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Prelude

Although the crust of a neutron
star represents about ∼ 1% of the
mass and ∼ 10% of the radius, it is
related to various phenomena:

pulsar sudden spin-ups,
X-ray (super)bursts,
thermal relaxation in
transiently accreting stars,
quasiperiodic oscillations in
soft gamma-ray repeaters
r-process nucleosynthesis in
neutron-star mergers
mountains and gravitational
wave emission



Plumbing neutron-star crusts

Chamel&Haensel, Living Reviews in Relativity 11 (2008), 10
http://relativity.livingreviews.org/Articles/lrr-2008-10/

The nuclear energy density functional theory provides a consistent
and numerically tractable treatment of all these different phases.
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Nuclear energy density functional theory in a nut shell
The energy E of a nuclear system (q = n,p for neutrons, protons) is
expressed as a (universal) functional of

nq(rrr , σ; r ′r ′r ′, σ′) =< Ψ|cq(r ′r ′r ′σ′)†cq(rrrσ)|Ψ >

ñq(rrr , σ; r ′r ′r ′, σ′) = −σ′ < Ψ|cq(r ′r ′r ′ − σ′)cq(rrrσ)|Ψ >,

where cq(rrrσ)† and cq(rrrσ) are the creation and destruction operators
for nucleon q at position rrr with spin σ = ±1.

In turn, these matrices are expressed in terms of independent
quasiparticle wavefunctions ϕ(q)

1k (rrr) and ϕ(q)
2k (rrr) as

nq(rrr , σ; r ′r ′r ′, σ′) =
∑
k(q)

ϕ
(q)
2k (rrr , σ)ϕ

(q)
2k (r ′r ′r ′, σ′)∗

ñq(rrr , σ; r ′r ′r ′, σ′) = −
∑
k(q)

ϕ
(q)
2k (rrr , σ)ϕ

(q)
1k (r ′r ′r ′, σ′)∗ = −

∑
k

ϕ
(q)
1k (rrr , σ)ϕ

(q)
2k (r ′r ′r ′, σ′)∗.

The exact ground-state energy is obtained by minimizing the
functional E [nq(rrr , σ; r ′r ′r ′, σ′), ñq(rrr , σ; r ′r ′r ′, σ′)] under the constraint of fixed
nucleon numbers (and completeness relations on ϕ(q)

1k (rrr) and ϕ(q)
2k (rrr)).



Hartree-Fock-Bogoliubov equations
Constrained variations of the nuclear energy functional yield the
self-consistent Hartree-Fock Bogoliubov (HFB) equations∑

σ′

∫
d3r ′

(
hq(rrr , σ; r ′r ′r ′, σ′) h̃q(rrr , σ; r ′r ′r ′, σ′)
h̃q(rrr , σ; r ′r ′r ′, σ′) −hq(rrr , σ; r ′r ′r ′, σ′)

)(
ψ

(q)
1k (r ′r ′r ′, σ′)

ψ
(q)
2k (r ′r ′r ′, σ′)

)

=

(
E (q)

k + µq 0
0 E (q)

k − µq

)(
ψ

(q)
1k (rrr , σ)

ψ
(q)
2k (rrr , σ)

)
,

where µq are the chemical potentials, and the non-local fields are
defined by

hq(rrr , σ; r ′r ′r ′, σ′) =
δE

δnq(rrr , σ; r ′r ′r ′, σ′)
, h̃q(rrr , σ; r ′r ′r ′, σ′) =

δE
δñq(rrr , σ; r ′r ′r ′, σ′)

.

Duguet, Lecture Notes in Physics 879 (Springer-Verlag, 2014), p. 293
Dobaczewski & Nazarewicz, in ”50 years of Nuclear BCS” (World Scientific Publishing,
2013), pp.40-60

Problem: we do not know what the exact functional is... We have thus
to rely on phenomenological functionals.



Phenomenological nuclear energy density functionals
For simplicity, the functional is generally written as

E =

∫
E
[
nq(rrr),∇∇∇nq(rrr), τq(rrr),JJJq(rrr), ñq(rrr), . . .

]
d3rrr

where (σσσ′ denotes the Pauli spin matrices)

nq(rrr) =
∑
σ=±1

nq(rrr , σ; rrr , σ), ñq(rrr) =
∑
σ=±1

ñq(rrr , σ; rrr , σ)

τq(rrr) =
∑
σ=±1

∫
d3r ′r ′r ′ δ(rrr − r ′r ′r ′)∇∇∇ ·∇′∇′∇′nq(rrr , σ; r ′r ′r ′, σ)

JJJq(rrr) = −i
∑

σ,σ′=±1

∫
d3r ′r ′r ′ δ(rrr − r ′r ′r ′)∇∇∇nq(rrr , σ; r ′r ′r ′, σ′)× σσ′σ

Such functionals can be constructed from Skyrme type zero-range
effective interactions in the “mean-field” approximation.

