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I. SUPRANUCLEAR DENSITY MATTER

A. Introduction

Neutron stars are the densest observable objects in the
Universe, attaining physical conditions of matter that cannot
be replicated on Earth. Inside neutron stars, the state of matter
ranges from ions (nuclei) embedded in a sea of electrons at
low densities in the outer crust, through increasingly neutron-
rich ions in the inner crust and outer core, to the supranuclear
densities reached in the center, where particles are squeezed
together more tightly than in atomic nuclei, and theory
predicts a host of possible exotic states of matter (Fig. 1).
The nature of matter at such densities is one of the great
unsolved problems in modern science, and this makes neutron
stars unparalleled laboratories for nuclear physics and quan-
tum chromodynamics (QCD) under extreme conditions.
The most fundamental macroscopic diagnostic of dense

matter is the pressure-density-temperature relation of bulk
matter, the equation of state (EOS). The EOS can be used to
infer key aspects of the microphysics, such as the role of
many-body interactions at nuclear densities or the presence of
deconfined quarks at high densities (Sec. I.B). Measuring the
EOS of supranuclear density matter is therefore of major
importance to nuclear physics. However, it is also critical to
astrophysics. The dense matter EOS is clearly central to
understanding the powerful, violent, and enigmatic objects
that are neutron stars. However, neutron star–neutron star and
neutron star–black hole binary inspiral and merger, prime
sources of gravitational waves and the likely engines of short
gamma-ray bursts (Nakar, 2007) also depend sensitively on
the EOS (Shibata and Taniguchi, 2011; Bauswein et al., 2012;
Faber and Rasio, 2012; Lackey et al., 2012; Takami, Rezzolla,
and Baiotti, 2014). The EOS affects merger dynamics, black
hole formation time scales, the precise gravitational wave and
neutrino signals, any associated mass loss and r-process
nucleosynthesis, and the attendant gamma-ray bursts and

optical flashes (Metzger et al., 2010; Hotokezaka et al.,
2011; Kumar and Zhang, 2015; Rosswog, 2015). The EOS
of dense matter is also vital to understanding core collapse
supernova explosions and their associated gravitational wave
and neutrino emission (Janka et al., 2007).1

B. The nature of matter: Major open questions

The properties of neutron stars, like those of atomic nuclei,
depend crucially on the interactions between protons and
neutrons (nucleons) governed by the strong force. This is
evident from the seminal work of Oppenheimer and Volkoff
(1939), which showed that the maximal mass of neutron stars
consisting of noninteracting neutrons is 0.7M⊙. To stabilize
heavier neutron stars, as realized in nature, requires repulsive
interactions between nucleons, which set in with increasing
density. At low energies, and thus low densities, the inter-
actions between nucleons are attractive, as they have to be to
bind neutrons and protons into nuclei. However, to prevent
nuclei from collapsing, repulsive two-nucleon and three-
nucleon interactions set in at higher momenta and densities.
Because neutron stars reach densities exceeding those in
atomic nuclei, this makes them particularly sensitive to
many-body forces (Akmal, Pandharipande, and Ravenhall,
1998), and recently it was shown that the dominant uncer-
tainty at nuclear densities is due to three-nucleon forces
(Hebeler et al., 2010; Gandolfi, Carlson, and Reddy, 2012).

FIG. 1. Schematic structure of a neutron star. The outer layer is a
solid ionic crust supported by electron degeneracy pressure.
Neutrons begin to leak out of ions (nuclei) at densities
∼4 × 1011 g=cm3 (the neutron drip density, which separates
the inner from the outer crust), where neutron degeneracy also
starts to play a role. At densities ∼2 × 1014 g=cm3, the nuclei
dissolve completely. This marks the crust-core boundary. In the
core, densities reach several times the nuclear saturation density
ρsat ¼ 2.8 × 1014 g=cm3 (see text).

1Note that while most neutron stars, even during the binary
inspiral phase, can be described by the cold EOS that is the focus of
this Colloquium (see Sec. I.C), temperature corrections must be
applied when describing either newborn neutron stars in the
immediate aftermath of a supernova or the hot differentially rotating
remnants that may survive for a short period of time following a
compact object merger. The cold and hot EOS must of course connect
and be consistent with one another.

Anna L. Watts et al.: Colloquium: Measuring the neutron star …
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predicts a host of possible exotic states of matter (Fig. 1).
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stars unparalleled laboratories for nuclear physics and quan-
tum chromodynamics (QCD) under extreme conditions.
The most fundamental macroscopic diagnostic of dense

matter is the pressure-density-temperature relation of bulk
matter, the equation of state (EOS). The EOS can be used to
infer key aspects of the microphysics, such as the role of
many-body interactions at nuclear densities or the presence of
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The properties of neutron stars, like those of atomic nuclei,
depend crucially on the interactions between protons and
neutrons (nucleons) governed by the strong force. This is
evident from the seminal work of Oppenheimer and Volkoff
(1939), which showed that the maximal mass of neutron stars
consisting of noninteracting neutrons is 0.7M⊙. To stabilize
heavier neutron stars, as realized in nature, requires repulsive
interactions between nucleons, which set in with increasing
density. At low energies, and thus low densities, the inter-
actions between nucleons are attractive, as they have to be to
bind neutrons and protons into nuclei. However, to prevent
nuclei from collapsing, repulsive two-nucleon and three-
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1998), and recently it was shown that the dominant uncer-
tainty at nuclear densities is due to three-nucleon forces
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solid ionic crust supported by electron degeneracy pressure.
Neutrons begin to leak out of ions (nuclei) at densities
∼4 × 1011 g=cm3 (the neutron drip density, which separates
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dissolve completely. This marks the crust-core boundary. In the
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1Note that while most neutron stars, even during the binary
inspiral phase, can be described by the cold EOS that is the focus of
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application of modern optimization and statistical methods, together
with high-performance computing, has revolutionized nuclear DFT
during recent years.

In our study, we use quasi-local Skyrme functionals15 in the
particle–hole channel augmented by the density-dependent, zero-
range pairing term. The commonly used Skyrme EDFs reproduce total
binding energies with a root mean square error of the order of
1–4 MeV (refs 15, 16), and the agreement with the data can be signifi-
cantly improved by adding phenomenological correction terms17. The
Skyrme DFT approach has been successfully tested over the entire
chart of nuclides on a broad range of phenomena, and it usually per-
forms quite well when applied to energy differences (such as S2n), radii
and nuclear deformations. Other well-calibrated mass models include

the microscopic–macroscopic finite-range droplet model (FRDM)18,
the Brussels–Montreal Skyrme–HFB models based on the Hartree–
Fock–Bogoliubov (HFB) method17 and Gogny force models19,20.

Figure 2 illustrates the difficulties with theoretical extrapolations
towards drip lines. Shown are the S2n values for the isotopic chain of
even–even erbium isotopes predicted with different EDF, SLy421, SV-
min13, UNEDF015, UNEDF122, and with the FRDM18 and HFB-2117

models. In the region for which experimental data are available, all
models agree and well reproduce the data. However, the discrepancy
between various predictions steadily grows when moving away from
the region of known nuclei, because the dependence of the effective
force on the neutron-to-proton asymmetry (neutron excess) is poorly
determined. In the example considered, the neutron drip line is
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Figure 2 | Calculated and experimental two-neutron separation energies of
even–even erbium isotopes. Calculations performed in this work using SLy4,
SV-min, UNEDF0 and UNEDF1 functionals are compared to experiment2 and
FRDM18 and HFB-2117 models. The differences between model predictions are
small in the region where data exist (bracketed by vertical arrows) and grow

steadily when extrapolating towards the two-neutron drip line (S2n 5 0). The
bars on the SV-min results indicate statistical errors due to uncertainty in the
coupling constants of the functional. Detailed predictions around S2n 5 0 are
illustrated in the right inset. The left inset depicts the calculated and
experimental two-proton separation energies at N 5 76.
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Figure 1 | Nuclear even–even landscape as of 2012. Map of bound even–even
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Mean drip lines and their uncertainties (red) were obtained by averaging the
results of different models. The two-neutron drip line of SV-min (blue) is

shown together with the statistical uncertainties at Z 5 12, 68 and 120 (blue
error bars). The S2n 5 2 MeV line is also shown (brown) together with its
systematic uncertainty (orange). The inset shows the irregular behaviour of the
two-neutron drip line around Z 5 100.
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Lattice QCD

• requires extreme amounts 
of computational resources

• currently limited to 1- or 2-nucleon systems

• current accuracy insufficient for 
precision nuclear structure
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Why is textbook nuclear physics so hard?
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Momentum units (� = c = 1): typical relative momentum
in large nucleus � 1 fm�1 � 200 MeV but . . .

Repulsive core =⇥ large high-k (� 2 fm�1) components
Dick Furnstahl RG in Nuclear Physics

• constructed to fit NN scattering data (long-wavelength information)

• long-range part dominated by one pion exchange interaction

• short range part strongly model dependent!

• traditional NN interactions contain strongly repulsive core at small distance
‣ many-body problem hard to solve using basis expansion!
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Nuclear effective degrees of freedom

• if a nucleus is probed at high energies, 
  nucleon substructure is resolved

• at low energies, details are not resolved



Nuclear effective degrees of freedom

• if a nucleus is probed at high energies, 
  nucleon substructure is resolved

• at low energies, details are not resolved

• replace fine structure by something 
simpler (compare multipole expansion)

Resolution

effective field theory



• choose relevant degrees of 
freedom: here nucleons and pions

• operators constrained by 
symmetries of QCD

• short-range physics captured in 
short-range couplings

• separation of scales: Q << Λb, 
breakdown scale Λb~500 MeV

• power-counting: expand in Q/Λb

• systematic, obtain error estimates

• many-body forces appear naturally

Chiral effective field theory for nuclear forces
                    NN!       3N!           4N

2006

1994

2011



Aren’t 3N forces unnatural? Do we really need them?

Why are there three-nucleon (3N) forces?

Nucleons are finite-mass composite particles,

can be excited to resonances

dominant contribution from !(1232 MeV)

+ shorter-range parts

tidal effects leads to 3-body forces in earth-sun-moon system

Why are there three-nucleon (3N) forces?

Nucleons are finite-mass composite particles,

can be excited to resonances

dominant contribution from !(1232 MeV)

+ shorter-range parts

tidal effects leads to 3-body forces in earth-sun-moon system

Consider classical analog: tidal effects in earth-sun-moon system

 

• force between earth and moon depends on the position of sun

• tidal deformations represent internal excitations

• describe system using point particles           3N forces inevitable!

• nucleons are composite particles, can also be excited

• change of resolution change excitations that can be described explicitly

‣ existence of three-nucleon forces natural

‣ crucial question: how important are their contributions?
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need to be fit to three-body 
and/or higher-body systems
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long (2π)        intermediate (π)     short-range

c1, c3, c4 terms cD term cE term

first incorporation in calculations of 
neutron and nuclear matter
Tews, Krüger, KH, Schwenk, PRL 110, 032504 (2013)
Krüger, Tews, KH, Schwenk, PRC 88, 025802 (2013)

Many-body forces in chiral EFT

2006

1994

2011

all terms predicted
(no new low-energy couplings)

values of LECs c1, c3, c4 still 
contain large uncertainties!
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long (2π)        intermediate (π)     short-range

c1, c3, c4 terms cD term cE term

first incorporation in calculations of 
neutron and nuclear matter
Tews, Krüger, KH, Schwenk, PRL 110, 032504 (2013)
Krüger, Tews, KH, Schwenk, PRC 88, 025802 (2013)
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2011

first calculation of matrix elements for 
ab initio studies of matter and nuclei
KH, Krebs, Epelbaum, Golak, Skibinski, PRC 91, 044001(2015)

Many-body forces in chiral EFT
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Neglecting recoil, form factor F(q) is 
the Fourier transform of charge 

distribution

As Q increases, nuclear 
size modifies formula

and nuclear size

Q2: -(4-momentum)2 
of the virtual photon
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q2 = −4E # E sin2 θ
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4-momentum transfer

Uniform interior is a clear  
manifestation of nuclear 
saturation, namely the 

existence of an equilibrium 
density   

Nuclear Saturation  
A Hallmark of the Nuclear DynamicsOverview RG Summary Extras Physics Resolution Forces Filter Coupling

Why is textbook nuclear physics so hard?

VL=0(k , k �) ⇤
�

r2 dr j0(kr) V (r) j0(k �r) = ⌅k |VL=0|k �⇧ =⇥ Vkk � matrix

Momentum units (� = c = 1): typical relative momentum
in large nucleus � 1 fm�1 � 200 MeV but . . .

Repulsive core =⇥ large high-k (� 2 fm�1) components
Dick Furnstahl RG in Nuclear Physics

l̄S

Equation of state of symmetric nuclear matter:
nuclear saturation

Batty et. al, 
Karlsruhe (1987)
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• remarkable agreement between different many-body frameworks
• very good agreement between theory and experiment for masses of 
oxygen and calcium isotopes based on specific chiral interactions
• contributions from 3N force play important role for drip line

Studies of neutron-rich nuclei:
Neutron dripline and the oxygen anomaly

adapted from 
KH et al. , Ann. Rev. Nucl. Part. Sci.165, 457 (2015)

16 18 20 22 24 26 28
Mass Number A

-180

-170

-160

-150

-140

-130

En
er

gy
 (M

eV
)

MR-IM-SRG
IT-NCSM
SCGF
CC AME 2012

oxygen
isotopes

Gallant et al. 
PRL 109, 032506 (2012)

Wienholtz et al. 
Nature 498, 346 (2013)

neutron 
dripline



Ab initio calculations of heavier nuclei
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FIG. 5: (Color online) Ground-state energies from CR-CC(2,3) for (a) the NN+3N-induced Hamiltonian starting from the N3LO and N2LO-
optimized NN interaction and (c) the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c and Λ3N = 350 MeV/c. The boxes represent the
spread of the results from α = 0.04 fm4 to α = 0.08 fm4, and the tip points into the direction of smaller values of α. Also shown are the
contributions of the CR-CC(2,3) triples correction to the (b) NN+3N-induced and (d) NN+3N-full results. All results employ !Ω = 24 MeV
and 3N interactions with E3max = 18 in NO2B approximation and full inclusion of the 3N interaction in CCSD up to E3max = 12. Experimental
binding energies [32] are shown as black bars.

ies have shown that for both cutoffs, the induced 4N inter-
action are small up into the sd-shell [6, 9]. For heavier nuclei,
Fig. 5(c) reveals that the α-dependence of the ground-state
energies remains small for Λ3N = 400 MeV/c up to the heav-
iest nuclei. Thus, the attractive induced 4N contributions that
originate from the initial NN interaction are canceled by ad-
ditional repulsive 4N contributions originating from the ini-
tial chiral 3N interaction. By reducing the initial 3N cutoff
to Λ3N = 350 MeV/c, the repulsive 4N component resulting
for the initial 3N interaction is weakened [9] and the attrac-
tive induced 4N from the initial NN prevails, leading to an
increased α-dependence indicating an attractive net 4N con-
tribution. All of these effects are larger than the truncation un-
certainties of the calculations, such as the cluster truncation,
as is evident by the comparatively small triples contributions
shown in Fig. 5(b) and (d).

Taking advantage of the cancellation of induced 4N terms
for the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c we
compare the energies to experiment. Throughout the different
isotopic chains starting from Ca, the experimental pattern of
the binding energies is reproduced up to a constant shift of
the order of 1 MeV per nucleon. The stability and qualitative
agreement of the these results over an unprecedented mass
range is remarkable, given the fact that the Hamiltonian was
determined in the few-body sector alone.

When considering the quantitative deviations, one has to
consider consistent chiral 3N interaction at N3LO, and the
initial 4N interaction. In particular for heavier nuclei, the

contribution of the leading-order 4N interaction might be siz-
able. Another important future aspect is the study of other
observables, such as charge radii. In the present calcula-
tions the charge radii of the HF reference states are sys-
tematically smaller than experiment and the discrepancy in-
creases with mass. For 16O, 40Ca, 88Sr, and 120Sn the cal-
culated charge radii are 0.3 fm, 0.5 fm, 0.7 fm, and 1.0 fm
too small [32]. These deviations are larger than the ex-
pected effects of beyond-HF correlations and consistent SRG-
evolutions of the radii. This discrepancy will remain a chal-
lenge for future studies of medium-mass and heavy nuclei
with chiral Hamiltonians.

Conclusions. In this Letter we have presented the first
accurate ab initio calculations for heavy nuclei using SRG-
evolved chiral interactions. We have identified and eliminated
a number of technical hurdles, e.g., regarding the SRG model
space, that have inhibited state-of-the-art medium-mass ap-
proaches to address heavy nuclei. As a result, many-body
calculations up to 132Sn are now possible with controlled un-
certainties on the order of 2%. The qualitative agreement of
ground-state energies for nuclei ranging from 16O to 132Sn
obtained in a single theoretical framework demonstrates the
potential of ab initio approaches based on chiral Hamiltoni-
ans. This is a first direct validation of chiral Hamiltonians in
the regime of heavy nuclei using ab initio techniques. Future
studies will have to involve consistent chiral Hamiltonians at
N3LO considering initial and SRG-induced 4N interactions
and provide an exploration of other observables.

Binder et al., Phys. Lett B 736, 119 (2014)

coupled cluster (CC) framework



Ab initio calculations of heavier nuclei

• spectacular increase in range of applicability of ab initio many body frameworks

• significant discrepancies to experimental data for heavy nuclei for 

(most of) presently used nuclear interactions

• need to quantify theoretical uncertainties
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ies have shown that for both cutoffs, the induced 4N inter-
action are small up into the sd-shell [6, 9]. For heavier nuclei,
Fig. 5(c) reveals that the α-dependence of the ground-state
energies remains small for Λ3N = 400 MeV/c up to the heav-
iest nuclei. Thus, the attractive induced 4N contributions that
originate from the initial NN interaction are canceled by ad-
ditional repulsive 4N contributions originating from the ini-
tial chiral 3N interaction. By reducing the initial 3N cutoff
to Λ3N = 350 MeV/c, the repulsive 4N component resulting
for the initial 3N interaction is weakened [9] and the attrac-
tive induced 4N from the initial NN prevails, leading to an
increased α-dependence indicating an attractive net 4N con-
tribution. All of these effects are larger than the truncation un-
certainties of the calculations, such as the cluster truncation,
as is evident by the comparatively small triples contributions
shown in Fig. 5(b) and (d).

