathbf{r}'|^3}dV' \]
and
\[ \mathbf{B}(\mathbf{r}) = \boldsymbol{\nabla}\times\mathbf{A}(\mathbf{r}) = \boldsymbol{\nabla}\times \int\frac{\mathbf{j}(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}dV' = \int\mathbf{j}(\mathbf{r}')\times \frac{\mathbf{r}-\mathbf{r}'}{|\mathbf{r}-\mathbf{r}'|^3}dV'\;. \]
These integrals are solved numerically on the SMASH lattice, where the discretized equations read
\[ \mathbf{E}(\mathbf{r}_j) = \sum_{i\neq j} \frac{\rho(\mathbf{r}_i)(\mathbf{r}_j-\mathbf{r}_i)} {|\mathbf{r}_j-\mathbf{r}_i|^3}\Delta V \]
and
\[ \mathbf{B}(\mathbf{r}_j) = \sum_{i\neq j}\mathbf{j}(\mathbf{r}_i)\times \frac{\mathbf{r}_j-\mathbf{r}_i} {|\mathbf{r}_j-\mathbf{r}_i|^3} \Delta V \]
with the lattice cell volume \( \Delta V \). For efficiency the integration volume is cut at \( R_\mathrm{cut} \), which is taken from the configuration. Note that in the final equations the summand for \(i=j\) drops out because the contribution from that cell to the integral vanishes if one assumes the current and density to be constant in the cell.
The radius value in fm at which the integration volume is cut.