The symmetry potential has the form
\[ U_{Sym} = \pm 2 S_{pot} \frac{I_3}{I} \frac{\rho_{I_3}}{\rho_0} + S(\rho_B)\left(\frac{\rho_{I_3}}{\rho_B}\right)^2 \,, \]
where \( \rho_{I_3}\) is the density of the relative isospin \( I_3/I \) and \( \rho_B \) is the net baryon density and
\[ S(\rho_B)=12.3\,\mathrm{MeV}\times \left(\frac{\rho_B}{\rho_0}\right)^{2/3}+ 20\,\mathrm{MeV}\times\left(\frac{\rho_B}{\rho_0}\right)^\gamma\;. \]
Parameters must be specified in the Symmetry
subsection of the Potentials
one.
gamma
— double, optional, default =
do not consider last term in \(S(\rho_B)\)
Exponent \(\gamma\) in formula for \(S(\rho_B)\). If gamma
is specified, the baryon density dependence is included in the potential. Otherwise only the first term of the potential will be taken into account.
Parameter \(S_{pot}\) of symmetry potential in MeV.