Taking advantage of the cancellation of induced 4N terms
for the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c we
compare the energies to experiment. Throughout the different
isotopic chains starting from Ca, the experimental pattern of
the binding energies is reproduced up to a constant shift of
the order of 1 MeV per nucleon. The stability and qualitative
agreement of the these results over an unprecedented mass
range is remarkable, given the fact that the Hamiltonian was
determined in the few-body sector alone.

When considering the quantitative deviations, one has to
consider consistent chiral 3N interaction at N3LO, and the
initial 4N interaction. In particular for heavier nuclei, the

contribution of the leading-order 4N interaction might be siz-
able. Another important future aspect is the study of other
observables, such as charge radii. In the present calcula-
tions the charge radii of the HF reference states are sys-
tematically smaller than experiment and the discrepancy in-
creases with mass. For 16O, 40Ca, 88Sr, and 120Sn the cal-
culated charge radii are 0.3 fm, 0.5 fm, 0.7 fm, and 1.0 fm
too small [32]. These deviations are larger than the ex-
pected effects of beyond-HF correlations and consistent SRG-
evolutions of the radii. This discrepancy will remain a chal-
lenge for future studies of medium-mass and heavy nuclei
with chiral Hamiltonians.

Conclusions. In this Letter we have presented the first
accurate ab initio calculations for heavy nuclei using SRG-
evolved chiral interactions. We have identified and eliminated
a number of technical hurdles, e.g., regarding the SRG model
space, that have inhibited state-of-the-art medium-mass ap-
proaches to address heavy nuclei. As a result, many-body
calculations up to 132Sn are now possible with controlled un-
certainties on the order of 2%. The qualitative agreement of
ground-state energies for nuclei ranging from 16O to 132Sn
obtained in a single theoretical framework demonstrates the
potential of ab initio approaches based on chiral Hamiltoni-
ans. This is a first direct validation of chiral Hamiltonians in
the regime of heavy nuclei using ab initio techniques. Future
studies will have to involve consistent chiral Hamiltonians at
N3LO considering initial and SRG-induced 4N interactions
and provide an exploration of other observables.

Binder et al., Phys. Lett B 736, 119 (2014)

• power counting?

• missing NN and many-body contributions? 

• optimized fitting procedures?, 

• selection of fitting observables 

4He 16O
22O 24O

36Ca 40Ca
48Ca 52Ca

54Ca 60Ca
48Ni 56Ni

68Ni 78Ni

-9

-8

-7

-6

E/
A

 (M
eV

)

2.0/2.0 (PWA)
2.2/2.0 (EM)
2.0/2.0 (EM)
1.8/2.0 (EM)
exp.
extrapol.

Simonis, Stroberg et al., in preparation

coupled cluster (CC) framework

in-medium SRG (IMSRG) framework



The size of the atomic nucleus: 
challenges from novel high-precision measurements
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Figure 2 | Predictions for observables related to the neutron distribution in 48Ca. Neutron skin Rskin (a), r.m.s. point-neutron radius Rn (b) and electric
dipole polarizability ↵D (c) plotted versus the r.m.s. point-proton radius Rp. The ab initio predictions with NNLOsat (red circles) and chiral interactions of
ref. 29 (squares) are compared to the DFT results with the energy density functionals SkM⇤, SkP, SLy4, SV-min, UNEDF0 and UNEDF1 (ref. 20; diamonds).
This is a representative subset of DFT results; for other DFT predictions, the reader is referred to ref. 20. The theoretical error bars estimate uncertainties
from truncations of the employed method and model space (see Methods for details). The blue line represents a linear fit to the data. The blue band
encompasses all error bars and estimates systematic uncertainties. The horizontal green line marks the experimental value of Rp. Its intersection with the
blue line and the blue band yields the vertical orange line and orange band, respectively, giving the predicted range for the ordinate.
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Figure 3 | Weak-charge observables in 48Ca. a, Root mean square point-neutron radius Rn in 48Ca versus the weak-charge form factor FW(qc) at the CREX
momentum qc =0.778 fm�1 obtained in ab initio calculations with NNLOsat (red circle) and chiral interactions of ref. 29 (squares). The theoretical error
bars estimate uncertainties from truncations of the employed method and model space (see Methods for details). The width of the horizontal orange band
shows the predicted range for Rn and is taken from Fig. 2b. The width of the vertical orange band is taken from Supplementary Fig. 2 and shows the
predicted range for FW(qc). b, Weak-charge form factor FW(q) as a function of momentum transfer q with NNLOsat (red line) and DFT with the energy
density functional SV-min21 (diamonds). The orange horizontal band shows FW(qc). c, Charge density (blue line) and (negative of) weak-charge density
(red line). The weak-charge density extends well beyond ⇢ch as it is strongly weighted by the neutron distribution. The weak charge of 48Ca, obtained by
integrating the weak-charge density is QW =�26.22 (for the weak charge of the proton and neutron see Methods).

is 0.12.Rskin . 0.15 fm. Figure 2a shows two remarkable features.
First, the ab initio calculations yield neutron skins that are almost
independent of the employed interaction. This is due to the strong
correlation between the Rn and Rp in this nucleus (Fig. 2b). In
contrast, DFT models exhibit practically no correlation between
Rskin and Rp. Second, the ab initio calculations predict a significantly
smaller neutron skin than the DFT models. The predicted range
is also appreciably lower than the combined DFT estimate of
0.176(18) fm (ref. 20) and is well below the relativistic DFT value of
Rskin =0.22(2) fm (ref. 20). To shed light on the lower values of Rskin
predicted by ab initio theory, we computed the neutron separation
energy and the three-point binding energy di�erence in 48Ca (both
being indicators of the N =28 shell gap). Our results are consistent
with experiment and indicate the pronounced magicity of 48Ca
(Supplementary Table 2), whereas DFT results usually significantly
underestimate the N =28 shell gap30. The shortcoming of DFT for
48Ca is also reflected in Rp. Although many nuclear energy density
functionals are constrained to the Rp of 48Ca (refs 18,30), the results
of DFT models shown in Fig. 2a overestimate this quantity.

For Rn (Fig. 2b) we find 3.47.Rn . 3.60 fm. Most of the DFT
results for Rn are outside this range, but fall within the blue
band. Comparing Fig. 2a,b suggests that a measurement of a
small neutron skin in 48Ca would provide a critical test for ab
initio models. For the electric dipole polarizability (Fig. 2c) our
prediction 2.19.↵D.2.60 fm3 is consistent with the DFT value
of 2.306(89) fm3 (ref. 20). Again, most of the DFT results fall
within the ab initio uncertainty band. The result for ↵D will be
tested by anticipated experimental data from the Darmstadt–Osaka
collaboration13,14. The excellent correlation between Rp, Rn and ↵D
seen in Fig. 2b,c demonstrates the usefulness of Rn and ↵D as probes
of the neutron density.

The weak-charge radiusRW is another quantity that characterizes
the size of the nucleus. The CREX experiment will measure the
parity-violating asymmetry Apv in electron scattering on 48Ca
at the momentum transfer qc = 0.778 fm�1. This observable is
proportional to the ratio of the weak-charge and electromagnetic
charge form factors FW(qc)/Fch(qc) (ref. 12). Making some
assumptions about the weak-charge form factor, one can deduce RW
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Figure 3 | Weak-charge observables in 48Ca. a, Root mean square point-neutron radius Rn in 48Ca versus the weak-charge form factor FW(qc) at the CREX
momentum qc =0.778 fm�1 obtained in ab initio calculations with NNLOsat (red circle) and chiral interactions of ref. 29 (squares). The theoretical error
bars estimate uncertainties from truncations of the employed method and model space (see Methods for details). The width of the horizontal orange band
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is 0.12.Rskin . 0.15 fm. Figure 2a shows two remarkable features.
First, the ab initio calculations yield neutron skins that are almost
independent of the employed interaction. This is due to the strong
correlation between the Rn and Rp in this nucleus (Fig. 2b). In
contrast, DFT models exhibit practically no correlation between
Rskin and Rp. Second, the ab initio calculations predict a significantly
smaller neutron skin than the DFT models. The predicted range
is also appreciably lower than the combined DFT estimate of
0.176(18) fm (ref. 20) and is well below the relativistic DFT value of
Rskin =0.22(2) fm (ref. 20). To shed light on the lower values of Rskin
predicted by ab initio theory, we computed the neutron separation
energy and the three-point binding energy di�erence in 48Ca (both
being indicators of the N =28 shell gap). Our results are consistent
with experiment and indicate the pronounced magicity of 48Ca
(Supplementary Table 2), whereas DFT results usually significantly
underestimate the N =28 shell gap30. The shortcoming of DFT for
48Ca is also reflected in Rp. Although many nuclear energy density
functionals are constrained to the Rp of 48Ca (refs 18,30), the results
of DFT models shown in Fig. 2a overestimate this quantity.

For Rn (Fig. 2b) we find 3.47.Rn . 3.60 fm. Most of the DFT
results for Rn are outside this range, but fall within the blue
band. Comparing Fig. 2a,b suggests that a measurement of a
small neutron skin in 48Ca would provide a critical test for ab
initio models. For the electric dipole polarizability (Fig. 2c) our
prediction 2.19.↵D.2.60 fm3 is consistent with the DFT value
of 2.306(89) fm3 (ref. 20). Again, most of the DFT results fall
within the ab initio uncertainty band. The result for ↵D will be
tested by anticipated experimental data from the Darmstadt–Osaka
collaboration13,14. The excellent correlation between Rp, Rn and ↵D
seen in Fig. 2b,c demonstrates the usefulness of Rn and ↵D as probes
of the neutron density.

The weak-charge radiusRW is another quantity that characterizes
the size of the nucleus. The CREX experiment will measure the
parity-violating asymmetry Apv in electron scattering on 48Ca
at the momentum transfer qc = 0.778 fm�1. This observable is
proportional to the ratio of the weak-charge and electromagnetic
charge form factors FW(qc)/Fch(qc) (ref. 12). Making some
assumptions about the weak-charge form factor, one can deduce RW
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2

the precise value of the measured electric dipole polariz-
ability of 208Pb: α

D
=(20.1±0.6) fm3.

It is the purpose of this work to examine possible corre-
lations between the dipole polarizability and the neutron-
skin thickness of 208Pb. Generally, to assess a linear cor-
relation between two observables A and B within one

given model, one resorts to a least-squares covariance
analysis, with the correlation coefficient

CAB =
|∆A∆B|

√

∆A2 ∆B2
, (1)

providing the proper statistical measure [20]. In Eq. (1)
the overline means an average over the statistical sam-
ple. A value of |CAB| = 1 means that the two observables
are fully correlated whereas CAB = 0 implies that they
are totally uncorrelated. Recently, the statistical mea-
sure CAB was used to study correlations between various
nuclear observables [8] in the context of the Skyrme SV-
min model [21]. In particular, it was concluded that good
isovector indicators that strongly correlate with the neu-
tron radius of 208Pb are its electric dipole polarizability as
well as neutron skins and radii of neutron-rich nuclei [8].
Indeed, by relying on the strong correlation between α

D

and rskin (CAB=0.98) predicted by such DFT calcula-
tions, Tamii et al. deduced a value of 0.156+0.025

−0.021 fm for
the neutron-skin thickness of 208Pb.

However, the correlation coefficient CAB cannot as-
sess systematic errors that reflect constraints and limita-
tions of a given model [8]. Such systematic uncertainties
can only emerge by comparing different models (or suffi-
ciently flexible variants of a model) and this is precisely
what has been done in this Letter. To assess the linear
dependence between two observables A and B for a sam-
ple of several models, the correlation coefficient Cmodels

AB is
now obtained by averaging over the predictions of those
models. Although the correlation coefficient Cmodels

AB de-
termined in such a way may not have a clear statistical
interpretation, it is nevertheless an excellent indicator of
linear dependence.
To this end, we have computed the distribution of E1

strength using both relativistic and non-relativistic DFT
approaches with different EDFs. In all cases, these self-
consistent models have been calibrated to selected global
properties of finite nuclei and some parameters of nuclear
matter. Once calibrated, these models are used without
any further adjustment to compute the E1 strength R

E1

using a consistent random-phase approximation. The
electric dipole polarizability is then obtained from the
inverse energy-weighted sum [8, 18, 22]:

α
D
=

8π

9
e2

∫

∞

0

ω−1R
E1
(ω) dω . (2)

The relation between α
D

and rskin for 208Pb is dis-
played in Fig. 1 using the predictions from the 48 EDFs
chosen in this work. In particular, the up-triangles

!"#$

"%&!

FIG. 1: (Color online) Predictions from 48 nuclear EDFs dis-
cussed in the text for the electric dipole polarizability and
neutron-skin thickness of 208Pb. Constrains on the neutron-
skin thickness from PREX [3] and on the dipole polarizability
from RCNP [19] have been incorporated into the plot.

mark predictions from a broad choice of Skyrme EDFs
that have been widely used in the literature: SGII,
SIII, SkI3, SkI4, SkM∗, SkO, SkP, SkX, SLy4, SLy6,
(see Refs. [23, 24] for the original references), Sk255
[25], BSk17 [26], LNS [27], and UNEDF0 and UNEDF1
[28]. In addition, we consider a collection of relativistic
and Skyrme EDFs that have been systematically varied
around an optimal model without a significant deterio-
ration in the quality of the fit. (This is particularly true
for the case of the isovector interaction which at present
remains poorly constrained.) Those results are marked
in Fig. 1 as NL3/FSU [18, 29] (circles), DD-ME [30]
(squares), and Skyrme-SV [21] (down-triangles). Note
that the “stars” in the figure are meant to represent the
predictions from the optimal models within the chain of
systematic variations of the symmetry energy. At first
glance a clear (positive) correlation between the dipole
polarizability and the neutron skin is discerned.

Yet on closer examination, one observes a signifi-
cant scatter in the results, especially for the standard
Skyrme models. In particular, by including the predic-
tions from all the 48 EDFs considered here, the correla-
tion Cmodels

AB =0.77 is obtained. However, as seen in Ta-
ble I, within each set of the systematically varied mod-

Piekarewicz, 
PRC 85, 041302 (2012)
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Figure 2 | Examples of hyperfine structure spectra measured for the Ca
isotopes in the 393-nm 4s 2S1/2!4p 2P3/2 ionic transition. The solid lines
show the fit with a Voigt profile. Frequency values are relative to the centroid
of 40Ca. The position of each hfs centroid is indicated by the dashed lines.

magnitude. It is now possible to routinely perform experiments with
beams of ⇠104 ions s�1 (ref. 23).

In this work, we have further optimized the photon detection
sensitivity and at the same time reduced further the photon
background events8, now allowing the study of calcium isotopes
produced with a yield of only a few hundred ions per second. While
preserving the high resolution, this sensitivity surpasses the previous
limit by two orders of magnitude, achieved by an ultrasensitive
particle detection technique employed on Ca isotopes18.

The short-lived Ca isotopes studied in this work were produced
at the ISOLDE on-line isotope separator, located at the European
Center for Nuclear Research, CERN. High-energy proton pulses
with intensities of ⇠3⇥ 1013 protons/pulse at 1.4GeV impinged
every 2.4 s on an uranium carbide target to create radioactive
species of a wide range of chemical elements. The Ca isotopes
were selected from the reaction products by using a three-step
laser ionization scheme provided by the Resonance Ionization Laser
Ion Source (RILIS; ref. 24). A detailed sketch of the di�erent
experimental processes from the ion beam production to the
fluorescence detection is shown in Fig. 1.

After selective ionization, Ca ions (Ca+) were extracted from
the ion source and accelerated up to 40 keV. The isotope of
interest was mass-separated by using the High-Resolution Mass
Separator (HRS). The selected isotopes were injected into a gas-
filled radiofrequency trap (RFQ) to accumulate the incoming
ions. After a few milliseconds, bunches of ions of ⇠5 µs temporal
width were extracted and redirected into a dedicated beam
line for collinear laser spectroscopy experiments (COLLAPS). At
COLLAPS, the ion beamwas superimposed with a continuous wave
laser beam fixed at a wavelength of 393 nm (see Methods), close
to the 4s 2S1/2 !4p 2P3/2 transition in the Ca+. The laser frequency
was fixed to a constant value, while the ion velocity was varied
inside the optical detection region. A change in the ion velocity
corresponds to a variation of laser frequency in the ion rest frame.
This Doppler tuning of the laser frequency was used to scan the
hyperfine structure (hfs) components of the 4s 2S1/2 ! 4p 2P3/2
transition. At resonance frequencies, transitions between di�erent
hfs levels were excited, and subsequently the fluorescence photons
were detected by a light collection system consisting of four lenses
and photomultiplier tubes (PMT) (see ref. 8 for details). The photon
signals were accepted only when the ion bunch passed in front of
the light collection region, reducing the background counts from
scattered laser light and PMT dark counts by a factor of ⇠104. A
sample of the hfs spectra measured during the experiment is shown
in Fig. 2. Isotopes with nuclear spin I =0 do not exhibit hyperfine
structure splitting. Consequently, only a single transition is observed
for 52Ca.
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Figure 3 | Charge radii of Ca isotopes. a, Experimental charge radii
compared to ab initio calculations with chiral EFT interactions NNLOsat,
SRG1, SRG2, as well as DFT calculations with the UNEDF0 functional.
Experimental error bars are smaller than the symbols. The absolute values
were obtained from the reference radius of 40Ca (Rch =3.478(2) fm;
ref. 26). The values of 39Ca and 41,42Ca are taken from refs 45,46,
respectively. A systematic theoretical uncertainty of 1% is estimated for the
absolute values due to the truncation level of the coupled-cluster method
and the finite basis space employed in the computation. b, Experimental
r.m.s. charge radius in 52Ca relative to that in 48Ca compared to the ab initio
results as well as those of representative density functional theory (DFT)
and configuration interaction (CI) calculations. The systematic
uncertainties in the theoretical predictions are largely cancelled when the
di�erences between r.m.s. charge radii are calculated (dotted horizontal
blue lines). Experimental uncertainties are represented by the horizontal
red lines (statistical) and the grey shaded band (systematic).

