Neutrino pair annihilation above neutron star merger remnants

Hannah Yasin, Albino Perego and Almudena Arcones

A. Perego,H. Yasin,A. Arcones

Submitted to J. Phys. G.

arXiv:1701.02017

GRB 050709 (Credit: NASA/ University of Copenhagen)

Outline

- Gamma ray bursts (GRB)
- Neutron star (NS) merger
- Neutrinos
- Results
- Comparison to observations

Gamma ray bursts (GRB)

- Intense flashes of electromagnetic radiation
- Two classes: **short** (t < 2s) and long GRB (t ~ 30s)
- Nonthermal spectrum, observed energies: $E_{iso} \sim 10^{51} erg$
- Collimated Outflows: source emitting into two cones

$$E_{\rm true} = E_{\rm iso} \cdot \frac{\Delta \Omega}{4\pi} \approx \frac{E_{\rm iso}}{65} \cdot \left(\frac{\theta^{\circ}}{10^{\circ}}\right)^2$$

Rosswog, Brüggen 2007

• $E_{true} \sim 10^{48}$ - $10^{49} erg$ *Lee & Ramirez-Ruiz 2007*

Review: e.g. Berger 2014

Gamma ray bursts (GRB)

- GRB are distributed isotropically \rightarrow extragalactical
- Possible progenitor candidate: NS merger
- Fireball model *e. g. Piran 1999, Nakar 2007*
 - → Central engine needs to provide a large enough energy reservoir and account for relativistic acceleration
- Other mechanisms (e.g. magnetic fields) also possible

e.g Metzger 2008

e. g. Paczynski 1986,

Eichler et al. 1989

NS merger simulation Perego et al. 2014

- 3D, Newtonian, based on SPH merger simulation *Price & Rosswog 2006*
- M_{NS} ~ 2.6 M_{\odot}, M_{disk} ~ 0.18 M_{\odot}
- TM1 EOS
- Neutrino treatment: Energy dependent, spectral leakage scheme
- Three neutrino species: v_e , \bar{v}_e , v_x

Density 100 15 14 80 13 12 m log₁₀(p)[g/cm 60 11 z [km] 10 40 9 8 20 7 6 5 0 20 40 60 80 100 x [km] Snapshot at $t \approx 40 \text{ ms}$

→ Neutrinos from the NS and disk can deposit energy and momentum via pair annihilation *Eichler et al. 1989*

Neutrino-antineutrino annihilation

• Possibility for energy deposition: $\mathbf{v} + \bar{\mathbf{v}} \rightarrow \mathbf{e}^+ + \mathbf{e}^-$

$$q_{\nu,\bar{\nu}} = \frac{1}{6} \frac{\sigma_0 \left(c_A^2 + c_V^2\right)}{c \left(m_e c^2\right)^2} \int d\Omega_{\nu} \int d\Omega_{\bar{\nu}} \int d\epsilon_{\nu} \int d\epsilon_{\bar{\nu}} \left(\epsilon_{\nu} + \epsilon_{\bar{\nu}}\right) I_{\nu} I_{\bar{\nu}} \left(1 - \cos\Phi\right)^2 Dessart et al. 2009$$

- $\sigma_0 \simeq 1.71 \cdot 10^{-44} \text{ cm}^2$
- Energy deposition rate *q* depends on:
 - * Neutrino intensities (luminosities)
 - \star Angle between the neutrinos Φ
 - \star Neutrino energies

- Cooling: No absorption processes outside last scattering surfaces included
- NS luminosity from cooling/diffusion, disk luminosity from accretion

Results

• Energy deposition rate for $v_e \bar{v}_e$ larger compared to $v_x \bar{v}_x$:

$$(c_{A^{2}} + c_{V^{2}})_{v_{e}\bar{v}_{e}} / (c_{A^{2}} + c_{V^{2}})_{v_{X}\bar{v}_{X}} \approx 4.6$$
 $L_{v_{e}}L_{\bar{v}_{e}} / (L_{v_{X}}L_{\bar{v}_{X}}) \approx 12$

Results

- Volume integrated energy deposition rates: $Q_v(t) = \int_V q_v(t,x) dV$
- Time integrated energy deposition rates: $E_v(t) = \int_t Q_v(t') dt'$
- At t = 380 ms: E_{tot} = 1.95 · 10⁴⁹ erg

Role of the hypermassive NS

- Split neutrinos into two groups: NS and disk (DS)
- Intensity calculated via: $I_{v} = I_{v, NS} + I_{v, DS}$
- Deposition rate:
 - $q_{\nu} = q_{\nu, NS-NS} +$ $q_{\nu, NS-DS} +$ $q_{\nu, DS-NS} +$ $q_{\nu, DS-DS}$

Role of the hypermassive NS

- Contribution from NS not negligible
- Contributions from NS-DS and DS-DS comparable

Relativistic effects

- Include relativistic effects in the v propagation:
 - * Doppler effect ↑
 - Beaming effects ↓
 - * Redshift \downarrow , blueshift \uparrow
 - Light bending ↑
- Local changes up ~ 50%
- Effects do not change behavior qualitatively

NS & DS

50

0 **x [km]**

50

0

-50

DS-DS

-50

z [km]

0.75

0.60

0.45

Comparison, NS collapse

- Differentiate energy deposition in the local frames Q^{rel} and measured by an infinitely distant observer $Q^{rel, \infty}$
- Impact of a possible NS collapse (at *t_{BH}*) and black hole (BH) formation (only DS-DS contribution) can be investigated

	Ev, nrel	Ev, rel	Ev, rel∞
	[10 ⁴⁹ erg]	[10 ⁴⁹ erg]	[10 ⁴⁹ erg]
380 ms	1.95	1.88	1.64
1000 ms	2.24	2.15	1.89

Geometrical factor

• Investigation of a possible parametrization for the deposition rates Q_{ν}

$$\begin{bmatrix} \frac{\langle \epsilon_{\nu,i}^2 \rangle}{\langle \epsilon_{\nu,i} \rangle} + \frac{\langle \epsilon_{\bar{\nu},j}^2 \rangle}{\langle \epsilon_{\bar{\nu},j} \rangle} \end{bmatrix} \quad \substack{i,j = \\ \{\text{NS; DS}\} \\ e.g. \ Goodman \ 87, \ Janka \ 91}$$

- Provide global information about Q_v based on neutrino emission (L_v) and on geometry of the system (G_v)
- Cooling luminosities more const.
- Similar for $\nu_{\boldsymbol{x}}$

Comparison with observations

• Comparison of extrapolated $E_{V\bar{\nu}}$ with energetics of observed short GRBs

- Rescale: $L_v \rightarrow \alpha_v L_v$
- $\alpha_v = \alpha_{\bar{v}} = 1$ corresponds to our simulation
- Solid lines: values for opening angle available
- Dashed lines: only lower estimates
- NS ↔ DS also possible

Conclusions

arXiv:1701.02017

- Energy deposition at 380 ms of $E_{tot} = 1.95 \cdot 10^{49}$ erg
- The hypermassive NS adds important contribution (factor of ~ 2), relativistic effects affect *E* by at most 20%
- Possible parametrization introduced
- Comparison to observations require higher luminosities (GR simulations?)
- BH formation + energy extraction from accreting BH also possible (baryonic pollution problem) *e.g Just et al. 2016*
- Other mechanisms (e.g. magnetic fields) are also likely to contribute e.g Metzger 2008