Remark: fitting directly the energy functional E to experimental and/or
microscopic nuclear data may lead to self-interaction errors.
Chamel, Phys. Rev. C 82, 061307(R) (2010).



Phenomenological corrections for atomic nuclei
For atomic nuclei, we add the following corrections to the HFB energy:

Wigner energy

EW = VW exp

{
− λ

(
N − Z

A

)2}
+ V ′W |N − Z |exp

{
−

(
A
A0

)2}

VW ∼ −2 MeV, V ′W ∼ 1 MeV, λ ∼ 300 MeV, A0 ∼ 20
rotational and vibrational spurious collective energy

Ecoll = E crank
rot

{
b tanh(c|β2|) + d |β2| exp{−l(|β2| − β0

2)2}
}

This latter correction was shown to be in good agreement with
calculations using 5D collective Hamiltonian.
Goriely, Chamel, Pearson, Phys.Rev.C82,035804(2010).

In this way, these collective effects do not contaminate the
parameters (≤ 20) of the functional.



Brussels-Montreal Skyrme functionals (BSk)
Experimental data:

all atomic masses with Z ,N ≥ 8 from the Atomic Mass
Evaluation (root-mean square deviation: 0.5-0.6 MeV)
nuclear charge radii
symmetry energy 29 ≤ J ≤ 32 MeV
incompressibility Kv = 240± 10 MeV (ISGMR)
Colò et al., Phys.Rev.C70, 024307 (2004).

N-body calculations using realistic forces:
equation of state of pure neutron matter
1S0 pairing gaps in nuclear matter
effective masses in nuclear matter
stability against spin and spin-isospin fluctuations

Chamel et al., Acta Phys. Pol. B46, 349(2015)

Nonlocal and relativistic functionals have been also developed:
Goriely et al., Eur. Phys. J. A 52, 202 (2016).
Pena Arteaga, Goriely, Chamel, Eur. Phys. J. A 52, 320 (2016)



Brussels-Montreal Skyrme functionals
. fit to realistic 1S0 pairing gaps (no self-energy) (BSk16-17)

Chamel, Goriely, Pearson, Nucl.Phys.A812,72 (2008)
Goriely, Chamel, Pearson, PRL102,152503 (2009).
Chamel, Phys. Rev. C 82, 014313 (2010).

. removal of spurious spin-isospin instabilities (BSk18)
Chamel, Goriely, Pearson, Phys.Rev.C80,065804(2009)
Chamel & Goriely, Phys. Rev. C 82, 045804 (2010).

. fit to realistic neutron-matter equations of state (BSk19-21)
Goriely, Chamel, Pearson, Phys.Rev.C82,035804(2010)

. fit to different symmetry energies (BSk22-26)
Goriely, Chamel, Pearson, Phys.Rev.C88,024308(2013)

. optimal fit of the 2012 AME - rms 0.512 MeV (BSk27*)
Goriely, Chamel, Pearson, Phys.Rev.C88,061302(R)(2013)

. generalized spin-orbit coupling (BSk28-29)
Goriely, Nucl.Phys.A933,68(2015).

. fit to realistic 1S0 pairing gaps with self-energy (BSk30-32)
Goriely, Chamel, Pearson, Phys.Rev. C93,034337(2016).



Description of the outer crust of a neutron star

Main assumptions:
matter is in full thermodynamic equilibrium
the crust is stratified into pure layers made of nuclei A

Z X
atoms are fully pressure ionized ρ� 10AZ g cm−3

electrons are uniformly distributed and are highly degenerate
nuclei are arranged on a perfect body-centered cubic lattice

T < Tm ≈ 1.3× 105Z 2
(ρ6

A

)1/3
K ρ6 ≡ ρ/106 g cm−3

The only microscopic inputs are nuclear masses. We have made
use of the experimental data from the Atomic Mass Evaluation
complemented with our HFB mass tables available at
http://www.astro.ulb.ac.be/bruslib/

Pearson,Goriely,Chamel,Phys.Rev.C83,065810(2011)

Electron polarization effects are included using the expressions given
in Chamel & Fantina,Phys.Rev.D93, 063001 (2016)

http://www.astro.ulb.ac.be/bruslib/


Composition of the outer crust of a neutron star

The composition of the crust is completely determined by
experimental nuclear masses down to about 200m for a 1.4M�
neutron star with a 10 km radius

Pearson,Goriely,Chamel,Phys.Rev.C83,065810(2011)
Kreim, Hempel, Lunney, Schaffner-Bielich, Int.J.M.Spec.349-350,63(2013)
Wolf et al.,PRL 110,041101(2013)



Composition of the outer crust of a neutron star

Role of the symmetry energy
HFB-22-25 were fitted to different values of the symmetry energy
coefficient at saturation, from J = 29 MeV (HFB-25) to J = 32 MeV
(HFB-22).