The isotope shifts were extracted from the fit of the hfs
experimental spectra, assuming multiple Voigt profiles in the � 2-
minimization (see Methods). The measured isotope shift relative
to the reference isotope 40Ca, and the corresponding change in the
mean-square charge radius are shown in Table 1. Statistical errors
(parentheses) correspond to the uncertainty in the determination
of the peak positions in the hfs spectra. The systematic errors in
the isotope shift (square brackets) are mainly due to the uncertainty
in the beam energy, which is also the main contribution to
the uncertainty in the charge radius. Independent high-precision
measurements of isotope shifts on stable Ca isotopes25 were used for
an accurate determination of the kinetic energy of each isotope. The
stability of the beam energy was controlled by measuring the stable
40Ca, before and after the measurement of each isotope of interest.

Our experimental results (Table 1 and Fig. 3) show that the root-
mean-square (r.m.s.) charge radius of 49Ca presents a considerable
increase with respect to 48Ca, �hr 2i48,49 = 0.097(4) fm2, but much
smaller than previously suggested17. The increase continues towards
N = 32, resulting in a very large charge radius for 52Ca, with an
increase relative to 48Ca of �hr 2i48,52 =0.530(5) fm2.
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Figure 2 | Examples of hyperfine structure spectra measured for the Ca
isotopes in the 393-nm 4s 2S1/2!4p 2P3/2 ionic transition. The solid lines
show the fit with a Voigt profile. Frequency values are relative to the centroid
of 40Ca. The position of each hfs centroid is indicated by the dashed lines.

magnitude. It is now possible to routinely perform experiments with
beams of ⇠104 ions s�1 (ref. 23).

In this work, we have further optimized the photon detection
sensitivity and at the same time reduced further the photon
background events8, now allowing the study of calcium isotopes
produced with a yield of only a few hundred ions per second. While
preserving the high resolution, this sensitivity surpasses the previous
limit by two orders of magnitude, achieved by an ultrasensitive
particle detection technique employed on Ca isotopes18.

The short-lived Ca isotopes studied in this work were produced
at the ISOLDE on-line isotope separator, located at the European
Center for Nuclear Research, CERN. High-energy proton pulses
with intensities of ⇠3⇥ 1013 protons/pulse at 1.4GeV impinged
every 2.4 s on an uranium carbide target to create radioactive
species of a wide range of chemical elements. The Ca isotopes
were selected from the reaction products by using a three-step
laser ionization scheme provided by the Resonance Ionization Laser
Ion Source (RILIS; ref. 24). A detailed sketch of the di�erent
experimental processes from the ion beam production to the
fluorescence detection is shown in Fig. 1.

After selective ionization, Ca ions (Ca+) were extracted from
the ion source and accelerated up to 40 keV. The isotope of
interest was mass-separated by using the High-Resolution Mass
Separator (HRS). The selected isotopes were injected into a gas-
filled radiofrequency trap (RFQ) to accumulate the incoming
ions. After a few milliseconds, bunches of ions of ⇠5 µs temporal
width were extracted and redirected into a dedicated beam
line for collinear laser spectroscopy experiments (COLLAPS). At
COLLAPS, the ion beamwas superimposed with a continuous wave
laser beam fixed at a wavelength of 393 nm (see Methods), close
to the 4s 2S1/2 !4p 2P3/2 transition in the Ca+. The laser frequency
was fixed to a constant value, while the ion velocity was varied
inside the optical detection region. A change in the ion velocity
corresponds to a variation of laser frequency in the ion rest frame.
This Doppler tuning of the laser frequency was used to scan the
hyperfine structure (hfs) components of the 4s 2S1/2 ! 4p 2P3/2
transition. At resonance frequencies, transitions between di�erent
hfs levels were excited, and subsequently the fluorescence photons
were detected by a light collection system consisting of four lenses
and photomultiplier tubes (PMT) (see ref. 8 for details). The photon
signals were accepted only when the ion bunch passed in front of
the light collection region, reducing the background counts from
scattered laser light and PMT dark counts by a factor of ⇠104. A
sample of the hfs spectra measured during the experiment is shown
in Fig. 2. Isotopes with nuclear spin I =0 do not exhibit hyperfine
structure splitting. Consequently, only a single transition is observed
for 52Ca.
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Figure 3 | Charge radii of Ca isotopes. a, Experimental charge radii
compared to ab initio calculations with chiral EFT interactions NNLOsat,
SRG1, SRG2, as well as DFT calculations with the UNEDF0 functional.
Experimental error bars are smaller than the symbols. The absolute values
were obtained from the reference radius of 40Ca (Rch =3.478(2) fm;
ref. 26). The values of 39Ca and 41,42Ca are taken from refs 45,46,
respectively. A systematic theoretical uncertainty of 1% is estimated for the
absolute values due to the truncation level of the coupled-cluster method
and the finite basis space employed in the computation. b, Experimental
r.m.s. charge radius in 52Ca relative to that in 48Ca compared to the ab initio
results as well as those of representative density functional theory (DFT)
and configuration interaction (CI) calculations. The systematic
uncertainties in the theoretical predictions are largely cancelled when the
di�erences between r.m.s. charge radii are calculated (dotted horizontal
blue lines). Experimental uncertainties are represented by the horizontal
red lines (statistical) and the grey shaded band (systematic).

The isotope shifts were extracted from the fit of the hfs
experimental spectra, assuming multiple Voigt profiles in the � 2-
minimization (see Methods). The measured isotope shift relative
to the reference isotope 40Ca, and the corresponding change in the
mean-square charge radius are shown in Table 1. Statistical errors
(parentheses) correspond to the uncertainty in the determination
of the peak positions in the hfs spectra. The systematic errors in
the isotope shift (square brackets) are mainly due to the uncertainty
in the beam energy, which is also the main contribution to
the uncertainty in the charge radius. Independent high-precision
measurements of isotope shifts on stable Ca isotopes25 were used for
an accurate determination of the kinetic energy of each isotope. The
stability of the beam energy was controlled by measuring the stable
40Ca, before and after the measurement of each isotope of interest.

Our experimental results (Table 1 and Fig. 3) show that the root-
mean-square (r.m.s.) charge radius of 49Ca presents a considerable
increase with respect to 48Ca, �hr 2i48,49 = 0.097(4) fm2, but much
smaller than previously suggested17. The increase continues towards
N = 32, resulting in a very large charge radius for 52Ca, with an
increase relative to 48Ca of �hr 2i48,52 =0.530(5) fm2.
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Figure 2 | Predictions for observables related to the neutron distribution in 48Ca. Neutron skin Rskin (a), r.m.s. point-neutron radius Rn (b) and electric
dipole polarizability ↵D (c) plotted versus the r.m.s. point-proton radius Rp. The ab initio predictions with NNLOsat (red circles) and chiral interactions of
ref. 29 (squares) are compared to the DFT results with the energy density functionals SkM⇤, SkP, SLy4, SV-min, UNEDF0 and UNEDF1 (ref. 20; diamonds).
This is a representative subset of DFT results; for other DFT predictions, the reader is referred to ref. 20. The theoretical error bars estimate uncertainties
from truncations of the employed method and model space (see Methods for details). The blue line represents a linear fit to the data. The blue band
encompasses all error bars and estimates systematic uncertainties. The horizontal green line marks the experimental value of Rp. Its intersection with the
blue line and the blue band yields the vertical orange line and orange band, respectively, giving the predicted range for the ordinate.
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Figure 3 | Weak-charge observables in 48Ca. a, Root mean square point-neutron radius Rn in 48Ca versus the weak-charge form factor FW(qc) at the CREX
momentum qc =0.778 fm�1 obtained in ab initio calculations with NNLOsat (red circle) and chiral interactions of ref. 29 (squares). The theoretical error
bars estimate uncertainties from truncations of the employed method and model space (see Methods for details). The width of the horizontal orange band
shows the predicted range for Rn and is taken from Fig. 2b. The width of the vertical orange band is taken from Supplementary Fig. 2 and shows the
predicted range for FW(qc). b, Weak-charge form factor FW(q) as a function of momentum transfer q with NNLOsat (red line) and DFT with the energy
density functional SV-min21 (diamonds). The orange horizontal band shows FW(qc). c, Charge density (blue line) and (negative of) weak-charge density
(red line). The weak-charge density extends well beyond ⇢ch as it is strongly weighted by the neutron distribution. The weak charge of 48Ca, obtained by
integrating the weak-charge density is QW =�26.22 (for the weak charge of the proton and neutron see Methods).

is 0.12.Rskin . 0.15 fm. Figure 2a shows two remarkable features.
First, the ab initio calculations yield neutron skins that are almost
independent of the employed interaction. This is due to the strong
correlation between the Rn and Rp in this nucleus (Fig. 2b). In
contrast, DFT models exhibit practically no correlation between
Rskin and Rp. Second, the ab initio calculations predict a significantly
smaller neutron skin than the DFT models. The predicted range
is also appreciably lower than the combined DFT estimate of
0.176(18) fm (ref. 20) and is well below the relativistic DFT value of
Rskin =0.22(2) fm (ref. 20). To shed light on the lower values of Rskin
predicted by ab initio theory, we computed the neutron separation
energy and the three-point binding energy di�erence in 48Ca (both
being indicators of the N =28 shell gap). Our results are consistent
with experiment and indicate the pronounced magicity of 48Ca
(Supplementary Table 2), whereas DFT results usually significantly
underestimate the N =28 shell gap30. The shortcoming of DFT for
48Ca is also reflected in Rp. Although many nuclear energy density
functionals are constrained to the Rp of 48Ca (refs 18,30), the results
of DFT models shown in Fig. 2a overestimate this quantity.

For Rn (Fig. 2b) we find 3.47.Rn . 3.60 fm. Most of the DFT
results for Rn are outside this range, but fall within the blue
band. Comparing Fig. 2a,b suggests that a measurement of a
small neutron skin in 48Ca would provide a critical test for ab
initio models. For the electric dipole polarizability (Fig. 2c) our
prediction 2.19.↵D.2.60 fm3 is consistent with the DFT value
of 2.306(89) fm3 (ref. 20). Again, most of the DFT results fall
within the ab initio uncertainty band. The result for ↵D will be
tested by anticipated experimental data from the Darmstadt–Osaka
collaboration13,14. The excellent correlation between Rp, Rn and ↵D
seen in Fig. 2b,c demonstrates the usefulness of Rn and ↵D as probes
of the neutron density.

The weak-charge radiusRW is another quantity that characterizes
the size of the nucleus. The CREX experiment will measure the
parity-violating asymmetry Apv in electron scattering on 48Ca
at the momentum transfer qc = 0.778 fm�1. This observable is
proportional to the ratio of the weak-charge and electromagnetic
charge form factors FW(qc)/Fch(qc) (ref. 12). Making some
assumptions about the weak-charge form factor, one can deduce RW
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the precise value of the measured electric dipole polariz-
ability of 208Pb: α

D
=(20.1±0.6) fm3.

It is the purpose of this work to examine possible corre-
lations between the dipole polarizability and the neutron-
skin thickness of 208Pb. Generally, to assess a linear cor-
relation between two observables A and B within one

given model, one resorts to a least-squares covariance
analysis, with the correlation coefficient

CAB =
|∆A∆B|

√

∆A2 ∆B2
, (1)

providing the proper statistical measure [20]. In Eq. (1)
the overline means an average over the statistical sam-
ple. A value of |CAB| = 1 means that the two observables
are fully correlated whereas CAB = 0 implies that they
are totally uncorrelated. Recently, the statistical mea-
sure CAB was used to study correlations between various
nuclear observables [8] in the context of the Skyrme SV-
min model [21]. In particular, it was concluded that good
isovector indicators that strongly correlate with the neu-
tron radius of 208Pb are its electric dipole polarizability as
well as neutron skins and radii of neutron-rich nuclei [8].
Indeed, by relying on the strong correlation between α

D

and rskin (CAB=0.98) predicted by such DFT calcula-
tions, Tamii et al. deduced a value of 0.156+0.025

−0.021 fm for
the neutron-skin thickness of 208Pb.

However, the correlation coefficient CAB cannot as-
sess systematic errors that reflect constraints and limita-
tions of a given model [8]. Such systematic uncertainties
can only emerge by comparing different models (or suffi-
ciently flexible variants of a model) and this is precisely
what has been done in this Letter. To assess the linear
dependence between two observables A and B for a sam-
ple of several models, the correlation coefficient Cmodels

AB is
now obtained by averaging over the predictions of those
models. Although the correlation coefficient Cmodels

AB de-
termined in such a way may not have a clear statistical
interpretation, it is nevertheless an excellent indicator of
linear dependence.
To this end, we have computed the distribution of E1

strength using both relativistic and non-relativistic DFT
approaches with different EDFs. In all cases, these self-
consistent models have been calibrated to selected global
properties of finite nuclei and some parameters of nuclear
matter. Once calibrated, these models are used without
any further adjustment to compute the E1 strength R

E1

using a consistent random-phase approximation. The
electric dipole polarizability is then obtained from the
inverse energy-weighted sum [8, 18, 22]:

α
D
=

8π

9
e2

∫

∞

0

ω−1R
E1
(ω) dω . (2)

The relation between α
D

and rskin for 208Pb is dis-
played in Fig. 1 using the predictions from the 48 EDFs
chosen in this work. In particular, the up-triangles

!"#$

"%&!

FIG. 1: (Color online) Predictions from 48 nuclear EDFs dis-
cussed in the text for the electric dipole polarizability and
neutron-skin thickness of 208Pb. Constrains on the neutron-
skin thickness from PREX [3] and on the dipole polarizability
from RCNP [19] have been incorporated into the plot.

mark predictions from a broad choice of Skyrme EDFs
that have been widely used in the literature: SGII,
SIII, SkI3, SkI4, SkM∗, SkO, SkP, SkX, SLy4, SLy6,
(see Refs. [23, 24] for the original references), Sk255
[25], BSk17 [26], LNS [27], and UNEDF0 and UNEDF1
[28]. In addition, we consider a collection of relativistic
and Skyrme EDFs that have been systematically varied
around an optimal model without a significant deterio-
ration in the quality of the fit. (This is particularly true
for the case of the isovector interaction which at present
remains poorly constrained.) Those results are marked
in Fig. 1 as NL3/FSU [18, 29] (circles), DD-ME [30]
(squares), and Skyrme-SV [21] (down-triangles). Note
that the “stars” in the figure are meant to represent the
predictions from the optimal models within the chain of
systematic variations of the symmetry energy. At first
glance a clear (positive) correlation between the dipole
polarizability and the neutron skin is discerned.

Yet on closer examination, one observes a signifi-
cant scatter in the results, especially for the standard
Skyrme models. In particular, by including the predic-
tions from all the 48 EDFs considered here, the correla-
tion Cmodels

AB =0.77 is obtained. However, as seen in Ta-
ble I, within each set of the systematically varied mod-
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Figure 2 | Examples of hyperfine structure spectra measured for the Ca
isotopes in the 393-nm 4s 2S1/2!4p 2P3/2 ionic transition. The solid lines
show the fit with a Voigt profile. Frequency values are relative to the centroid
of 40Ca. The position of each hfs centroid is indicated by the dashed lines.

magnitude. It is now possible to routinely perform experiments with
beams of ⇠104 ions s�1 (ref. 23).

In this work, we have further optimized the photon detection
sensitivity and at the same time reduced further the photon
background events8, now allowing the study of calcium isotopes
produced with a yield of only a few hundred ions per second. While
preserving the high resolution, this sensitivity surpasses the previous
limit by two orders of magnitude, achieved by an ultrasensitive
particle detection technique employed on Ca isotopes18.

The short-lived Ca isotopes studied in this work were produced
at the ISOLDE on-line isotope separator, located at the European
Center for Nuclear Research, CERN. High-energy proton pulses
with intensities of ⇠3⇥ 1013 protons/pulse at 1.4GeV impinged
every 2.4 s on an uranium carbide target to create radioactive
species of a wide range of chemical elements. The Ca isotopes
were selected from the reaction products by using a three-step
laser ionization scheme provided by the Resonance Ionization Laser
Ion Source (RILIS; ref. 24). A detailed sketch of the di�erent
experimental processes from the ion beam production to the
fluorescence detection is shown in Fig. 1.

