From Shell-Structure to Clusters and Halos

Thomas Neff, NSCL
Hans Feldmeier, GSI
Robert Roth, TU Darmstadt
Alex Brown, NSCL

SPIRAL2 Reactions Workshop
GANIL, France
October 19-21, 2005
Overview

Nucleon Nucleon Interaction
- Central and Tensor correlations
- Correlated Interaction
- \textit{ab initio} calculations

Fermionic Molecular Dynamics
- PAV, VAP and Multiconfiguration

Applications
- Helium, Lithium, Beryllium, Carbon isotopes, ^{12}C

Outlook
- Molecular resonances, nucleus nucleus potentials
- Spectroscopic amplitudes and spectroscopic factors
Realistic Interactions

- reproduce scattering data and deuteron properties
- meson-exchange (Bonn), phenomenological (Argonne), χ-PT
- repulsive core and tensor force induce strong short-range correlations in many-body state
- directly used only in Few-body Models and GFMC

Effective Interactions

- with effective interactions many properties of nuclear systems like energies, radii, spectra can be described successfully with simple many-body wave functions (HF, shell model, microscopic cluster models)
- in the No-Core Shell Model the Lee-Suzuki transformation is used to derive an effective interaction from realistic interactions

Ansatz

derive **effective interaction** from **realistic interaction**

by explicitly including correlations with **unitary correlation operator** \mathcal{C} formulated in coordinate space

correlated interaction

$$\tilde{H} = \mathcal{C}^\dagger H \mathcal{C}$$

is evaluated in two-body approximation of cluster expansion
Realistic Interactions

- reproduce scattering data and deuteron properties
- meson-exchange (Bonn), phenomenological (Argonne), χ-PT
- repulsive core and tensor force induce strong short-range correlations in many-body state
- directly used only in Few-body Models and GFMC

Effective Interactions

- with effective interactions many properties of nuclear systems like energies, radii, spectra can be described successfully with simple many-body wave functions (HF, shell model, microscopic cluster models)
- in the No-Core Shell Model the Lee-Suzuki transformation is used to derive an effective interaction from realistic interactions

Ansatz

derive effective interaction from realistic interaction

by explicitly including correlations with unitary correlation operator \mathcal{C} formulated in coordinate space

correlated interaction

$$\hat{H} = \mathcal{C}^\dagger H \mathcal{C}$$

is evaluated in two-body approximation of cluster expansion

Correlator \mathcal{C}

conserves translational, rotational and Galilei invariance

is of finite range and preserves the phase shifts
Central and Tensor Correlations

\[C = C_\Omega C_r \]

Central Correlations

\[C_r = \exp \left\{ -\frac{i}{2} \left[\hat{p}_r s(r) + s(r) \hat{p}_r \right] \right\} \]

- probability density shifted out of the repulsive core

Tensor Correlations

\[C_\Omega = \exp \left\{ -i \delta(r) \left[\frac{3}{2} (\sigma_1 \cdot \hat{p}_\Omega)(\sigma_2 \cdot \hat{r}) + \frac{3}{2} (\sigma_1 \cdot \hat{r})(\sigma_2 \cdot \hat{p}_\Omega) \right] \right\} \]

- tensor force admixes other angular momenta

Diagrams

S = 0, T = 1

- \(\rho^{(2)}(r) \)
- \(\rho'(r) \)
- \(V(r) \)

S = 1, T = 0

- \(\hat{\rho}^{(2)}(r) \)
- \(\hat{\rho}'(r) \)
- \(\hat{V}(r) \)
Central and Tensor Correlations

Central Correlations
\[\zeta_r = \exp \left\{ -\frac{i}{2} \{ p_s(r) + s(r)p_r \} \right\} \]
probability density shifted out of the repulsive core