HFB-22 HFB-24 HFB-25
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79Cu - -
82Zn - -
78Ni 78Ni 78Ni
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- - 126Ru
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Composition of the outer crust of a neutron star
Role of the spin-orbit coupling

HFB-24: v so
ij =

i
~2 W0(σσσi + σσσj ) · pppij × δ(rrr ij )pppij

HFB-28: v so
ij → v so

ij +
i
~2 W1(σσσi + σσσj ) · pppij × (nqi + nqj )

νδ(rrr ij )pppij

HFB-29: Eso =
1
2

[
JJJ · ∇∇∇n + (1 + yw )

∑
q

JqJqJq · ∇∇∇nq

]

HFB-28 HFB-29 HFB-24
79Cu 79Cu -
78Ni 78Ni 78Ni

128Pd - -
80Ni - 80Ni

126Ru 126Ru -
124Mo 124Mo 124Mo
122Zr 122Zr 122Zr

- 121Y 121Y
120Sr 120Sr 120Sr
122Sr 122Sr 122Sr
124Sr 124Sr 124Sr 10

-5
10

-4

n [fm
-3

]

0

0.0001

0.0002

0.0003

0.0004

0.0005

P
 [

M
e
V

 f
m

-3
]

HFB-28
HFB-29



Composition of the outer crust of a neutron star

Role of nuclear pairing
HFB-27∗ is based on an empirical pairing functional.
HFB-29 (HFB-30) was fitted to EBHF 1S0 pairing gaps including
medium polarization effects without (with) self-energy effects.

HFB-27∗ HFB-29 HFB-30
- 79Cu -

78Ni 78Ni 78Ni
- - 80Ni

126Ru 126Ru 126Ru
124Mo 124Mo 124Mo
122Zr 122Zr 122Zr

- 121Y 121Y
120Sr 120Sr 120Sr
122Sr 122Sr 122Sr
124Sr 124Sr 124Sr

10
-5

10
-4

n [fm
-3

]

0

0.0001

0.0002

0.0003

0.0004

0.0005

P
 [

M
e
V

 f
m

-3
]

HFB-29
HFB-30
HFB-27



Catalyzed vs accreted crusts

The composition of accreted crusts can be substantially different:
matter is not in full thermodynamical equilibrium !

Using the HFB-27∗ nuclear mass model and considering 56Fe ashes:
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Chamel,Fantina,Zdunik,Haensel, Nuclear Theory 34, pp.126-131 (Heron
Press, Sofia, 2015)



Stratification and equation of state
So far, we have assumed pure layers made of only one kind of nuclei

n

P

n
max

1
n
min

2

P1 2

1

2

1+2

+

n̄min
2 − n̄max

1

n̄max
1

≈ A2

Z2

Z1

A2

[
1 +

Cbccα

(3π2)1/3

(
Z 2/3

1 − Z 2/3
2

)]
− 1

with Cbcc = −1.444231 and α = e2/~c
.



Stratification and equation of state

So far, we have assumed pure layers made of only one kind of nuclei

n

P

n
max

1
n
min

2

P1 2

1

2

1+2

+

n̄min
2 − n̄max

1

n̄max
1

> 0⇒ Z2

A2
<

Z1

A1
: the denser, the more neutron rich.

.



Stratification and equation of state
So far, we have assumed pure layers made of only one kind of nuclei

n

P

n
max

1
n
min

2

P1 2

1

2

1+2

+

Mixed solid phases cannot exist in a neutron star crust because P has to
increase strictly monotonically with n̄.

.



Compounds in neutron-star crusts?
The structure could be determined using molecular dynamics
simulations. However this would be extremely costly because the
composition must be also optimized.

Multinary compounds made of nuclei with charges {Zi} could exist in
the crust of a neutron star provided

they are stable against the separation into pure (bcc) phases:

R({Zi/Zj}) ≡
C

Cbcc
f ({Zi})

Z̄

Z 5/3
> 1

where f ({Zi}) is the dimensionless lattice structure function of
the compound and C the corresponding structure constant.
Chamel & Fantina, Phys. Rev. C 94, 065802 (2016).