After selective ionization, Ca ions (Ca+) were extracted from
the ion source and accelerated up to 40 keV. The isotope of
interest was mass-separated by using the High-Resolution Mass
Separator (HRS). The selected isotopes were injected into a gas-
filled radiofrequency trap (RFQ) to accumulate the incoming
ions. After a few milliseconds, bunches of ions of ⇠5 µs temporal
width were extracted and redirected into a dedicated beam
line for collinear laser spectroscopy experiments (COLLAPS). At
COLLAPS, the ion beamwas superimposed with a continuous wave
laser beam fixed at a wavelength of 393 nm (see Methods), close
to the 4s 2S1/2 !4p 2P3/2 transition in the Ca+. The laser frequency
was fixed to a constant value, while the ion velocity was varied
inside the optical detection region. A change in the ion velocity
corresponds to a variation of laser frequency in the ion rest frame.
This Doppler tuning of the laser frequency was used to scan the
hyperfine structure (hfs) components of the 4s 2S1/2 ! 4p 2P3/2
transition. At resonance frequencies, transitions between di�erent
hfs levels were excited, and subsequently the fluorescence photons
were detected by a light collection system consisting of four lenses
and photomultiplier tubes (PMT) (see ref. 8 for details). The photon
signals were accepted only when the ion bunch passed in front of
the light collection region, reducing the background counts from
scattered laser light and PMT dark counts by a factor of ⇠104. A
sample of the hfs spectra measured during the experiment is shown
in Fig. 2. Isotopes with nuclear spin I =0 do not exhibit hyperfine
structure splitting. Consequently, only a single transition is observed
for 52Ca.
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Figure 3 | Charge radii of Ca isotopes. a, Experimental charge radii
compared to ab initio calculations with chiral EFT interactions NNLOsat,
SRG1, SRG2, as well as DFT calculations with the UNEDF0 functional.
Experimental error bars are smaller than the symbols. The absolute values
were obtained from the reference radius of 40Ca (Rch =3.478(2) fm;
ref. 26). The values of 39Ca and 41,42Ca are taken from refs 45,46,
respectively. A systematic theoretical uncertainty of 1% is estimated for the
absolute values due to the truncation level of the coupled-cluster method
and the finite basis space employed in the computation. b, Experimental
r.m.s. charge radius in 52Ca relative to that in 48Ca compared to the ab initio
results as well as those of representative density functional theory (DFT)
and configuration interaction (CI) calculations. The systematic
uncertainties in the theoretical predictions are largely cancelled when the
di�erences between r.m.s. charge radii are calculated (dotted horizontal
blue lines). Experimental uncertainties are represented by the horizontal
red lines (statistical) and the grey shaded band (systematic).

The isotope shifts were extracted from the fit of the hfs
experimental spectra, assuming multiple Voigt profiles in the � 2-
minimization (see Methods). The measured isotope shift relative
to the reference isotope 40Ca, and the corresponding change in the
mean-square charge radius are shown in Table 1. Statistical errors
(parentheses) correspond to the uncertainty in the determination
of the peak positions in the hfs spectra. The systematic errors in
the isotope shift (square brackets) are mainly due to the uncertainty
in the beam energy, which is also the main contribution to
the uncertainty in the charge radius. Independent high-precision
measurements of isotope shifts on stable Ca isotopes25 were used for
an accurate determination of the kinetic energy of each isotope. The
stability of the beam energy was controlled by measuring the stable
40Ca, before and after the measurement of each isotope of interest.

Our experimental results (Table 1 and Fig. 3) show that the root-
mean-square (r.m.s.) charge radius of 49Ca presents a considerable
increase with respect to 48Ca, �hr 2i48,49 = 0.097(4) fm2, but much
smaller than previously suggested17. The increase continues towards
N = 32, resulting in a very large charge radius for 52Ca, with an
increase relative to 48Ca of �hr 2i48,52 =0.530(5) fm2.
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Figure 2 | Examples of hyperfine structure spectra measured for the Ca
isotopes in the 393-nm 4s 2S1/2!4p 2P3/2 ionic transition. The solid lines
show the fit with a Voigt profile. Frequency values are relative to the centroid
of 40Ca. The position of each hfs centroid is indicated by the dashed lines.

magnitude. It is now possible to routinely perform experiments with
beams of ⇠104 ions s�1 (ref. 23).

In this work, we have further optimized the photon detection
sensitivity and at the same time reduced further the photon
background events8, now allowing the study of calcium isotopes
produced with a yield of only a few hundred ions per second. While
preserving the high resolution, this sensitivity surpasses the previous
limit by two orders of magnitude, achieved by an ultrasensitive
particle detection technique employed on Ca isotopes18.

The short-lived Ca isotopes studied in this work were produced
at the ISOLDE on-line isotope separator, located at the European
Center for Nuclear Research, CERN. High-energy proton pulses
with intensities of ⇠3⇥ 1013 protons/pulse at 1.4GeV impinged
every 2.4 s on an uranium carbide target to create radioactive
species of a wide range of chemical elements. The Ca isotopes
were selected from the reaction products by using a three-step
laser ionization scheme provided by the Resonance Ionization Laser
Ion Source (RILIS; ref. 24). A detailed sketch of the di�erent
experimental processes from the ion beam production to the
fluorescence detection is shown in Fig. 1.

After selective ionization, Ca ions (Ca+) were extracted from
the ion source and accelerated up to 40 keV. The isotope of
interest was mass-separated by using the High-Resolution Mass
Separator (HRS). The selected isotopes were injected into a gas-
filled radiofrequency trap (RFQ) to accumulate the incoming
ions. After a few milliseconds, bunches of ions of ⇠5 µs temporal
width were extracted and redirected into a dedicated beam
line for collinear laser spectroscopy experiments (COLLAPS). At
COLLAPS, the ion beamwas superimposed with a continuous wave
laser beam fixed at a wavelength of 393 nm (see Methods), close
to the 4s 2S1/2 !4p 2P3/2 transition in the Ca+. The laser frequency
was fixed to a constant value, while the ion velocity was varied
inside the optical detection region. A change in the ion velocity
corresponds to a variation of laser frequency in the ion rest frame.
This Doppler tuning of the laser frequency was used to scan the
hyperfine structure (hfs) components of the 4s 2S1/2 ! 4p 2P3/2
transition. At resonance frequencies, transitions between di�erent
hfs levels were excited, and subsequently the fluorescence photons
were detected by a light collection system consisting of four lenses
and photomultiplier tubes (PMT) (see ref. 8 for details). The photon
signals were accepted only when the ion bunch passed in front of
the light collection region, reducing the background counts from
scattered laser light and PMT dark counts by a factor of ⇠104. A
sample of the hfs spectra measured during the experiment is shown
in Fig. 2. Isotopes with nuclear spin I =0 do not exhibit hyperfine
structure splitting. Consequently, only a single transition is observed
for 52Ca.
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Figure 3 | Charge radii of Ca isotopes. a, Experimental charge radii
compared to ab initio calculations with chiral EFT interactions NNLOsat,
SRG1, SRG2, as well as DFT calculations with the UNEDF0 functional.
Experimental error bars are smaller than the symbols. The absolute values
were obtained from the reference radius of 40Ca (Rch =3.478(2) fm;
ref. 26). The values of 39Ca and 41,42Ca are taken from refs 45,46,
respectively. A systematic theoretical uncertainty of 1% is estimated for the
absolute values due to the truncation level of the coupled-cluster method
and the finite basis space employed in the computation. b, Experimental
r.m.s. charge radius in 52Ca relative to that in 48Ca compared to the ab initio
results as well as those of representative density functional theory (DFT)
and configuration interaction (CI) calculations. The systematic
uncertainties in the theoretical predictions are largely cancelled when the
di�erences between r.m.s. charge radii are calculated (dotted horizontal
blue lines). Experimental uncertainties are represented by the horizontal
red lines (statistical) and the grey shaded band (systematic).

The isotope shifts were extracted from the fit of the hfs
experimental spectra, assuming multiple Voigt profiles in the � 2-
minimization (see Methods). The measured isotope shift relative
to the reference isotope 40Ca, and the corresponding change in the
mean-square charge radius are shown in Table 1. Statistical errors
(parentheses) correspond to the uncertainty in the determination
of the peak positions in the hfs spectra. The systematic errors in
the isotope shift (square brackets) are mainly due to the uncertainty
in the beam energy, which is also the main contribution to
the uncertainty in the charge radius. Independent high-precision
measurements of isotope shifts on stable Ca isotopes25 were used for
an accurate determination of the kinetic energy of each isotope. The
stability of the beam energy was controlled by measuring the stable
40Ca, before and after the measurement of each isotope of interest.

Our experimental results (Table 1 and Fig. 3) show that the root-
mean-square (r.m.s.) charge radius of 49Ca presents a considerable
increase with respect to 48Ca, �hr 2i48,49 = 0.097(4) fm2, but much
smaller than previously suggested17. The increase continues towards
N = 32, resulting in a very large charge radius for 52Ca, with an
increase relative to 48Ca of �hr 2i48,52 =0.530(5) fm2.
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ref. 29 (squares) are compared to the DFT results with the energy density functionals SkM⇤, SkP, SLy4, SV-min, UNEDF0 and UNEDF1 (ref. 20; diamonds).
This is a representative subset of DFT results; for other DFT predictions, the reader is referred to ref. 20. The theoretical error bars estimate uncertainties
from truncations of the employed method and model space (see Methods for details). The blue line represents a linear fit to the data. The blue band
encompasses all error bars and estimates systematic uncertainties. The horizontal green line marks the experimental value of Rp. Its intersection with the
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momentum qc =0.778 fm�1 obtained in ab initio calculations with NNLOsat (red circle) and chiral interactions of ref. 29 (squares). The theoretical error
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predicted range for FW(qc). b, Weak-charge form factor FW(q) as a function of momentum transfer q with NNLOsat (red line) and DFT with the energy
density functional SV-min21 (diamonds). The orange horizontal band shows FW(qc). c, Charge density (blue line) and (negative of) weak-charge density
(red line). The weak-charge density extends well beyond ⇢ch as it is strongly weighted by the neutron distribution. The weak charge of 48Ca, obtained by
integrating the weak-charge density is QW =�26.22 (for the weak charge of the proton and neutron see Methods).

is 0.12.Rskin . 0.15 fm. Figure 2a shows two remarkable features.
First, the ab initio calculations yield neutron skins that are almost
independent of the employed interaction. This is due to the strong
correlation between the Rn and Rp in this nucleus (Fig. 2b). In
contrast, DFT models exhibit practically no correlation between
Rskin and Rp. Second, the ab initio calculations predict a significantly
smaller neutron skin than the DFT models. The predicted range
is also appreciably lower than the combined DFT estimate of
0.176(18) fm (ref. 20) and is well below the relativistic DFT value of
Rskin =0.22(2) fm (ref. 20). To shed light on the lower values of Rskin
predicted by ab initio theory, we computed the neutron separation
energy and the three-point binding energy di�erence in 48Ca (both
being indicators of the N =28 shell gap). Our results are consistent
with experiment and indicate the pronounced magicity of 48Ca
(Supplementary Table 2), whereas DFT results usually significantly
underestimate the N =28 shell gap30. The shortcoming of DFT for
48Ca is also reflected in Rp. Although many nuclear energy density
functionals are constrained to the Rp of 48Ca (refs 18,30), the results
of DFT models shown in Fig. 2a overestimate this quantity.

For Rn (Fig. 2b) we find 3.47.Rn . 3.60 fm. Most of the DFT
results for Rn are outside this range, but fall within the blue
band. Comparing Fig. 2a,b suggests that a measurement of a
small neutron skin in 48Ca would provide a critical test for ab
initio models. For the electric dipole polarizability (Fig. 2c) our
prediction 2.19.↵D.2.60 fm3 is consistent with the DFT value
of 2.306(89) fm3 (ref. 20). Again, most of the DFT results fall
within the ab initio uncertainty band. The result for ↵D will be
tested by anticipated experimental data from the Darmstadt–Osaka
collaboration13,14. The excellent correlation between Rp, Rn and ↵D
seen in Fig. 2b,c demonstrates the usefulness of Rn and ↵D as probes
of the neutron density.

The weak-charge radiusRW is another quantity that characterizes
the size of the nucleus. The CREX experiment will measure the
parity-violating asymmetry Apv in electron scattering on 48Ca
at the momentum transfer qc = 0.778 fm�1. This observable is
proportional to the ratio of the weak-charge and electromagnetic
charge form factors FW(qc)/Fch(qc) (ref. 12). Making some
assumptions about the weak-charge form factor, one can deduce RW
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provided by Wiringa, Fiks, and Fabrocini [17] and Akmal
and Pandharipande [18]. Generally the agreement with FP
is good up to about rn ! 0.10 neutron!fm3. At higher
density the differences in the various NN potentials [17]
and the very uncertain NNN potential become important.
Thus, although the FP neutron EOS serves as a reasonable
starting point, we do not have a truly fundamental theory
for neutron EOS. Any constraints coming from the prop-
erties of nuclei such as the neutron radii are extremely
important.

Given the difficulty of the JLAB measurement, it is
important to know to what extent a measurement of S
in one nucleus such as 208Pb will be applicable to other
nuclei. There are two points to investigate: the dependence
of S on mass and the dependence of S on the asymmetry
in the Fermi energy for protons and neutrons. For the first
case, I compare in Fig. 4 the S values for two nuclei near
the valley of stability (where the Fermi energies for protons
and neutrons are about equal to each other), those for 208Pb
and 138Ba. One observes a nearly linear relationship which
starts at S ! 0. For the second case, I compare in the
same figure the S value in 208Pb to the S value for 132Sn
where the neutrons at the Fermi surface are bound about
8 MeV less than the protons (see Figs. 4 and 5 in Ref. [6]).
Again there is a tight correlation, but the asymmetry in
the Fermi energy produces a systematic increase in the
neutron skin for all of the 18 SHF parameter sets. Thus
there are two clear mechanisms for producing a neutron
skin. One which is related to the asymmetry in the Fermi
energy is well determined within SHF, and another which
depends on the neutron EOS is undetermined unless one
adds a constraint to the neutron EOS. It is the Fermi-
energy asymmetry effect which dominates the increase in
the matter radii of neutron-rich light nuclei such as in the
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FIG. 4. The S value for 208Pb vs the S values for 132Sn (filled
circles) and 138Ba (plusses) for 18 Skyrme parameter sets. The
horizontal line is the SkX value for 208Pb.

Na isotopes [11]. Thus it is most important to accurately
determine the neutron rms radius in a stable nucleus such
as 208Pb. The neutron rms radius of 208Pb will provide
an important new constraint on the neutron EOS models
which are used to calculate the properties of neutron stars
[17]. The results discussed here are based upon a wide
variety of parametrizations for the Skyrme Hartree-Fock
model for finite nuclei and nucleon matter. It will be
important to explore the generality of these conclusions
within the Skyrme model as well as in other mean-field
models.
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48Ca

direct connections to astrophysics!

208Pb
2

the precise value of the measured electric dipole polariz-
ability of 208Pb: α

D
=(20.1±0.6) fm3.

It is the purpose of this work to examine possible corre-
lations between the dipole polarizability and the neutron-
skin thickness of 208Pb. Generally, to assess a linear cor-
relation between two observables A and B within one

given model, one resorts to a least-squares covariance
analysis, with the correlation coefficient

CAB =
|∆A∆B|

√

∆A2 ∆B2
, (1)

providing the proper statistical measure [20]. In Eq. (1)
the overline means an average over the statistical sam-
ple. A value of |CAB| = 1 means that the two observables
are fully correlated whereas CAB = 0 implies that they
are totally uncorrelated. Recently, the statistical mea-
sure CAB was used to study correlations between various
nuclear observables [8] in the context of the Skyrme SV-
min model [21]. In particular, it was concluded that good
isovector indicators that strongly correlate with the neu-
tron radius of 208Pb are its electric dipole polarizability as
well as neutron skins and radii of neutron-rich nuclei [8].
Indeed, by relying on the strong correlation between α

D

and rskin (CAB=0.98) predicted by such DFT calcula-
tions, Tamii et al. deduced a value of 0.156+0.025

−0.021 fm for
the neutron-skin thickness of 208Pb.

However, the correlation coefficient CAB cannot as-
sess systematic errors that reflect constraints and limita-
tions of a given model [8]. Such systematic uncertainties
can only emerge by comparing different models (or suffi-
ciently flexible variants of a model) and this is precisely
what has been done in this Letter. To assess the linear
dependence between two observables A and B for a sam-
ple of several models, the correlation coefficient Cmodels

AB is
now obtained by averaging over the predictions of those
models. Although the correlation coefficient Cmodels

AB de-
termined in such a way may not have a clear statistical
interpretation, it is nevertheless an excellent indicator of
linear dependence.
To this end, we have computed the distribution of E1

strength using both relativistic and non-relativistic DFT
approaches with different EDFs. In all cases, these self-
consistent models have been calibrated to selected global
properties of finite nuclei and some parameters of nuclear
matter. Once calibrated, these models are used without
any further adjustment to compute the E1 strength R

E1

using a consistent random-phase approximation. The
electric dipole polarizability is then obtained from the
inverse energy-weighted sum [8, 18, 22]:

α
D
=

8π

9
e2

∫

∞

0

ω−1R
E1
(ω) dω . (2)

The relation between α
D

and rskin for 208Pb is dis-
played in Fig. 1 using the predictions from the 48 EDFs
chosen in this work. In particular, the up-triangles

!"#$

"%&!

FIG. 1: (Color online) Predictions from 48 nuclear EDFs dis-
cussed in the text for the electric dipole polarizability and
neutron-skin thickness of 208Pb. Constrains on the neutron-
skin thickness from PREX [3] and on the dipole polarizability
from RCNP [19] have been incorporated into the plot.

mark predictions from a broad choice of Skyrme EDFs
that have been widely used in the literature: SGII,
SIII, SkI3, SkI4, SkM∗, SkO, SkP, SkX, SLy4, SLy6,
(see Refs. [23, 24] for the original references), Sk255
[25], BSk17 [26], LNS [27], and UNEDF0 and UNEDF1
[28]. In addition, we consider a collection of relativistic
and Skyrme EDFs that have been systematically varied
around an optimal model without a significant deterio-
ration in the quality of the fit. (This is particularly true
for the case of the isovector interaction which at present
remains poorly constrained.) Those results are marked
in Fig. 1 as NL3/FSU [18, 29] (circles), DD-ME [30]
(squares), and Skyrme-SV [21] (down-triangles). Note
that the “stars” in the figure are meant to represent the
predictions from the optimal models within the chain of
systematic variations of the symmetry energy. At first
glance a clear (positive) correlation between the dipole
polarizability and the neutron skin is discerned.