Tensor Correlations
\[\zeta_\Omega = \exp \left\{ -i \vartheta(r) \left[\frac{3}{2} (\sigma_1 \cdot \Omega)(\sigma_2 \cdot r) + \frac{3}{2} (\sigma_1 \cdot r)(\sigma_2 \cdot \Omega) \right] \right\} \]
tensor force admixes other angular momenta

\[p_r = \frac{1}{2} \left\{ \frac{r}{r} (\vec{r} \cdot p) + \left(\frac{p_r^2}{r^2} \right) \frac{\vec{r}}{r^2} \right\}, \quad p_\Omega = \frac{1}{2\pi} \left\{ \vec{1} \times \frac{\vec{r}}{r^2} - \frac{\vec{r}}{r^2} \times \vec{1} \right\} \]
Correlated Two-Body Densities and Energies

\[\rho_{S,\ell}^{(2)}(\mathbf{r}_1 - \mathbf{r}_2) \quad S = 1, M_S = 1, T = 0 \]

Central Correlator C_r
- Shifts density out of the repulsive core

Tensor Correlator C_Ω
- Aligns density with spin orientation

- Both central and tensor correlations are essential for binding

Correlated AV18 Interaction in Momentum Space

Off-diagonal Matrix Elements

- correlated interaction is more attractive at low momenta
- off-diagonal matrix elements connecting low- and high-momentum states are strongly reduced
- correlated interaction is similar to $V_{\text{low } k}$
 Bogner, Kuo, Schwenk,

No-Core Shell Model Calculations

Tjon Line

fix range of tensor correlations in the 3- and 4-body system to reproduce observed binding energies for this range three-body forces and three-body contributions of the correlated interaction cancel mostly.
ab initio Many-Body calculations

Hartree-Fock plus Many-body Perturbation theory for spherical nuclei

Additional attraction mainly by medium to long range tensor forces appears to be a global effect.

working on No-Core Shell Model calculations using Antoine and Oxbash
Operator Representation of V_{UCOM}

\[\zeta^T(T + V)\zeta = T \]

\[+ \sum_{ST} \hat{V}^{ST}_c(r) + \frac{1}{2}(p_r^2 \hat{V}^{ST}_{p^2}(r) + \hat{V}^{ST}_{p^2}(r)p_r^2) + \hat{V}^{ST}_{p^2}(r)\mathbf{l}^2 \]

\[+ \sum_T \hat{V}^T_{ls}(r)\mathbf{l} \cdot \mathbf{s} + \hat{V}^T_{P\Omega l}(r)\mathbf{l}^2\mathbf{1} \cdot \mathbf{s} \]

\[+ \sum_T \hat{V}^T_{t}(r)S_{12}(r, r) + \hat{V}^T_{tr\Omega}(r)p_r S_{12}(r, p\Omega) + \hat{V}^T_{tl\Omega}(r)S_{12}(l, 1) + \]

\[\hat{V}^T_{lp\Omega p\Omega}(r)S_{12}(p\Omega, p\Omega) + \hat{V}^T_{lp\Omega p\Omega}(r)\mathbf{l}^2S_{12}(p\Omega, p\Omega) \]

- bulk of tensor force mapped onto central part of correlated interaction
- tensor correlations also change the spin-orbit part of the interaction

Fermionic Molecular Dynamics

Fermionic
Slater determinant

\[|Q\rangle = \mathcal{A} \left(|q_1\rangle \otimes \cdots \otimes |q_A\rangle \right) \]

\[\Rightarrow \text{antisymmetrized } A\text{-body state} \]

Molecular

single-particle states

\[\langle x | q \rangle = \sum_i c_i \exp \left\{ -\frac{(x - b_i)^2}{2a_i} \right\} \otimes |\chi_{i}^{\uparrow}, \chi_{i}^{\downarrow}\rangle \otimes |\xi\rangle \]

\[\Rightarrow \text{Gaussian wave-packets in phase-space, spin is free, isospin is fixed} \]

width of wave-packet is a variational parameter

superposition of two wave-packets helps especially for halo nuclei

Dynamics

Time-dependent variational principle

\[\delta \int dt \frac{\langle Q | \frac{d}{dt} \hat{H} | Q \rangle}{\langle Q | Q \rangle} = 0 \]

Perform Variation

Minimization

- minimize Hamiltonian with respect to all single-particle parameters q_k

$$\min_{\{q_k\}} \frac{\langle Q | H - T_{cm} | Q \rangle}{\langle Q | Q \rangle}$$

- this is a Hartree-Fock calculation in our particular single-particle basis
- the mean-field may break the symmetries of the Hamiltonian