This condition is independent of the stellar environment and can thus
be easily tested for any given compound structure and composition !

they are stable against weak and strong nuclear processes.



Binary compounds in neutron-star crusts?
We have investigated the formation of various compounds:

sc2sc1fcc1 fcc2

Terrestrial examples:

fcc1: rocksalt (NaCl), oxydes, carbonitrides
fcc2: fluorite (CaF2)
sc1: cesium chloride (CsCl), β-brass (CuZn)
sc2: auricupride (AuCu3)

Stellar compounds differ in two fundamental ways from their
terrestrial counterparts: (i) they are made of nuclei; (ii) electrons form
an essentially uniform relativistic Fermi gas.



Binary compounds in neutron-star crusts?
Oher cubic compounds with same structure as perovskites:

p1 p2 p3

Non-cubic compounds (e.g. tungsten carbide):

hcp



Binary compounds in neutron-star crusts?

Some compounds are unstable against phase separation for any
charge ratio q = Z2/Z1 and can thus be ruled out:
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Chamel & Fantina, Phys. Rev. C 94, 065802 (2016).

The most likely compounds are those with CsCl structure.



Substitutional compounds in neutron-star crusts

Compounds with CsCl structure are present at interfaces if Z1 6= Z2.

n
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max

1
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min
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min
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P1 2

1

2

1+2

n̄max
1+2 − n̄min

1+2

n̄min
2 − n̄max

1
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Ternary compounds in neutron-star crusts?

We have also considered ternary compounds with cubic perovskite
structure such as BaTiO3 :

Such compounds do not exist in catalyzed crusts and but could be
formed in accreting neutron stars.
Chamel, in preparation



Neutron-drip transition: general considerations

Nuclei are actually stable against neutron emission but are
unstable against electron captures accompanied by neutron emission

A
Z X + ∆Ze− →A−∆N

Z−∆Z Y + ∆N n + ∆Z νe

nonaccreting neutron stars
All kinds of reactions are allowed: the ground state is reached for
∆Z = Z and ∆N = A

outer crust drip line ρdrip (g cm−3) Pdrip (dyn cm−2)

HFB-19 126Sr (0.73) 121Sr (-0.62) 4.40 × 1011 7.91 × 1029

HFB-20 126Sr (0.48) 121Sr (-0.71) 4.39 × 1011 7.89 × 1029

HFB-21 124Sr (0.83) 121Sr (-0.33) 4.30 × 1011 7.84 × 1029

accreting neutron stars
Multiple electron captures are very unlikely: ∆Z = 1 (∆N ≥ 1)

ρdrip (g cm−3) Pdrip (dyn cm−2)
HFB-21 2.83 − 5.84 × 1011 4.79 − 12.3 × 1029

ρdrip and Pdrip can be expressed by simple analytical formulas.
Chamel, Fantina, Zdunik, Haensel, Phys. Rev. C91,055803(2015).



Impact of a strong magnetic field on the crust?
In a strong magnetic field ~B (along let’s say the z-axis), the electron
motion perpendicular to the field is quantized:

Landau-Rabi levels
Rabi, Z.Phys.49, 507 (1928).

eν =
√

c2p2
z + m2

ec4(1 + 2νB?)

where ν = 0,1, ... and B? = B/Bc

with Bc =
m2

ec3

~e
' 4.4× 1013 G.

Maximum number of occupied Landau levels for HFB-21:
B? 1500 1000 500 100 50 10 1
νmax 1 2 3 14 28 137 1365

Only ν = 0 is filled for ρ < 2.07× 106
(

A
Z

)
B3/2
? g cm−3.

Landau quantization can change the properties of the crust.



Equation of state of the outer crust of magnetars

Matter in a magnetar is much more incompressible and less
neutron-rich than in a weakly magnetised neutron star.
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Chamel et al.,Phys.Rev.C86, 055804(2012).



Composition of the outer crust of a magnetar

The magnetic field changes the composition:

Equilibrium nuclides for HFB-24 and B? ≡ B/(4.4× 1013 G):

Nuclide B?
58Fe(-) 9
66Ni(-) 67
88Sr(+) 859

126Ru(+) 1031
80Ni(-) 1075

128Pd(+) 1445
78Ni(-) 1610
79Cu(-) 1617
64Ni(-) 1668

130Cd(+) 1697
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Chamel et al., to appear in QSCP series, Springer (2017).



Neutron-drip transition in magnetars
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Chamel et al.,Phys.Rev.C91, 065801(2015).
Chamel et al.,J.Phys.:Conf.Ser.724, 012034 (2016).