Yet on closer examination, one observes a signifi-
cant scatter in the results, especially for the standard
Skyrme models. In particular, by including the predic-
tions from all the 48 EDFs considered here, the correla-
tion Cmodels

AB =0.77 is obtained. However, as seen in Ta-
ble I, within each set of the systematically varied mod-
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PRC 85, 041302 (2012)
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Problem:
Calculation of neutron star properties require EOS up to high densities.

Reliable calculations only possible up to                    . 
Strategy: 

Use observations to constrain the high-density part of the nuclear EOS.

⇠ 1-2nsat



Neutron star radius constraints

   incorporation of beta-equilibrium: neutron matter         neutron star matter

parametrize our ignorance via piecewise high-density extensions of EOS:

• use polytropic ansatz              (results insensitive to particular form)            

• range of parameters
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Constraints on the nuclear equation of state

use the constraints:

vs(�) =
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dP/d⇥ < c

Mmax > 1.97M�

causality

recent NS observations

constraints lead to significant reduction of EOS uncertainty band

KH, Lattimer, Pethick, Schwenk, ApJ 773,11 (2013)



• low-density part of EOS sets scale for allowed high-density extensions 
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FIG. 1. (a) Couplings cE vs cD obtained by fitting the 4He binding energy for di↵erent 3N-operator forms. Triangles are
obtained by using VD1 and VE⌧ , while the other symbols are obtained for VD2 and three di↵erent VE-operator structures. The
blue and green lines (lower and upper) correspond to R0 = 1.0 fm, while the red lines (central) correspond to R0 = 1.2 fm. The
GFMC statistical errors are smaller than the symbols. The stars correspond to the values of cD and cE which simultaneously
fit the n-↵ P -wave phase shifts (see Table I and the right panel). No fit to both observables can be obtained for the case with
R0 = 1.2 fm and VD1. (b) P -wave n-↵ elastic scattering phase shifts compared with an R-matrix analysis of experimental data.
Colors and symbols correspond to the left panel. We also include phase shifts calculated at NLO which clearly indicate the
necessity of 3N interactions to fit the P -wave splitting.

TABLE I. Fit values for the couplings cD and cE for di↵erent
choices of 3N forces and cuto↵s.

V3N R0 (fm) cE cD

N2LO (D1, E⌧)
1.0 �0.63 0.0

1.2

N2LO (D2, E⌧)
1.0 �0.63 0.0

1.2 0.09 3.5

N2LO (D2, E ) 1.0 0.62 0.5

N2LO (D2, EP) 1.0 0.59 0.0

results in n-↵ P -wave scattering show a substantial sen-
sitivity: VD1

appears to have a smaller e↵ect than VD2

.

In Fig. 2, we show ground-state energies and point pro-
ton radii for A = 3, 4 nuclei at NLO and N2LO using VD2

and VE⌧ for R
0

= 1.0 fm and R
0

= 1.2 fm, in compar-
ison with experiment. The ground-state energies of the
A = 3 systems compare well with experimental values.
The ground-state energy of 4He is used in fitting cD and
cE , and so it is forced to match the experimental value to
within ⇡ 0.03 MeV. The point proton radii also compare
well with values extracted from experiment. The theo-
retical uncertainty at each order is estimated through the
expected size of higher-order contributions; see Ref. [32]
for details. We include results from LO, NLO, and N2LO

in the analysis using the Fermi momentum and the pion
mass as the small scales for neutron matter (discussed
below) and nuclei, respectively. The error bars presented
here are comparable to those shown in Ref. [33], although
it is worth emphasizing that our calculations represent a
complete estimate of the uncertainty at N2LO since we
include 3N interactions. Other choices for 3N structures
give similar results.

It is noteworthy that NN and 3N interactions derived
from chiral EFT up to N2LO have su�cient freedom such
that n-↵ scattering phase shifts in Fig. 1(b) and proper-
ties of light nuclei in Fig. 2 can be simultaneously de-
scribed. The failures of the Urbana IX model in under-
binding nuclei and underpredicting the spin-orbit split-
ting in neutron-rich systems, including the n-↵, system
were among the factors motivating the addition of the
three-pion exchange diagrams in the Illinois 3N mod-
els [7]. Our results show that chiral 3N forces at N2LO,
including the shorter-range parts in the pion exchanges,
allow the simultaneous fit. These interactions should be
tested further in light p-shell nuclei.

Finally, we study the full chiral N2LO forces, includ-
ing all 3N contributions, in neutron matter to extend the
results from Ref. [24]. More specifically, we examine the
e↵ects of di↵erent VD and VE structures on the equation
of state of neutron matter. Although these terms vanish

Gezerlis et al.,
PRL 111, 032501 (2013)
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FIG. 1. (Color online) Neutron-proton phase shifts as a function of laboratory energy Elab = 2p2/m in the 1S0, 3P0, 3P1, and
3P2 partial waves (from left to right) in comparison to the Nijmegen partial-wave analysis (PWA) [43]. The LO, NLO, and

N2LO bands are obtained by varying R0 between 0.8 − 1.2 fm (with a spectral-function cutoff Λ̃ = 800MeV).

and provide a measure of the theoretical uncertainty. For
the R0 = 1.2 fm N2LO NN potential, we list the low-
energy couplings at LO, NLO, and N2LO in Table I. At
N2LO, an isospin-symmetry-breaking contact interaction
(Cnn for neutrons) is added in the spin S = 0 channel (to
CS−3CT ), which is fit to a scattering length of −18.8 fm.
As shown in Fig. 1, the comparison with NN phase shifts
is very good for Elab ! 150MeV. This is similar for
higher partial waves and isospin T = 0 channels, which
will be reported in a later paper that will also study im-
proved fits. In cases where there are deviations for higher
energies (such as in the 3P2 channel of Fig. 1), the width
of the band signals significant theoretical uncertainties
due to the chiral EFT truncation at N2LO. The NLO
and N2LO bands nicely overlap (as shown for the cases
in Fig. 1), or are very close, but it is also apparent that
the N2LO bands are of a similar size as at NLO. This is
because the width of the bands at both NLO and N2LO
shows effects of the neglected order-Q4 contact interac-
tions.

Finally, we emphasize that the newly introduced local
chiral EFT potentials include the same physics as the
momentum-space versions. This is especially clear when
antisymmetrizing. Besides the new idea of removing the
k2 terms, there are no conceptual differences between the
two ways of regularizing (see also the early work [44]).

We then apply the developed local LO, NLO, and
N2LO chiral EFT interactions in systematic QMC cal-
culations for the first time. Since nuclear forces con-
tain quadratic spin, isospin, and tensor operators (of the
form σ

α
i Aαβ

ij σ
β
j ), the many-body wave function cannot

be expressed as a product of single-particle spin-isospin
states. All possible spin-isospin nucleon-pair states need
to be explicitly accounted for, leading to an exponential
increase in the number of possible states. As a result,
Green’s Function Monte Carlo (GFMC) calculations are
presently limited to 12 nucleons and 16 neutrons [30]. In
this Letter, we would like to simulate O(100) neutrons
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FIG. 2. (Color online) Neutron matter energy per particle
E/N as a function of density n calculated using AFDMC
with chiral EFT NN interactions at LO, NLO, and N2LO.
The statistical errors are smaller than the points shown. The
lines give the range of the energy band obtained by varying
R0 between 0.8 − 1.2 fm (as for the phase shifts in Fig. 1),
which provides an estimate of the theoretical uncertainty at
each order. The N2LO band is comparable to the one at NLO
due to the large ci couplings in the N2LO two-pion exchange.

to access the thermodynamic limit. We therefore turn
to the auxiliary-field diffusion Monte Carlo (AFDMC)
method [45], which is capable of efficiently handling spin-
dependent Hamiltonians.
Schematically, AFDMC rewrites the Green’s function

by applying a Hubbard-Stratonovich transformation us-
ing auxiliary fields to change the quadratic spin-isospin
operator dependences to linear. As a result, when applied
to a wave function that is a product of single-particle

4

in the limit of infinite cuto↵, they contribute for finite
cuto↵s. In Fig. 3 we show results for the neutron mat-
ter energy per particle as a function of the density calcu-
lated with the AFDMC method described in Refs. [3, 34].
We show the energies for R

0

= 1.0 fm for the NN and
full 3N interactions. We use VD2

and the three di↵erent
VE structures: VE⌧ (blue band), VE (red band), and
VEP (green band). The error bands are determined as in
the light nuclei case. The VEP interaction fits A = 4, 5
with a vanishing cD; hence, this choice of VE leads to
an equation of state identical to the equation of state
with NN+ VC as in Ref. [24] (the projector P is zero for
pure neutron systems), and qualitatively similar to pre-
vious results using chiral interactions at N2LO [35] and
next-to-next-to-next-to-leading order [36].

As discussed, the contributions of VD and VE are only
regulator e↵ects for neutrons. However, they are sizable
and result in a larger error band. At saturation den-
sity n

0

⇠ 0.16 fm�3, the di↵erence of the central value
of the energy per neutron after inclusion of the 3N con-
tacts VE or VE⌧ is ⇠ 2 MeV, leading to a total error
band with a range of ⇠ 6.5 MeV when considering di↵er-
ent VE structures. This relatively large uncertainty can
be qualitatively explained when considering the following
e↵ects. Because the expectation value h

P
i<j ⌧ i ·⌧ ji has

a sign opposite to that of the expectation value h i in
4He, cE will also have opposite signs in the two cases to

�9

�8

�7

�6

�5

E
(M

eV
)

3H 3He 4He
�31

�25

�19

�13

3H 3He 4He
0.8

1.0

1.2

1.4

1.6

1.8

2.0

�
hr

2p
t i

(fm
)

NLO

N2LO (D2, E� )
Exp.

FIG. 2. Ground-state energies and point proton radii for A =
3, 4 nuclei calculated at NLO and N2LO (with VD2 and VE⌧ )
compared with experiment. Blue (red) symbols correspond
to R0 = 1.0 fm (R0 = 1.2 fm). The errors are obtained as
described in the text and also include the GFMC statistical
uncertainties.

FIG. 3. The energy per particle in neutron matter as a
function of density for the NN and full 3N interactions at
N2LO with R0 = 1.0 fm. We use VD2 and di↵erent 3N contact
structures: The blue band corresponds to VE⌧ , the red band
to VE , and the green band to VEP . The green band coincides
with the NN+ 2⇡-exchange-only result because both VD and
VE vanish in this case. The bands are calculated as described
in the text.

fit the binding energy. However, in neutron matter both
operators are the same, spreading the uncertainty band.
A similar argument was made in Ref. [37].

With the regulators used here, the Fierz-
rearrangement invariance valid at infinite cuto↵ is
only approximate at finite cuto↵, and hence the di↵erent
choices of VD and VE can lead to di↵erent results.
The di↵erent local structures can lead to finite relative
P -wave contributions. These can be eliminated by
choosing VEP , which has a projection onto even-parity
waves (predominantly S waves). The usual nonlocal
regulator in momentum space does not couple S and P
waves.

In conclusion, we find for the first time that chiral in-
teractions can simultaneously fit light nuclei and low-
energy P -wave n-↵ scattering and provide reasonable es-
timates for the neutron matter equation of state. Other
commonly used phenomenological 3N models do not pro-
vide this capability. These chiral forces should be tested
in light p-shell nuclei, medium-mass nuclei, and isospin-
symmetric nuclear matter to gauge their ability to de-
scribe global properties of nuclear systems.

We also find that the ambiguities associated with
contact-operator choices can be significant when mov-
ing from light nuclei to neutron matter and possibly to
medium-mass nuclei, where the T = 3

2

triples play a

Recent and current developments of novel nuclear interactions

Lynn et al.,
PRL 116, 062501 (2016)

1. local EFT interactions, suitable for Quantum Monte Carlo calculations
   status: NN plus 3N up to N2LO, calculations of few-body systems and neutron matter

Gezerlis et al.,
PRC 90, 054323 (2014)
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FIG. 1. (a) Couplings cE vs cD obtained by fitting the 4He binding energy for di↵erent 3N-operator forms. Triangles are
obtained by using VD1 and VE⌧ , while the other symbols are obtained for VD2 and three di↵erent VE-operator structures. The
blue and green lines (lower and upper) correspond to R0 = 1.0 fm, while the red lines (central) correspond to R0 = 1.2 fm. The
GFMC statistical errors are smaller than the symbols. The stars correspond to the values of cD and cE which simultaneously
fit the n-↵ P -wave phase shifts (see Table I and the right panel). No fit to both observables can be obtained for the case with
R0 = 1.2 fm and VD1. (b) P -wave n-↵ elastic scattering phase shifts compared with an R-matrix analysis of experimental data.
Colors and symbols correspond to the left panel. We also include phase shifts calculated at NLO which clearly indicate the
necessity of 3N interactions to fit the P -wave splitting.

TABLE I. Fit values for the couplings cD and cE for di↵erent
choices of 3N forces and cuto↵s.

V3N R0 (fm) cE cD

N2LO (D1, E⌧)
1.0 �0.63 0.0

1.2

N2LO (D2, E⌧)
1.0 �0.63 0.0

1.2 0.09 3.5

N2LO (D2, E ) 1.0 0.62 0.5

N2LO (D2, EP) 1.0 0.59 0.0

results in n-↵ P -wave scattering show a substantial sen-
sitivity: VD1

appears to have a smaller e↵ect than VD2

.

In Fig. 2, we show ground-state energies and point pro-
ton radii for A = 3, 4 nuclei at NLO and N2LO using VD2

and VE⌧ for R
0

= 1.0 fm and R
0

= 1.2 fm, in compar-
ison with experiment. The ground-state energies of the
A = 3 systems compare well with experimental values.
The ground-state energy of 4He is used in fitting cD and
cE , and so it is forced to match the experimental value to
within ⇡ 0.03 MeV. The point proton radii also compare
well with values extracted from experiment. The theo-
retical uncertainty at each order is estimated through the
expected size of higher-order contributions; see Ref. [32]
for details. We include results from LO, NLO, and N2LO

in the analysis using the Fermi momentum and the pion
mass as the small scales for neutron matter (discussed
below) and nuclei, respectively. The error bars presented
here are comparable to those shown in Ref. [33], although
it is worth emphasizing that our calculations represent a
complete estimate of the uncertainty at N2LO since we
include 3N interactions. Other choices for 3N structures
give similar results.

It is noteworthy that NN and 3N interactions derived
from chiral EFT up to N2LO have su�cient freedom such
that n-↵ scattering phase shifts in Fig. 1(b) and proper-
ties of light nuclei in Fig. 2 can be simultaneously de-
scribed. The failures of the Urbana IX model in under-
binding nuclei and underpredicting the spin-orbit split-
ting in neutron-rich systems, including the n-↵, system
were among the factors motivating the addition of the
three-pion exchange diagrams in the Illinois 3N mod-
els [7]. Our results show that chiral 3N forces at N2LO,
including the shorter-range parts in the pion exchanges,
allow the simultaneous fit. These interactions should be
tested further in light p-shell nuclei.

Finally, we study the full chiral N2LO forces, includ-
ing all 3N contributions, in neutron matter to extend the
results from Ref. [24]. More specifically, we examine the
e↵ects of di↵erent VD and VE structures on the equation
of state of neutron matter. Although these terms vanish
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FIG. 1. (Color online) Neutron-proton phase shifts as a function of laboratory energy Elab = 2p2/m in the 1S0, 3P0, 3P1, and
3P2 partial waves (from left to right) in comparison to the Nijmegen partial-wave analysis (PWA) [43]. The LO, NLO, and

N2LO bands are obtained by varying R0 between 0.8 − 1.2 fm (with a spectral-function cutoff Λ̃ = 800MeV).

and provide a measure of the theoretical uncertainty. For
the R0 = 1.2 fm N2LO NN potential, we list the low-
energy couplings at LO, NLO, and N2LO in Table I. At
N2LO, an isospin-symmetry-breaking contact interaction
(Cnn for neutrons) is added in the spin S = 0 channel (to
CS−3CT ), which is fit to a scattering length of −18.8 fm.
As shown in Fig. 1, the comparison with NN phase shifts
is very good for Elab ! 150MeV. This is similar for
higher partial waves and isospin T = 0 channels, which
will be reported in a later paper that will also study im-
proved fits. In cases where there are deviations for higher
energies (such as in the 3P2 channel of Fig. 1), the width
of the band signals significant theoretical uncertainties
due to the chiral EFT truncation at N2LO. The NLO
and N2LO bands nicely overlap (as shown for the cases
in Fig. 1), or are very close, but it is also apparent that
the N2LO bands are of a similar size as at NLO. This is
because the width of the bands at both NLO and N2LO
shows effects of the neglected order-Q4 contact interac-
tions.

Finally, we emphasize that the newly introduced local
chiral EFT potentials include the same physics as the
momentum-space versions. This is especially clear when
antisymmetrizing. Besides the new idea of removing the
k2 terms, there are no conceptual differences between the
two ways of regularizing (see also the early work [44]).