Spherical nuclei

Intrinsically deformed nuclei
Effective two-body interaction

- FMD model space can’t describe correlations induced by medium-ranged tensor forces
- simulate by *momentum-dependend* central and (isospin-dependend) *spin-orbit* two-body correction term
- fit correction term to binding energies and radii of “closed-shell” nuclei \((^4\text{He}, ^{16}\text{O}, ^{40}\text{Ca}), (^{24}\text{O}, ^{34}\text{Si}, ^{48}\text{Ca})\)
- develop a new correction term that is fixed in No-Core Shell Model calculations

Projected tetrahedral configurations are about 6 MeV lower in energy than “closed-shell” configurations.
1 Gaussian per single-particle state

\[(E - E_{\text{exp}})/A \text{ [MeV]}\]
How to improve?

Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear momentum and angular-momentum

Variation After Projection (VAP)

- effect of projection can be large
- perform Variation after Parity Projection VAP\(\Pi\)
- perform VAP by applying constraints on radius, dipole moment, quadrupole moment or octupole moment and minimize the energy in the projected energy surface

Multiconfiguration Calculations

- diagonalize Hamiltonian in a set of projected intrinsic states

\[\sum_{K'b} \braket{Q^{(a)}}{H\mathcal{P}^{0}_{KK'}\mathcal{P}^{P=0}}{Q^{(b)}} \cdot \zeta^{(i)}_{K'b} = \]

\[E^{(i)} \sum_{K'b} \braket{Q^{(a)}}{\mathcal{P}^{P=0}}{Q^{(b)}} \cdot \zeta^{(i)}_{K'b} \]
Helium Isotopes

dipole and quadrupole constraints

intrinsic nucleon densities of VAP states
radial densities from multiconfiguration calculations
Helium Isotopes

Binding energies

Matter & charge radii

Helium Isotopes

![Graph showing binding energies and radii for helium isotopes.]

- **Binding energies**
 - PAV\(^\pi\)
 - Multiconfig
 - Experiment

- **Matter & charge radii**
 - Important zero-point oscillations of the soft-dipole mode for describing binding energies and radii.

- **Notation**:
 - He\(^4\)
 - He\(^5\)
 - He\(^6\)
 - He\(^7\)
 - He\(^8\)

- **Remarks**:
 - Zero-point oscillations are essential for the description of binding energies and radii.

- **References**:

Lithium Isotopes

quadrupole constraints

intrinsic densities of V^π states
Lithium Isotopes

with cm-projection

Binding energies

![Graph showing binding energies for different lithium isotopes with various spin states, including \(^{3/2} \), \(^{1/2} \), and \(^{1} \).]

Matter & Charge radii

![Graph showing matter and charge radii for different lithium isotopes, with charge radii shifted by 0.5 fm.]

Lithium Isotopes

 Binding energies

 strong $\alpha + d$ and $\alpha + t$ cluster contributions

 Matter & Charge radii

 α and d contributions

 α and t contributions

 9Li-core plus neutrons

Lithium Isotopes

with cm-projection

Binding energies

- Strong $\alpha + d$ and $\alpha + t$ cluster contributions

Magnetic moments

- μ_N

Quadrupole moments

- $e^2 fm^4$

Isotopes:
- Li5
- Li6
- Li7
- Li8
- Li9
- Li10
- Li11

Binding energies

- $^{2+}$
- $^{3/2-}$

Magnetic moments

- $^{1+}$
- $^{2+}$

Quadrupole moments

- $^{1+}$
- $^{3/2-}$

Notes:
- Lithium isotopes and their respective binding energies, magnetic moments, and quadrupole moments are shown with projections for P_{AV}^s, Multiconf, and Exp.
- The diagram highlights the strong contributions of $\alpha + d$ and $\alpha + t$ clusters in the binding energies.
Beryllium Isotopes

Intrinsic densities of V^{π} states evolve with addition of neutrons.
Beryllium Isotopes

quadrupole constraints

Binding energies

Matter & charge radii

[MeV]

[fm]