Neutron-drip transition in magnetars
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Chamel et al.,Phys.Rev.C91, 065801(2015).
Chamel et al.,J.Phys.:Conf.Ser.724, 012034 (2016).



Neutron-drip transition: role of the symmetry energy

The lack of knowledge of the symmetry energy translates into
uncertainties in the neutron-drip density:
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In accreted crusts, the neutron-drip transition may be more sensitive
to nuclear-structure effects than the symmetry energy.

Fantina et al.,Phys.Rev.C93,015801(2016).



Description of neutron star crust beyond neutron drip
We use the Extended Thomas-Fermi+Strutinsky Integral (ETFSI)
approach with the same functional as in the outer crust:

semiclassical expansion in powers of ~2: the energy becomes
a functional of nq(rrr) and their gradients only.
proton shell effects are added perturbatively (neutron shell
effects are much smaller and therefore neglected).

In order to further speed-up the calculations, clusters are supposed to
be spherical (no pastas) and nq(rrr) are parametrized.

Pearson,Chamel,Pastore,Goriely,Phys.Rev.C91, 018801 (2015).
Pearson,Chamel,Goriely,Ducoin,Phys.Rev.C85,065803(2012).
Onsi,Dutta,Chatri,Goriely,Chamel,Pearson, Phys.Rev.C77,065805 (2008).

Advantages of the ETFSI method:
very fast approximation to the full HFB equations
avoids the difficulties related to boundary conditions
Chamel et al.,Phys.Rev.C75(2007),055806.



Structure of nonaccreting neutron star crusts
With increasing density, the clusters keep essentially the same size
but become more and more dilute.

The crust-core transition predicted
by the ETFSI method agrees very
well with the instability analysis of
homogeneous nuclear matter.

n̄cc (fm−3) Pcc (MeV fm−3)
BSk27* 0.0919 0.439
BSk25 0.0856 0.211
BSk24 0.0808 0.268
BSk22 0.0716 0.291
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Chamel et al., Acta Phys. Pol.46,349(2015).
Pearson,Chamel,Goriely,Ducoin,Phys.Rev.C85,065803(2012).

The crust-core transition is found to be very smooth.



Role of proton shell effects on the composition of the
inner crust of a neutron star

The ordinary nuclear shell structure seems to be preserved apart
from Z = 40 (quenched spin-orbit?).
The energy differences between different configurations become
very small as the density increases!
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Role of proton pairing on the composition of the inner
crust of a neutron star

Proton shell effects are washed out due to pairing.
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At low densities, Z = 42 is
energetically favored over
Z = 40, but by less than
5× 10−4 MeV per nucleon.

A large range of values of
Z could thus be present in
a real neutron-star crust.

Pearson,Chamel,Pastore,Goriely,Phys.Rev.C91, 018801 (2015).

Due to proton pairing, the inner crust of a neutron star is expected to
contain many impurities.



Unified equations of state of neutron stars

The same functionals used in the crust can be also used in the core
(n, p, e−, µ−) thus providing a unified and thermodynamically
consistent description of neutron stars.

Tables of the full equations of state for HFB-19, HFB-20, and
HFB-21:
http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=J/A+A/559/A128

Fantina, Chamel, Pearson, Goriely, A&A 559, A128 (2013)

Analytical representations of the full equations of state (fortran
subroutines):
http://www.ioffe.ru/astro/NSG/BSk/

Potekhin, Fantina, Chamel, Pearson, Goriely, A&A 560, A48 (2013)

Equations of state for our latest functionals will appear soon.

http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=J/A+A/559/A128
http://www.ioffe.ru/astro/NSG/BSk/


Nuclear uncertainties in the mass-radius
Mass-radius relation of nonrotating and nonaccreting neutron stars:
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The radius of a 1.4M� neutron star is predicted to lie between 11.8
and 13 km.

Delsate et al., Phys. Rev. D 94, 023008 (2016)



Conclusions

We have developed accurately calibrated nuclear energy
density functionals fitted to essentially all nuclear mass data as
well as to microscopic calculations.
These functionals provide a unified and consistent description
of neutron-star crusts.
The equation of state of the outer crust is fairly well known,
but its composition depends on the nuclear structure of very
exotic nuclei (e.g. spin-orbit coupling, pairing).
The constitution of the inner crust is much more uncertain
due to the tiny energy differences between different
configurations (nuclear pastas?)
Magnetars may have different crusts.

Systematic studies of crustal properties for both nonaccreted and
accreted neutron stars are under way.