We then apply the developed local LO, NLO, and
N2LO chiral EFT interactions in systematic QMC cal-
culations for the first time. Since nuclear forces con-
tain quadratic spin, isospin, and tensor operators (of the
form σ

α
i Aαβ

ij σ
β
j ), the many-body wave function cannot

be expressed as a product of single-particle spin-isospin
states. All possible spin-isospin nucleon-pair states need
to be explicitly accounted for, leading to an exponential
increase in the number of possible states. As a result,
Green’s Function Monte Carlo (GFMC) calculations are
presently limited to 12 nucleons and 16 neutrons [30]. In
this Letter, we would like to simulate O(100) neutrons
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FIG. 2. (Color online) Neutron matter energy per particle
E/N as a function of density n calculated using AFDMC
with chiral EFT NN interactions at LO, NLO, and N2LO.
The statistical errors are smaller than the points shown. The
lines give the range of the energy band obtained by varying
R0 between 0.8 − 1.2 fm (as for the phase shifts in Fig. 1),
which provides an estimate of the theoretical uncertainty at
each order. The N2LO band is comparable to the one at NLO
due to the large ci couplings in the N2LO two-pion exchange.

to access the thermodynamic limit. We therefore turn
to the auxiliary-field diffusion Monte Carlo (AFDMC)
method [45], which is capable of efficiently handling spin-
dependent Hamiltonians.
Schematically, AFDMC rewrites the Green’s function

by applying a Hubbard-Stratonovich transformation us-
ing auxiliary fields to change the quadratic spin-isospin
operator dependences to linear. As a result, when applied
to a wave function that is a product of single-particle

4

in the limit of infinite cuto↵, they contribute for finite
cuto↵s. In Fig. 3 we show results for the neutron mat-
ter energy per particle as a function of the density calcu-
lated with the AFDMC method described in Refs. [3, 34].
We show the energies for R

0

= 1.0 fm for the NN and
full 3N interactions. We use VD2

and the three di↵erent
VE structures: VE⌧ (blue band), VE (red band), and
VEP (green band). The error bands are determined as in
the light nuclei case. The VEP interaction fits A = 4, 5
with a vanishing cD; hence, this choice of VE leads to
an equation of state identical to the equation of state
with NN+ VC as in Ref. [24] (the projector P is zero for
pure neutron systems), and qualitatively similar to pre-
vious results using chiral interactions at N2LO [35] and
next-to-next-to-next-to-leading order [36].

As discussed, the contributions of VD and VE are only
regulator e↵ects for neutrons. However, they are sizable
and result in a larger error band. At saturation den-
sity n

0

⇠ 0.16 fm�3, the di↵erence of the central value
of the energy per neutron after inclusion of the 3N con-
tacts VE or VE⌧ is ⇠ 2 MeV, leading to a total error
band with a range of ⇠ 6.5 MeV when considering di↵er-
ent VE structures. This relatively large uncertainty can
be qualitatively explained when considering the following
e↵ects. Because the expectation value h

P
i<j ⌧ i ·⌧ ji has

a sign opposite to that of the expectation value h i in
4He, cE will also have opposite signs in the two cases to
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FIG. 2. Ground-state energies and point proton radii for A =
3, 4 nuclei calculated at NLO and N2LO (with VD2 and VE⌧ )
compared with experiment. Blue (red) symbols correspond
to R0 = 1.0 fm (R0 = 1.2 fm). The errors are obtained as
described in the text and also include the GFMC statistical
uncertainties.

FIG. 3. The energy per particle in neutron matter as a
function of density for the NN and full 3N interactions at
N2LO with R0 = 1.0 fm. We use VD2 and di↵erent 3N contact
structures: The blue band corresponds to VE⌧ , the red band
to VE , and the green band to VEP . The green band coincides
with the NN+ 2⇡-exchange-only result because both VD and
VE vanish in this case. The bands are calculated as described
in the text.

fit the binding energy. However, in neutron matter both
operators are the same, spreading the uncertainty band.
A similar argument was made in Ref. [37].

With the regulators used here, the Fierz-
rearrangement invariance valid at infinite cuto↵ is
only approximate at finite cuto↵, and hence the di↵erent
choices of VD and VE can lead to di↵erent results.
The di↵erent local structures can lead to finite relative
P -wave contributions. These can be eliminated by
choosing VEP , which has a projection onto even-parity
waves (predominantly S waves). The usual nonlocal
regulator in momentum space does not couple S and P
waves.

In conclusion, we find for the first time that chiral in-
teractions can simultaneously fit light nuclei and low-
energy P -wave n-↵ scattering and provide reasonable es-
timates for the neutron matter equation of state. Other
commonly used phenomenological 3N models do not pro-
vide this capability. These chiral forces should be tested
in light p-shell nuclei, medium-mass nuclei, and isospin-
symmetric nuclear matter to gauge their ability to de-
scribe global properties of nuclear systems.

We also find that the ambiguities associated with
contact-operator choices can be significant when mov-
ing from light nuclei to neutron matter and possibly to
medium-mass nuclei, where the T = 3
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FIG. 1. (a) Couplings cE vs cD obtained by fitting the 4He binding energy for di↵erent 3N-operator forms. Triangles are
obtained by using VD1 and VE⌧ , while the other symbols are obtained for VD2 and three di↵erent VE-operator structures. The
blue and green lines (lower and upper) correspond to R0 = 1.0 fm, while the red lines (central) correspond to R0 = 1.2 fm. The
GFMC statistical errors are smaller than the symbols. The stars correspond to the values of cD and cE which simultaneously
fit the n-↵ P -wave phase shifts (see Table I and the right panel). No fit to both observables can be obtained for the case with
R0 = 1.2 fm and VD1. (b) P -wave n-↵ elastic scattering phase shifts compared with an R-matrix analysis of experimental data.
Colors and symbols correspond to the left panel. We also include phase shifts calculated at NLO which clearly indicate the
necessity of 3N interactions to fit the P -wave splitting.

TABLE I. Fit values for the couplings cD and cE for di↵erent
choices of 3N forces and cuto↵s.

V3N R0 (fm) cE cD

N2LO (D1, E⌧)
1.0 �0.63 0.0

1.2

N2LO (D2, E⌧)
1.0 �0.63 0.0

1.2 0.09 3.5

N2LO (D2, E ) 1.0 0.62 0.5

N2LO (D2, EP) 1.0 0.59 0.0

results in n-↵ P -wave scattering show a substantial sen-
sitivity: VD1

appears to have a smaller e↵ect than VD2

.

In Fig. 2, we show ground-state energies and point pro-
ton radii for A = 3, 4 nuclei at NLO and N2LO using VD2

and VE⌧ for R
0

= 1.0 fm and R
0

= 1.2 fm, in compar-
ison with experiment. The ground-state energies of the
A = 3 systems compare well with experimental values.
The ground-state energy of 4He is used in fitting cD and
cE , and so it is forced to match the experimental value to
within ⇡ 0.03 MeV. The point proton radii also compare
well with values extracted from experiment. The theo-
retical uncertainty at each order is estimated through the
expected size of higher-order contributions; see Ref. [32]
for details. We include results from LO, NLO, and N2LO

in the analysis using the Fermi momentum and the pion
mass as the small scales for neutron matter (discussed
below) and nuclei, respectively. The error bars presented
here are comparable to those shown in Ref. [33], although
it is worth emphasizing that our calculations represent a
complete estimate of the uncertainty at N2LO since we
include 3N interactions. Other choices for 3N structures
give similar results.

It is noteworthy that NN and 3N interactions derived
from chiral EFT up to N2LO have su�cient freedom such
that n-↵ scattering phase shifts in Fig. 1(b) and proper-
ties of light nuclei in Fig. 2 can be simultaneously de-
scribed. The failures of the Urbana IX model in under-
binding nuclei and underpredicting the spin-orbit split-
ting in neutron-rich systems, including the n-↵, system
were among the factors motivating the addition of the
three-pion exchange diagrams in the Illinois 3N mod-
els [7]. Our results show that chiral 3N forces at N2LO,
including the shorter-range parts in the pion exchanges,
allow the simultaneous fit. These interactions should be
tested further in light p-shell nuclei.

Finally, we study the full chiral N2LO forces, includ-
ing all 3N contributions, in neutron matter to extend the
results from Ref. [24]. More specifically, we examine the
e↵ects of di↵erent VD and VE structures on the equation
of state of neutron matter. Although these terms vanish

Gezerlis et al.,
PRL 111, 032501 (2013)
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FIG. 1. (Color online) Neutron-proton phase shifts as a function of laboratory energy Elab = 2p2/m in the 1S0, 3P0, 3P1, and
3P2 partial waves (from left to right) in comparison to the Nijmegen partial-wave analysis (PWA) [43]. The LO, NLO, and

N2LO bands are obtained by varying R0 between 0.8 − 1.2 fm (with a spectral-function cutoff Λ̃ = 800MeV).

and provide a measure of the theoretical uncertainty. For
the R0 = 1.2 fm N2LO NN potential, we list the low-
energy couplings at LO, NLO, and N2LO in Table I. At
N2LO, an isospin-symmetry-breaking contact interaction
(Cnn for neutrons) is added in the spin S = 0 channel (to
CS−3CT ), which is fit to a scattering length of −18.8 fm.
As shown in Fig. 1, the comparison with NN phase shifts
is very good for Elab ! 150MeV. This is similar for
higher partial waves and isospin T = 0 channels, which
will be reported in a later paper that will also study im-
proved fits. In cases where there are deviations for higher
energies (such as in the 3P2 channel of Fig. 1), the width
of the band signals significant theoretical uncertainties
due to the chiral EFT truncation at N2LO. The NLO
and N2LO bands nicely overlap (as shown for the cases
in Fig. 1), or are very close, but it is also apparent that
the N2LO bands are of a similar size as at NLO. This is
because the width of the bands at both NLO and N2LO
shows effects of the neglected order-Q4 contact interac-
tions.

Finally, we emphasize that the newly introduced local
chiral EFT potentials include the same physics as the
momentum-space versions. This is especially clear when
antisymmetrizing. Besides the new idea of removing the
k2 terms, there are no conceptual differences between the
two ways of regularizing (see also the early work [44]).

We then apply the developed local LO, NLO, and
N2LO chiral EFT interactions in systematic QMC cal-
culations for the first time. Since nuclear forces con-
tain quadratic spin, isospin, and tensor operators (of the
form σ

α
i Aαβ

ij σ
β
j ), the many-body wave function cannot

be expressed as a product of single-particle spin-isospin
states. All possible spin-isospin nucleon-pair states need
to be explicitly accounted for, leading to an exponential
increase in the number of possible states. As a result,
Green’s Function Monte Carlo (GFMC) calculations are
presently limited to 12 nucleons and 16 neutrons [30]. In
this Letter, we would like to simulate O(100) neutrons
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FIG. 2. (Color online) Neutron matter energy per particle
E/N as a function of density n calculated using AFDMC
with chiral EFT NN interactions at LO, NLO, and N2LO.
The statistical errors are smaller than the points shown. The
lines give the range of the energy band obtained by varying
R0 between 0.8 − 1.2 fm (as for the phase shifts in Fig. 1),
which provides an estimate of the theoretical uncertainty at
each order. The N2LO band is comparable to the one at NLO
due to the large ci couplings in the N2LO two-pion exchange.

to access the thermodynamic limit. We therefore turn
to the auxiliary-field diffusion Monte Carlo (AFDMC)
method [45], which is capable of efficiently handling spin-
dependent Hamiltonians.
Schematically, AFDMC rewrites the Green’s function

by applying a Hubbard-Stratonovich transformation us-
ing auxiliary fields to change the quadratic spin-isospin
operator dependences to linear. As a result, when applied
to a wave function that is a product of single-particle

4

in the limit of infinite cuto↵, they contribute for finite
cuto↵s. In Fig. 3 we show results for the neutron mat-
ter energy per particle as a function of the density calcu-
lated with the AFDMC method described in Refs. [3, 34].
We show the energies for R

0

= 1.0 fm for the NN and
full 3N interactions. We use VD2

and the three di↵erent
VE structures: VE⌧ (blue band), VE (red band), and
VEP (green band). The error bands are determined as in
the light nuclei case. The VEP interaction fits A = 4, 5
with a vanishing cD; hence, this choice of VE leads to
an equation of state identical to the equation of state
with NN+ VC as in Ref. [24] (the projector P is zero for
pure neutron systems), and qualitatively similar to pre-
vious results using chiral interactions at N2LO [35] and
next-to-next-to-next-to-leading order [36].

As discussed, the contributions of VD and VE are only
regulator e↵ects for neutrons. However, they are sizable
and result in a larger error band. At saturation den-
sity n

0

⇠ 0.16 fm�3, the di↵erence of the central value
of the energy per neutron after inclusion of the 3N con-
tacts VE or VE⌧ is ⇠ 2 MeV, leading to a total error
band with a range of ⇠ 6.5 MeV when considering di↵er-
ent VE structures. This relatively large uncertainty can
be qualitatively explained when considering the following
e↵ects. Because the expectation value h

P
i<j ⌧ i ·⌧ ji has

a sign opposite to that of the expectation value h i in
4He, cE will also have opposite signs in the two cases to
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FIG. 2. Ground-state energies and point proton radii for A =
3, 4 nuclei calculated at NLO and N2LO (with VD2 and VE⌧ )
compared with experiment. Blue (red) symbols correspond
to R0 = 1.0 fm (R0 = 1.2 fm). The errors are obtained as
described in the text and also include the GFMC statistical
uncertainties.

FIG. 3. The energy per particle in neutron matter as a
function of density for the NN and full 3N interactions at
N2LO with R0 = 1.0 fm. We use VD2 and di↵erent 3N contact
structures: The blue band corresponds to VE⌧ , the red band
to VE , and the green band to VEP . The green band coincides
with the NN+ 2⇡-exchange-only result because both VD and
VE vanish in this case. The bands are calculated as described
in the text.

fit the binding energy. However, in neutron matter both
operators are the same, spreading the uncertainty band.
A similar argument was made in Ref. [37].

With the regulators used here, the Fierz-
rearrangement invariance valid at infinite cuto↵ is
only approximate at finite cuto↵, and hence the di↵erent
choices of VD and VE can lead to di↵erent results.
The di↵erent local structures can lead to finite relative
P -wave contributions. These can be eliminated by
choosing VEP , which has a projection onto even-parity
waves (predominantly S waves). The usual nonlocal
regulator in momentum space does not couple S and P
waves.

In conclusion, we find for the first time that chiral in-
teractions can simultaneously fit light nuclei and low-
energy P -wave n-↵ scattering and provide reasonable es-
timates for the neutron matter equation of state. Other
commonly used phenomenological 3N models do not pro-
vide this capability. These chiral forces should be tested
in light p-shell nuclei, medium-mass nuclei, and isospin-
symmetric nuclear matter to gauge their ability to de-
scribe global properties of nuclear systems.

We also find that the ambiguities associated with
contact-operator choices can be significant when mov-
ing from light nuclei to neutron matter and possibly to
medium-mass nuclei, where the T = 3
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good description of all A ≤ 4 data. Some of the πN LECs
display large variations, but the χ2=Ndof (without model
error) for the πN data is within 2.28(4) for all of these
potentials. The subleading πN LECs become more positive
when NN scattering data at higher energies are included,
and c1, in particular, carries a larger (relative) statistical
uncertainty than the others. It is noteworthy that for a given
Tmax
Lab , and up to 1σ precision, the πN LECs exhibit Λ

independence. The NNN LECs, cD and cE, tend to depend
less on Tmax

Lab at larger values of Λ. However, they always
remain natural. It is also interesting to note that the tensor
contact CE1

is insensitive to Λ variations but strongly
dependent on the Tmax

Lab cut. It was shown in Fig. 6 that CE1

and c4 correlate strongly. This effect can already be
expected from the structure of the underlying expression
for the NNLO interaction.
To gauge the magnitude of model variations in heavier

nuclei, we computed the binding energies of 4He and 16O
by using the previously mentioned family of 42 NNLO
potentials. The resulting binding energies for 4He and 16O,
computed in the NCSM and CC, respectively, are shown in
Fig. 11. The NCSM calculations were carried out in a HO
model space with Nmax ¼ 20 and ℏω ¼ 36 MeV. The CC
calculations were carried out in the so-called Λ−CCSD(T)
approximation [7] in 15 major oscillator shells with
ℏω ¼ 22 MeV. The largest energy difference when going
from 13 to 15 oscillator shells was 3.6 MeV (observed
for Λ ¼ 600 MeV). From the observed convergence of the
correlation energy we estimate the uncertainty of excluded
higher rank excitation clusters to "5 MeV. For our
purposes, this provides well-enough converged results.
The NNN force was truncated at the normal-ordered
two-body level in the Hartree-Fock basis.

The Eð4HeÞ predictions vary within about a 2-MeV
range. For Eð16OÞ, this variation increases dramatically to
about 35 MeV. Irrespective of the discrepancy with the
measured value, the spread of the central values indicates
the presence of a surprisingly large systematic error when
extrapolating to heavier systems.
The statistical uncertainties remain small: tens of keV for

4He and a few hundred keV for 16O. These uncertainties are
obtained from the quadratic approximation with the com-
puted Jacobian and Hessian for 4He, while a brute-force
Monte Carlo simulation with 2.5 × 104 CC calculations
was performed for 16O. This massive set of CC calculations
employed the singles and doubles approximation (CCSD)
in nine major oscillator shells. We conclude that the
statistical uncertainties of the predictions for Eð4HeÞ and
Eð16OÞ at NNLO are much smaller than the variations due
to changing Λ or Tmax

Lab . However, this is only true for
simultaneously optimized potentials. For the separately
optimized NNLO potential (NNLOsep), the statistical
uncertainty of the Eð4HeÞ prediction is five times larger
than the observed variations due to changing Λ and Tmax

Lab .