2.2
2.4
2.6
2.8
3.0
3.2
3.4

Be7
Be8
Be9
Be10
Be11
Be12
Be13
Be14

20
Beryllium Isotopes

quadrupole constraints

Binding energies

strong $\alpha + ^3\text{He}$ and $\alpha + \alpha$ cluster contributions

borromean system

Matter & charge radii

positive parity state coming down

PAV*
Multiconf
Exp

Be7
Be8
Be9
Be10
Be11
Be12
Be13
Be14

[MeV]

[fm]

2.2
2.4
2.6
2.8
3.0
3.2
3.4

3/2$^-$
3/2$^-$

0$^+$
0$^+$

3/2$^-$
3/2$^-$

1/2$^+$
1/2$^+$

0$^+$
0$^+$

1/2$^-$
1/2$^-$

0$^+$
0$^+$

1/2$^+$
1/2$^+$

0$^+$
0$^+$

Positive parity state

Matter & charge radii

Strong $\alpha + ^3\text{He}$ and $\alpha + \alpha$ cluster contributions

Borromean system

Be7
Be8
Be9
Be10
Be11
Be12
Be13
Be14
Carbon Isotopes

 intrinsic densities of ν states

 SPIRAL2 REACTIONS WORKSHOP 2005
Cluster vs. Shell structure

^{12}C

radius and octupole constraints

<table>
<thead>
<tr>
<th></th>
<th>E_b [MeV]</th>
<th>r_{charge} [fm]</th>
<th>$B(E2) [e^2\text{fm}^4]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>V/PAV</td>
<td>81.4</td>
<td>2.36</td>
<td>-</td>
</tr>
<tr>
<td>VAP α-cluster</td>
<td>79.1</td>
<td>2.70</td>
<td>76.9</td>
</tr>
<tr>
<td>PAV$^\pi$</td>
<td>88.5</td>
<td>2.51</td>
<td>36.3</td>
</tr>
<tr>
<td>VAP</td>
<td>89.2</td>
<td>2.42</td>
<td>26.8</td>
</tr>
<tr>
<td>Multiconfig</td>
<td>92.2</td>
<td>2.52</td>
<td>42.8</td>
</tr>
<tr>
<td>Experiment</td>
<td>92.2</td>
<td>2.47</td>
<td>39.7 ± 3.3</td>
</tr>
</tbody>
</table>

Variation

^{12}C

Diagram:
- Graph showing radial and octupole constraints for ^{12}C.
- Table comparing E_b, r_{charge}, and $B(E2)$ for different configurations.
- Graph illustrating energy levels and states for ^{12}C.

SPIRAL2 REACTIONS WORKSHOP 2005
12C – excited 0\(^+\) and 2\(^+\) states

0\(^+_2\) state

\[
\langle \cdot | 0^+_2 \rangle = 0.76 \\
\langle \cdot | 0^+_2 \rangle = 0.71 \\
\langle \cdot | 0^+_2 \rangle = 0.50
\]

0\(^+_3\) state

\[
\langle \cdot | 0^+_3 \rangle = 0.69 \\
\langle \cdot | 0^+_3 \rangle = 0.65 \\
\langle \cdot | 0^+_3 \rangle = 0.44
\]

<table>
<thead>
<tr>
<th></th>
<th>Multiconfig</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_b) [MeV]</td>
<td>92.4</td>
<td>92.2</td>
</tr>
<tr>
<td>(r_{\text{charge}}) [fm]</td>
<td>2.52</td>
<td>2.47</td>
</tr>
<tr>
<td>(B(E2)(0^+_1 \rightarrow 2^+_1) [e^2fm^4])</td>
<td>42.9</td>
<td>39.7 ± 3.3</td>
</tr>
<tr>
<td>(M(E0)(0^+_1 \rightarrow 0^+_2) [fm^2])</td>
<td>5.67</td>
<td>5.5 ± 0.2</td>
</tr>
<tr>
<td>(r_{\text{rms}}(0^+_1)) [fm]</td>
<td>2.38</td>
<td></td>
</tr>
<tr>
<td>(r_{\text{rms}}(0^+_2)) [fm]</td>
<td>3.42</td>
<td></td>
</tr>
<tr>
<td>(r_{\text{rms}}(0^+_3)) [fm]</td>
<td>3.85</td>
<td></td>
</tr>
<tr>
<td>(r_{\text{rms}}(2^+_1)) [fm]</td>
<td>2.44</td>
<td></td>
</tr>
<tr>
<td>(r_{\text{rms}}(2^+_2)) [fm]</td>
<td>3.64</td>
<td></td>
</tr>
<tr>
<td>(r_{\text{rms}}(2^+_3)) [fm]</td>
<td>3.63</td>
<td></td>
</tr>
<tr>
<td>(Q(2^+_1)) [efm^2]</td>
<td>5.85</td>
<td></td>
</tr>
<tr>
<td>(Q(2^+_2)) [efm^2]</td>
<td>-23.65</td>
<td></td>
</tr>
<tr>
<td>(Q(2^+_3)) [efm^2]</td>
<td>5.89</td>
<td></td>
</tr>
</tbody>
</table>