V. OUTLOOK

The extended analysis of systematic uncertainties pre-
sented above suggests that large fluctuations are induced in
heavier nuclei (see Fig. 11). Furthermore, while predictions
for 4He are accurate over a rather wide range of regulator
parameters, the binding energy for 16O turns out to be
underestimated for the entire range used in this study. In
fact, there is no overlap between the theoretical predictions
and the experimental results, even though the former ones
have large error bars.
Based on our findings, we recommend that continued

efforts towards an ab initio framework based on χEFT
should involve additional work in, at least, three different
directions:
(1) Explore the alternative strategy of informing the

model about low-energy many-body observables.
(2) Diversify and extend the statistical analysis and

perform a sensitivity analysis of input data.
(3) Continue efforts towards higher orders of the chiral

expansion, and possibly revisit the power counting.
Let us comment briefly on these research directions. The
poor many-body scaling observed in Fig. 11 was prag-
matically accounted for in the construction of the so-called
NNLOsat potential presented in Ref. [35], where heavier
nuclei were also included in the fit. The accuracy of many-
body predictions was shown to be much improved, but the
uncertainty analysis is much more difficult within such a
strategy.
Second, to get a handle on possible bias in the statistical

analysis due to the choice of statistical technique, it is
important to apply different types of optimization and
uncertainty quantification methods. Various choices exist,

FIG. 11. Binding-energy predictions for (a) 4He and (b) 16O
with the different reoptimizations of NNLOsim. On the x axis
is the employed cutoff Λ. Vertically aligned red markers
correspond to different Tmax

Lab for the NN scattering data used
in the optimization. The experimental binding energies are
Eð4HeÞ ≈ −28.30 MeV, represented by a gray band in panel
(a), and Eð16OÞ≈−127.6MeV [98]. Statistical error bars on the
theoretical results are smaller than the marker size on this
energy scale.
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potentials, there were no signs of convergence in the
description of, e.g., np scattering data.
If the experimental database of πN scattering cross

sectionswas complete, then itwould be possible to separately
constrain,with zerovariances, the correspondingLECs.Only
this scenario would render it unnecessary to include the πN
scattering data in the simultaneous objective function.
Implicitly, this scenario also assumes a perfect theory, i.e.,
that the employed χEFT can account for the dynamics of
pionic interactions. Of course, reality lies somewhere in
between, and a simultaneous optimization approach is
preferable in the present situation. There exists ongoing
efforts where the πN sector of χEFT is extrapolated and fitted
separately in the unphysical kinematical region, where it
exhibits a stronger curvature with respect to the data [96].
Overall, the importance of applying simultaneous

optimization is most prominent at higher chiral orders
since the subleading πN LECs enter first at NNLO. In
fact, the separately optimized NNLOsep potential contains
a large systematic uncertainty by construction. We find
that the scaling factor for the NN scattering model error,
CNN , decreases from 1.6 to 1.0 mb1=2 when going from
NNLOsep to the simultaneously optimized NNLOsim.
This implies that the separate, or sequential, optimization
protocol introduces additional artificial systematic errors
not due to the chiral expansion but due to incorrectly fitted
LECs. This scenario is avoided in a simultaneous opti-
mization. The scaling factor for the πN scattering model
error, CπN, remains at 3.6 mb1=2 for both NNLOsep and
NNLOsim.

The size of the model error is determined such that the
overall scattering χ2=Ndof is unity, which means that it
depends on the observables entering the optimization. We
can explore the stability of our approach by reoptimizing
NNLOsim with respect to different truncations of the
input NN scattering data. To this end, we adjust the allowed
Tmax
lab between 125 and 290 MeV in six steps. It turns out

that our procedure for extracting the model error is very
stable. The resulting normalization constants CNN vary
between 1.0 mb1=2 and 1.3 mb1=2 as shown in Fig. 10(a).

FIG. 9. Comparison between selected NN and πN experimental data sets and theoretical calculations for chiral interactions at LO,
NLO, and NNLO. The bands indicate the total errors (statistical plus model errors). (a) np total cross section for the sequentially
optimized interactions with no clear signature of convergence with increasing chiral order. All other results are for the simultaneously
optimized interactions: LOsim, NLOsim, and NNLOsim. (b) np total cross section; (c) np differential cross section; (d) πN charge-
exchange, differential cross section; (e) πN elastic, differential cross section.

FIG. 10. Predictions for the different reoptimizations of NNLO-
sim. On the x axis is the maximum T lab for the NN scattering
data used in the optimization. (a) Model error amplitude (20)
reoptimized so that χ2=Ndof ¼ 1 for the respective data subset.
(b) Model prediction for the np total cross section at T lab ¼
300 MeV with error bars representing statistical and model
errors for the different reoptimizations.
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potentials, there were no signs of convergence in the
description of, e.g., np scattering data.
If the experimental database of πN scattering cross

sectionswas complete, then itwould be possible to separately
constrain,with zerovariances, the correspondingLECs.Only
this scenario would render it unnecessary to include the πN
scattering data in the simultaneous objective function.
Implicitly, this scenario also assumes a perfect theory, i.e.,
that the employed χEFT can account for the dynamics of
pionic interactions. Of course, reality lies somewhere in
between, and a simultaneous optimization approach is
preferable in the present situation. There exists ongoing
efforts where the πN sector of χEFT is extrapolated and fitted
separately in the unphysical kinematical region, where it
exhibits a stronger curvature with respect to the data [96].
Overall, the importance of applying simultaneous

optimization is most prominent at higher chiral orders
since the subleading πN LECs enter first at NNLO. In
fact, the separately optimized NNLOsep potential contains
a large systematic uncertainty by construction. We find
that the scaling factor for the NN scattering model error,
CNN , decreases from 1.6 to 1.0 mb1=2 when going from
NNLOsep to the simultaneously optimized NNLOsim.
This implies that the separate, or sequential, optimization
protocol introduces additional artificial systematic errors
not due to the chiral expansion but due to incorrectly fitted
LECs. This scenario is avoided in a simultaneous opti-
mization. The scaling factor for the πN scattering model
error, CπN, remains at 3.6 mb1=2 for both NNLOsep and
NNLOsim.

The size of the model error is determined such that the
overall scattering χ2=Ndof is unity, which means that it
depends on the observables entering the optimization. We
can explore the stability of our approach by reoptimizing
NNLOsim with respect to different truncations of the
input NN scattering data. To this end, we adjust the allowed
Tmax
lab between 125 and 290 MeV in six steps. It turns out

that our procedure for extracting the model error is very
stable. The resulting normalization constants CNN vary
between 1.0 mb1=2 and 1.3 mb1=2 as shown in Fig. 10(a).

FIG. 9. Comparison between selected NN and πN experimental data sets and theoretical calculations for chiral interactions at LO,
NLO, and NNLO. The bands indicate the total errors (statistical plus model errors). (a) np total cross section for the sequentially
optimized interactions with no clear signature of convergence with increasing chiral order. All other results are for the simultaneously
optimized interactions: LOsim, NLOsim, and NNLOsim. (b) np total cross section; (c) np differential cross section; (d) πN charge-
exchange, differential cross section; (e) πN elastic, differential cross section.

FIG. 10. Predictions for the different reoptimizations of NNLO-
sim. On the x axis is the maximum T lab for the NN scattering
data used in the optimization. (a) Model error amplitude (20)
reoptimized so that χ2=Ndof ¼ 1 for the respective data subset.
(b) Model prediction for the np total cross section at T lab ¼
300 MeV with error bars representing statistical and model
errors for the different reoptimizations.
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2. simultaneous fit of NN and 3N forces to two- and few-body observables
    status: NN plus 3N up to N2LO, N3LO currently in development
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FIG. 1. (Color online) Ground-state energy (negative of binding
energy) per nucleon (top), and residuals (differences between com-
puted and experimental values) of charge radii (bottom) for selected
nuclei computed with chiral interactions. In most cases, theory
predicts too-small radii and too-large binding energies. References:
a [40,41], b [24], c [23], d [22], e [42], f [43], g [44], h [45], i [46].
The red diamonds are NNLOsat results obtained in this work.

to low-energy observables (as opposed to the traditional
adjustment of two-nucleon forces to NN scattering data at
higher energies). Third, the impact of many-body effects
entering at higher orders (e.g., higher-rank forces) might be
reduced if heavier systems, in which those effects are stronger,
are included in the optimization.

Besides these theoretical arguments, there is also one
practical reason for a paradigm shift: predictive power and
large extrapolations do not go together. In traditional ap-
proaches, where interactions are optimized for A = 2,3,4,
small uncertainties in few-body systems (e.g., by forcing a
rather precise reproduction of the A = 2,3,4 sectors at a
rather low order in the chiral power counting) get magnified
tremendously in heavy nuclei; see, for example, Ref. [24].
Consequently, when aiming at reliable predictions for heavy
nuclei, it is advisable to use a model that performs well for
light- and medium-mass systems. In our approach, light nuclei
are reached by interpolation while medium-mass nuclei by a
modest extrapolation. In this context, it is worth noting that the
most accurate calculations for light nuclei with A ! 12 [59]
employ NNN forces adjusted to 17 states in nuclei with
A ! 8 [60]. Finally, we point out that nuclear saturation can
be viewed as an emergent phenomenon. Indeed, little in the
chiral EFT of nuclear forces suggest that nuclei are self-bound
systems with a central density (or Fermi momentum) that is
practically independent of mass number. This viewpoint makes
it prudent to include the emergent momentum scale into the
optimization, which is done in our case by the inclusion of
charge radii for 3H, 3,4He, 14C, and 16O. This is similar in spirit
to nuclear mean-field calculations [61] and nuclear density
functional theory [62,63] where masses and radii provide key
constraints on the parameters of the employed models.

Optimization protocol and model details. We seek to
minimize an objective function to determine the optimal set
of coupling constants of the chiral NN + NNN interaction
at NNLO. Our dataset of fit-observables includes the binding
energies and charge radii of 3H, 3,4He, 14C, and 16O, as well

TABLE I. Binding energies (in MeV) and charge radii (in fm)
for 3H, 3,4He, 14C, and 16,22,23,24,25O employed in the optimization of
NNLOsat.

Eg.s. Expt. [69] rch Expt. [65,66]

3H 8.52 8.482 1.78 1.7591(363)
3He 7.76 7.718 1.99 1.9661(30)
4He 28.43 28.296 1.70 1.6755(28)
14C 103.6 105.285 2.48 2.5025(87)
16O 124.4 127.619 2.71 2.6991(52)
22O 160.8 162.028(57)
24O 168.1 168.96(12)
25O 167.4 168.18(10)

as binding energies of 22,24,25O as summarized in Table I.
To obtain charge radii rch from computed point-proton radii
rpp we use the standard expression [64]: ⟨r2

ch⟩ = ⟨r2
pp⟩ +

⟨R2
p⟩ + N

Z
⟨R2

n⟩ + 3!2

4m2
pc2 , where 3!2

4m2
pc2 = 0.033 fm2 (Darwin–

Foldy correction), R2
n = −0.1149(27) fm2 [65], and Rp =

0.8775(51) fm [66]. In this work we ignore the spin-orbit
contribution to charge radii [67]. From the NN sector, the
objective function includes proton-proton and neutron-proton
scattering observables from the SM99 database [68] up to
35 MeV scattering energy in the laboratory system as well
as effective range parameters, and deuteron properties (see
Table II). The maximum scattering energy was chosen such
that an acceptable fit to both NN scattering data and many-
body observables could be achieved.

In the present optimization protocol, the NNLO chiral
force is tuned to low-energy observables. The comparison
with the high-precision chiral NN interaction N3 LOEM [49]
and experimental data presented in Table II demonstrates the
quality of NNLOsat at low energies.

The results for 3H and 3,4He (and 6Li) were computed
with the no-core shell model (NCSM) [6,10] accompanied
by infrared extrapolations [75]. The NNN force of NNLOsat
yields about 2 MeV of binding energy for 4He. Heavier nuclei

TABLE II. Low-energy NN data included in the optimization.
The scattering lengths a and effective ranges r are in units of fm. The
proton-proton observables with superscript C include the Coulomb
force. The deuteron binding energy (ED , in MeV), structure radius
(rD , in fm), and quadrupole moment (QD , in fm2) are calculated
without meson-exchange currents or relativistic corrections. The
computed d-state probability of the deuteron is 3.46%.

NNLOsat N3 LOEM [49] Expt. Ref.

aC
pp −7.8258 −7.8188 −7.8196(26) [70]

rC
pp 2.855 2.795 2.790(14) [70]

ann −18.929 −18.900 −18.9(4) [71]
rnn 2.911 2.838 2.75(11) [72]
anp −23.728 −23.732 −23.740(20) [73]
rnp 2.798 2.725 2.77(5) [73]
ED 2.22457 2.22458 2.224566 [69]
rD 1.978 1.975 1.97535(85) [74]
QD 0.270 0.275 0.2859(3) [73]
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FIG. 2. (Color online) Selected neutron-proton scattering phase-
shifts as a function of the laboratory scattering energy TLab. (Top)
NNLOsat prediction (solid lines) compared to the Nijmegen phase
shift analysis [95] (symbols) at low energies TLab < 35 MeV. Note
the two vertical scales. (Bottom) Neutron-proton scattering phase
shifts from NNLOsat (red diamonds) compared to the Nijmegen
phase shift analysis (black squares) and the NNLO potentials (green)
from Ref. [77].

dominated by about 90% of 1p-1h(p1/2 → d5/2) excitations,
at 6.34 MeV. The energy of the 3−

1 state is strongly correlated
with the charge radius of 16O, with smaller charge radii
leading to higher excitation energies. For 1p-1h excited states,
the excitation energy depends on the particle-hole gap and
therefore on one-nucleon separation energies of the A = 16
and A = 17 systems. The charge radius depends also on the
proton separation energy Sp. For 16O we find Sp = 10.69 MeV
and the neutron separation energy Sn(17O) = 4.0 MeV, in an
acceptable agreement with the experimental values of 12.12
and 4.14 MeV, respectively. For 17F we find Sp = 0.5 MeV, to
be compared with the experimental threshold at 0.6 MeV.

The inset of Fig. 4 shows that the 2−
1 state in 16O also comes

out well, suggesting a 1p-1h nature. However, the 1−
1 state is

about 1.5 MeV too high compared with experiment. This state
is dominated by 1p-1h excitations from the occupied p1/2 to
the unoccupied s1/2 orbitals. In 17O the 1/2+ state is computed
at an excitation energy of 2.2 MeV, which is about 1.4 MeV

FIG. 3. (Color online) Energies (in MeV) of selected excited
states for various nuclei using NNLOsat. For 6Li we also include
spectra from the NCSM (dotted lines), and isospin quantum numbers
are also given. The NCSM results were obtained with Nmax = 10 and
!! = 16 MeV. Parenthesis denote tentative spins assignments for
experimental levels. Data are from Refs. [100–103].

too high. This probably explains the discrepancy observed for
the 1− state in 16O.

Figure 4 shows that the experimental charge-density of 16O
is well reproduced with NNLOsat, and our charge form factor
is, for momenta up to the second diffraction maximum, similar
in quality to what Mihaila and Heisenberg [11] achieved with
the Av18 + UIX potential. For the heavier isotopes 22,24O and
22,24F Fig. 3 shows good agreement between theory and experi-
ment for excited states. For 22F our computed spin assignments
agree with results from shell-model Hamiltonians [106] and
with recent ab initio results [89]. The binding energies for
14N, 22,24F are 103.7, 163, and 175.1 MeV, respectively, in
good agreement with data (104.7, 167.7, and 179.1 MeV). We
also computed the intrinsic charge (matter) radii of 22,24O and
obtained 2.72 fm (2.80 fm) and 2.76 fm (2.95 fm), respectively.
The matter radius of 22O agrees with the experimental result
from Ref. [91]. We note that the computed spectra in 18O is too

FIG. 4. (Color online) Charge density in 16O computed as in
Ref. [110] compared to the experimental charge density [111].
The inset compares computed low-lying negative-parity states with
experiment.
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FIG. 5. (Color online) Equation of state for symmetric nuclear
matter from chiral interactions. Solid red line is the prediction of
NNLOsat. Blue dashed-dotted and black dashed lines: Ref. [56].
Symbols (red diamond, blue circle, black square) mark the corre-
sponding saturation points. Triangles are saturation points from other
models (upward triangles [33], rightward triangles [112], downward
triangles [36]). The corresponding incompressibilities (in MeV) are
indicated by numbers. Green box shows empirical saturation point.

compressed compared to experiment (theory yields 0.7 MeV
compared to 1.9 MeV for the first excited 2+ state), possibly
due to the too-high 1/2+ excited state in 17O. In general,
the quality of our spectra for sd-shell nuclei is comparable
to those of recent state-of-the-art calculations with chiral
Hamiltonians [44,107–109], while radii are much improved.

For 40Ca the computed binding energy E = 326 MeV,
charge radius rch = 3.48 fm, and E(3−

1 ) = 3.81 MeV all agree
well with the experimental values of 342 MeV, 3.4776(19)
fm [65], and 3.736 MeV respectively. We checked that our
energies for the 3−

1 states in 16O and 40Ca are practically
free from spurious center-of-mass effects. The results for 40Ca
illustrate the predictive power of NNLOsat when extrapolating
to medium-mass nuclei.

Finally, we present predictions for infinite nuclear mat-
ter. The accurate reproduction of the saturation point and
incompressibility of symmetric nuclear matter has been a
challenge for ab initio approaches, with representative results
from chiral interactions shown in Fig. 5. The solid line shows
the equation of state for NNLOsat. Its saturation point is close
to the empirical point, and its incompressibility K = 253
lies within the accepted empirical range [21]. At saturation
density, coupled-cluster with doubles yields about 6 MeV per
particle in correlation energy, while triples corrections (and
residual NNN forces beyond the normal-ordered two-body
approximation) yield another 1.5 MeV.

Let us briefly discuss the saturation mechanism. Similar
to Vlow k potentials [5], the NN interaction of NNLOsat
is soft and yields nuclei with too-large binding energies
and too-small radii. The NNN interactions of NNLOsat are
essential to arrive at physical nuclei, similarly to the role
of NNN forces in the saturation of nuclear matter with
low-momentum potentials [33]. This situation is reminiscent
of the role the three-body terms play in nuclear density
functional theory [113].

Summary. We have developed a consistently optimized
interaction from chiral EFT at NNLO that can be applied
to nuclei and infinite nuclear matter. Our guideline was the
simultaneous optimization of NN and NNN forces to experi-
mental data, including two-body and few-body data, as well as
properties of selected light nuclei such as carbon and oxygen
isotopes. The optimization is based on low-energy observables
including binding energies and radii. The predictions made
with the new interaction NNLOsat include accurate charge radii
and binding energies. Spectra for 40Ca and selected isotopes
of lithium, nitrogen, oxygen and fluorine isotopes are well
reproduced, as well as the energies of 3−

1 excitations in 16O
and 40Ca. To our knowledge, NNLOsat is currently the only
microscopically founded interaction that allows for a good
description of nuclei (including their masses and radii) in a
wide mass range from few-body systems to medium mass.
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[6] P. Navrátil, S. Quaglioni, I. Stetcu, and B. R. Barrett, J. Phys.
G: Nucl. Part. Phys. 36, 083101 (2009).