SPIRAL2 REACTIONS WORKSHOP 2005
Microscopic R-matrix approach

- divide Hilbert space into interaction region and asymptotic region
- solve the many-body Schrödinger equation in the interaction region
- match to boundary conditions defined in the asymptotic region
- FMD states can be used like in a microscopic cluster model
- use V_{UCOM} as effective interaction

Brink-type many-body states

$$\left| \Psi_{J,M}^{J}(R) \right\rangle = P_{J-M|0}^{J} \left| \Psi(R) \right\rangle$$

$$\left| \Psi(R) \right\rangle = \mathcal{A}\left\{ \left| ^{16}\text{O}; \frac{1}{2}R \right\rangle \left| ^{16}\text{O}; -\frac{1}{2}R \right\rangle \right\}$$

- transform into RGM wave functions in asymptotic region
- apply Gamov boundary conditions (purely outgoing Coulomb wave) to calculate resonance properties

Todo

- deformed ^{32}S configurations in the interaction region to describe the groundstate band
- include other channels
Outlook

Microscopic Nucleus-Nucleus Potentials

- use GCM wave function

\[
\left| \Psi_M^{J} (\mathbf{R}) \right\rangle = P_{J0}^{l} \mathcal{A} \left\langle \left| x^{16}O; \frac{1}{2}\mathbf{R} \right\rangle \left| x^{16}O; -\frac{1}{2}\mathbf{R} \right\rangle \right
\]

- transform into RGM wave function to get rid of center-of-mass

- fit a local equivalent potential to the RGM potential surface (diagonalize the RGM norm kernel)

- solve two-body Schrödinger equation for all \(l \) with Incoming Wave Boundary Condition

- calculate and sum the penetration probabilities to calculate the fusion cross section

- S-factors

\[
S(E) = \sigma(E) E e^{2\pi \eta}
\]

- fusion cross sections for neutron rich isotopes are of interest for pycnonuclear reactions in the crust of neutron stars
Spectroscopic information

- Single nucleon spectroscopic amplitudes and spectroscopic factors
- Cluster spectroscopic amplitudes and spectroscopic factors
- Non-orthogonality of cluster configurations properly treated

Graphs showing:
- Single nucleon spectroscopic amplitudes and spectroscopic factors
- Cluster spectroscopic amplitudes and spectroscopic factors
- Non-orthogonality of cluster configurations properly treated

Graphs with data points for different configurations and oscillator constants.
Summary & Outlook

Summary

- consistent many-body approach for conventional and exotic nuclei
- FMD basis is flexible enough to describe clustering, shell effects and halos
- same effective NN interaction based on realistic interaction used for all nuclei
- importance of VAP and multiconfiguration calculations
- binding energies and radii well described
Summary

consistent many-body approach for conventional and exotic nuclei
FMD basis is flexible enough to describe clustering, shell effects and halos
same effective NN interaction based on realistic interaction used for all nuclei
importance of VAP and multiconfiguration calculations
binding energies and radii well described

Outlook

systematic study of light nuclei in the \(p \)- and \(sd \)-shell
other observables: formfactors, momentum distributions, spectroscopic factors, two-body densities, electromagnetic and weak transitions
molecular resonances, microscopic nucleus-nucleus potentials, transfer reactions, . . .
compare to No-Core Shell Model calculations (using the same effective interaction)