051301-5



Recent and current developments of novel nuclear interactions
3. fits of NN plus 3N forces to two-, few- and many-body observables
   status: NN plus 3N up to N2LO, NN phase shifts only fitted up to Tlab~35 MeV

4. semilocal NN forces, development of improved method to estimate uncertainties
    status: NN up to N4LO, 3N interactions in development (almost finished :-))

RAPID COMMUNICATIONS
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FIG. 1. (Color online) Ground-state energy (negative of binding
energy) per nucleon (top), and residuals (differences between com-
puted and experimental values) of charge radii (bottom) for selected
nuclei computed with chiral interactions. In most cases, theory
predicts too-small radii and too-large binding energies. References:
a [40,41], b [24], c [23], d [22], e [42], f [43], g [44], h [45], i [46].
The red diamonds are NNLOsat results obtained in this work.

to low-energy observables (as opposed to the traditional
adjustment of two-nucleon forces to NN scattering data at
higher energies). Third, the impact of many-body effects
entering at higher orders (e.g., higher-rank forces) might be
reduced if heavier systems, in which those effects are stronger,
are included in the optimization.

Besides these theoretical arguments, there is also one
practical reason for a paradigm shift: predictive power and
large extrapolations do not go together. In traditional ap-
proaches, where interactions are optimized for A = 2,3,4,
small uncertainties in few-body systems (e.g., by forcing a
rather precise reproduction of the A = 2,3,4 sectors at a
rather low order in the chiral power counting) get magnified
tremendously in heavy nuclei; see, for example, Ref. [24].
Consequently, when aiming at reliable predictions for heavy
nuclei, it is advisable to use a model that performs well for
light- and medium-mass systems. In our approach, light nuclei
are reached by interpolation while medium-mass nuclei by a
modest extrapolation. In this context, it is worth noting that the
most accurate calculations for light nuclei with A ! 12 [59]
employ NNN forces adjusted to 17 states in nuclei with
A ! 8 [60]. Finally, we point out that nuclear saturation can
be viewed as an emergent phenomenon. Indeed, little in the
chiral EFT of nuclear forces suggest that nuclei are self-bound
systems with a central density (or Fermi momentum) that is
practically independent of mass number. This viewpoint makes
it prudent to include the emergent momentum scale into the
optimization, which is done in our case by the inclusion of
charge radii for 3H, 3,4He, 14C, and 16O. This is similar in spirit
to nuclear mean-field calculations [61] and nuclear density
functional theory [62,63] where masses and radii provide key
constraints on the parameters of the employed models.

Optimization protocol and model details. We seek to
minimize an objective function to determine the optimal set
of coupling constants of the chiral NN + NNN interaction
at NNLO. Our dataset of fit-observables includes the binding
energies and charge radii of 3H, 3,4He, 14C, and 16O, as well

TABLE I. Binding energies (in MeV) and charge radii (in fm)
for 3H, 3,4He, 14C, and 16,22,23,24,25O employed in the optimization of
NNLOsat.

Eg.s. Expt. [69] rch Expt. [65,66]

3H 8.52 8.482 1.78 1.7591(363)
3He 7.76 7.718 1.99 1.9661(30)
4He 28.43 28.296 1.70 1.6755(28)
14C 103.6 105.285 2.48 2.5025(87)
16O 124.4 127.619 2.71 2.6991(52)
22O 160.8 162.028(57)
24O 168.1 168.96(12)
25O 167.4 168.18(10)

as binding energies of 22,24,25O as summarized in Table I.
To obtain charge radii rch from computed point-proton radii
rpp we use the standard expression [64]: ⟨r2

ch⟩ = ⟨r2
pp⟩ +

⟨R2
p⟩ + N

Z
⟨R2

n⟩ + 3!2

4m2
pc2 , where 3!2

4m2
pc2 = 0.033 fm2 (Darwin–

Foldy correction), R2
n = −0.1149(27) fm2 [65], and Rp =

0.8775(51) fm [66]. In this work we ignore the spin-orbit
contribution to charge radii [67]. From the NN sector, the
objective function includes proton-proton and neutron-proton
scattering observables from the SM99 database [68] up to
35 MeV scattering energy in the laboratory system as well
as effective range parameters, and deuteron properties (see
Table II). The maximum scattering energy was chosen such
that an acceptable fit to both NN scattering data and many-
body observables could be achieved.

In the present optimization protocol, the NNLO chiral
force is tuned to low-energy observables. The comparison
with the high-precision chiral NN interaction N3 LOEM [49]
and experimental data presented in Table II demonstrates the
quality of NNLOsat at low energies.

The results for 3H and 3,4He (and 6Li) were computed
with the no-core shell model (NCSM) [6,10] accompanied
by infrared extrapolations [75]. The NNN force of NNLOsat
yields about 2 MeV of binding energy for 4He. Heavier nuclei

TABLE II. Low-energy NN data included in the optimization.
The scattering lengths a and effective ranges r are in units of fm. The
proton-proton observables with superscript C include the Coulomb
force. The deuteron binding energy (ED , in MeV), structure radius
(rD , in fm), and quadrupole moment (QD , in fm2) are calculated
without meson-exchange currents or relativistic corrections. The
computed d-state probability of the deuteron is 3.46%.

NNLOsat N3 LOEM [49] Expt. Ref.

aC
pp −7.8258 −7.8188 −7.8196(26) [70]

rC
pp 2.855 2.795 2.790(14) [70]

ann −18.929 −18.900 −18.9(4) [71]
rnn 2.911 2.838 2.75(11) [72]
anp −23.728 −23.732 −23.740(20) [73]
rnp 2.798 2.725 2.77(5) [73]
ED 2.22457 2.22458 2.224566 [69]
rD 1.978 1.975 1.97535(85) [74]
QD 0.270 0.275 0.2859(3) [73]
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FIG. 2. (Color online) Selected neutron-proton scattering phase-
shifts as a function of the laboratory scattering energy TLab. (Top)
NNLOsat prediction (solid lines) compared to the Nijmegen phase
shift analysis [95] (symbols) at low energies TLab < 35 MeV. Note
the two vertical scales. (Bottom) Neutron-proton scattering phase
shifts from NNLOsat (red diamonds) compared to the Nijmegen
phase shift analysis (black squares) and the NNLO potentials (green)
from Ref. [77].

dominated by about 90% of 1p-1h(p1/2 → d5/2) excitations,
at 6.34 MeV. The energy of the 3−

1 state is strongly correlated
with the charge radius of 16O, with smaller charge radii
leading to higher excitation energies. For 1p-1h excited states,
the excitation energy depends on the particle-hole gap and
therefore on one-nucleon separation energies of the A = 16
and A = 17 systems. The charge radius depends also on the
proton separation energy Sp. For 16O we find Sp = 10.69 MeV
and the neutron separation energy Sn(17O) = 4.0 MeV, in an
acceptable agreement with the experimental values of 12.12
and 4.14 MeV, respectively. For 17F we find Sp = 0.5 MeV, to
be compared with the experimental threshold at 0.6 MeV.

The inset of Fig. 4 shows that the 2−
1 state in 16O also comes

out well, suggesting a 1p-1h nature. However, the 1−
1 state is

about 1.5 MeV too high compared with experiment. This state
is dominated by 1p-1h excitations from the occupied p1/2 to
the unoccupied s1/2 orbitals. In 17O the 1/2+ state is computed
at an excitation energy of 2.2 MeV, which is about 1.4 MeV

FIG. 3. (Color online) Energies (in MeV) of selected excited
states for various nuclei using NNLOsat. For 6Li we also include
spectra from the NCSM (dotted lines), and isospin quantum numbers
are also given. The NCSM results were obtained with Nmax = 10 and
!! = 16 MeV. Parenthesis denote tentative spins assignments for
experimental levels. Data are from Refs. [100–103].

too high. This probably explains the discrepancy observed for
the 1− state in 16O.

Figure 4 shows that the experimental charge-density of 16O
is well reproduced with NNLOsat, and our charge form factor
is, for momenta up to the second diffraction maximum, similar
in quality to what Mihaila and Heisenberg [11] achieved with
the Av18 + UIX potential. For the heavier isotopes 22,24O and
22,24F Fig. 3 shows good agreement between theory and experi-
ment for excited states. For 22F our computed spin assignments
agree with results from shell-model Hamiltonians [106] and
with recent ab initio results [89]. The binding energies for
14N, 22,24F are 103.7, 163, and 175.1 MeV, respectively, in
good agreement with data (104.7, 167.7, and 179.1 MeV). We
also computed the intrinsic charge (matter) radii of 22,24O and
obtained 2.72 fm (2.80 fm) and 2.76 fm (2.95 fm), respectively.
The matter radius of 22O agrees with the experimental result
from Ref. [91]. We note that the computed spectra in 18O is too

FIG. 4. (Color online) Charge density in 16O computed as in
Ref. [110] compared to the experimental charge density [111].
The inset compares computed low-lying negative-parity states with
experiment.
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FIG. 1. Chiral expansion of the 3H Eg.s. based on the NN potentials of Refs. [15,16] for the regulator R = 1.0 fm and using Q = Mπ/"b.
Panel (a) shows incomplete results based on NN forces only, with uncertainties being estimated via Eqs. (5) and (6). Panel (b) shows incomplete
results based on NN forces only, with uncertainties being estimated via Eqs. (5) and (6) for chiral order i = 0,2 and via Eqs. (7) and (8) for
i ! 3. Panel (c) shows the projected results assuming that the LECs in the N2LO 3NF are tuned to reproduce the 3H Eg.s. and using Eqs. (5)
and (6) to specify the uncertainty.

long-range part of the NN potential is regularized in position
space by multiplying with the function

f

(
r

R

)
=

[
1 − exp

(
− r2

R2

)]6

, (1)

with the cutoff R chosen in the range 0.8–1.2 fm.
In this paper we, for the first time, apply these novel chiral

NN forces beyond the two-nucleon system and demonstrate
their suitability for modern ab initio few- and many-body
methods. By applying the new method for error analysis, we
present unambiguous evidence for missing 3NF effects and
demonstrate that the size of the required 3NF contributions
agrees well with expectations based on Weinberg’s power
counting. We also estimate the theoretical accuracy for various
observables achievable at N4LO and identify the energy region
in elastic Nd scattering that is best suited for testing the chiral
3NF.

II. UNCERTAINTY QUANTIFICATION

We first describe our procedure for estimating the the-
oretical uncertainty. Let X(p) be some observable with p
referring to the corresponding momentum scale and X(i)(p),
i = 0,2,3, . . ., a prediction at order Qi in the chiral expansion.

We further define the order-Qi corrections to X(p) via

#X(2) ≡ X(2) − X(0), #X(i) ≡ X(i) − X(i−1), i ! 3, (2)

so that the chiral expansion for X takes the form

X(i) = X(0) + #X(2) + · · · + #X(i). (3)

Generally, the size of the corrections is expected to be

#X(i) = O(QiX(0)). (4)

In Ref. [16], the validity of this estimate was confirmed
for the total neutron-proton cross section. In Refs. [15,16],
quantitative estimates of the theoretical uncertainty δX(i) of the
chiral EFT prediction X(i) were made by using the expected
and actual sizes of higher-order contributions. Specifically, the
following procedure was employed:

δX(0) = Q2|X(0)|,
δX(i) = max

2"j"i
(Qi+1|X(0)|, Qi+1−j |#X(j )|), (5)

where i ! 2 and Q = max(p/"b, Mπ/"b) with "b =
600, 500, and 400 MeV for the regulator choices of R =
0.8–1.0, 1.1, and 1.2 fm, respectively. The sizes of actual
higher-order calculations provide additional information on

TABLE I. Ground-state energies Eg.s. of 3H and 4He (in MeV) and the point-proton radius rp of 4He (in fm) calculated by using the
improved NN chiral potentials of Refs. [15,16] up to N4LO for the cutoff R = 1.0 fm in comparison with empirical information. The quoted
uncertainties for the theoretical predictions are estimated via Eqs. (5) and (6) for chiral order i = 0,2 and via Eqs. (7) and (8) for i ! 3.

LO NLO N2LO N3LO N4LO Empirical

Eg.s. (3H) −11.3(3.7) −8.36(83) −8.26(20) −7.53(5) −7.63(1) −8.48
Eg.s. (4He) −45.5(21.7) −28.6(4.8) −28.1(1.2) −23.75(28) −24.27(6) −28.30
rp (4He) 1.064(499) 1.389(174) 1.405(41) 1.563(9) 1.547(2) 1.462(6)
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FIG. 3. Predictions for the differential cross section and nucleon
Ay in elastic Nd scattering based on the NN potentials of Refs. [15,16]
for R = 1.0 fm without including the 3NF. Theoretical uncertainties
are estimated via Eqs. (5) and (6) for chiral order i = 2 and via
Eqs. (7) and (8) for i ! 3. The bands of increasing width show the
estimated theoretical uncertainty at N4LO (red), N3LO (blue), N2LO
(green), and NLO (yellow). The dotted (dashed) lines show the results
based on the CD Bonn NN potential [20] (CD Bonn NN potential in
combination with the Tucson–Melbourne 3NF [21]). For references
to proton-deuteron data (symbols), see Ref. [5].

only, while using Eqs. (5) and (6) amounts to overestimating
the actual error. The N3LO (N4LO) results for the 3H Eg.s. are
expected to be accurate at the level of ∼50 keV (∼10 keV)
for the regulator choices of R = 0.8, 0.9, and 1.0 fm. Note
that the size of the inferred 3NF contribution agrees well
with the uncertainty at NLO, which reflects the estimated
impact of the N2LO contributions to the Hamiltonian. This
is fully in line with expectations based on the Weinberg
power counting [1,2]. We further emphasize that the sizable
underbinding of the triton with the NN potentials at N3LO
and N4LO is not limited to the employed regulator choice of
R = 1.0 fm. We find Eg.s. = −7.47 . . . − 7.56 MeV (Eg.s. =
−7.48 . . . − 7.63 MeV) for the variation of the regulator in the
range R = 0.8 . . . 1.2 fm at N3LO (N4LO).

We now turn to Nd scattering observables, which are
calculated by solving the Faddeev equation in the partial-wave

FIG. 4. Predictions for the tensor analyzing powers Ayy and Axx

in elastic Nd scattering based on the NN potentials of Refs. [15,16]
for R = 1.0 fm without including the 3NF. For notations see Fig. 3.

basis. We take into account all partial waves up to the
total angular momentum jmax = 5 in two-nucleon subsystems.
Isospin-breaking effects are taken into account in the standard
way as described in Ref. [18]. Our predictions for the Nd
total cross section are visualized in Fig. 2, see also Table II.
Similar to the 3H Eg.s., one observes a significant discrepancy
between the theoretical predictions based on the NN forces
only and data, which provides clear evidence for missing 3NF
contributions. The size of the discrepancy agrees within 1.5
times the estimated size of N2LO corrections shown by the
NLO error bars. Interestingly, the discrepancy at the lowest
energy of 10 MeV is much smaller than the estimated size of
N2LO contributions. Given that the cross section at low energy
is governed by the S-wave spin-doublet and spin-quartet Nd
scattering lengths, this observation can be naturally explained.
Indeed, the spin-quartet scattering length is almost an order of
magnitude larger than that of the spin-doublet and much less
sensitive to the 3NF as a consequence of the Pauli principle.

Our predictions for Nd differential cross section and
analyzing powers Ay(N),Ayy , and Axx are shown in Figs. 3 and
4. At the lowest energy of 10 MeV, there is little apparent need
for 3NF effects except for Ay . Interestingly, the fine-tuning
nature of this observable is clearly reflected in large theoretical
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FIG. 5. (Color online) Equation of state for symmetric nuclear
matter from chiral interactions. Solid red line is the prediction of
NNLOsat. Blue dashed-dotted and black dashed lines: Ref. [56].
Symbols (red diamond, blue circle, black square) mark the corre-
sponding saturation points. Triangles are saturation points from other
models (upward triangles [33], rightward triangles [112], downward
triangles [36]). The corresponding incompressibilities (in MeV) are
indicated by numbers. Green box shows empirical saturation point.

compressed compared to experiment (theory yields 0.7 MeV
compared to 1.9 MeV for the first excited 2+ state), possibly
due to the too-high 1/2+ excited state in 17O. In general,
the quality of our spectra for sd-shell nuclei is comparable
to those of recent state-of-the-art calculations with chiral
Hamiltonians [44,107–109], while radii are much improved.

For 40Ca the computed binding energy E = 326 MeV,
charge radius rch = 3.48 fm, and E(3−

1 ) = 3.81 MeV all agree
well with the experimental values of 342 MeV, 3.4776(19)
fm [65], and 3.736 MeV respectively. We checked that our
energies for the 3−

1 states in 16O and 40Ca are practically
free from spurious center-of-mass effects. The results for 40Ca
illustrate the predictive power of NNLOsat when extrapolating
to medium-mass nuclei.

Finally, we present predictions for infinite nuclear mat-
ter. The accurate reproduction of the saturation point and
incompressibility of symmetric nuclear matter has been a
challenge for ab initio approaches, with representative results
from chiral interactions shown in Fig. 5. The solid line shows
the equation of state for NNLOsat. Its saturation point is close
to the empirical point, and its incompressibility K = 253
lies within the accepted empirical range [21]. At saturation
density, coupled-cluster with doubles yields about 6 MeV per
particle in correlation energy, while triples corrections (and
residual NNN forces beyond the normal-ordered two-body
approximation) yield another 1.5 MeV.

Let us briefly discuss the saturation mechanism. Similar
to Vlow k potentials [5], the NN interaction of NNLOsat
is soft and yields nuclei with too-large binding energies
and too-small radii. The NNN interactions of NNLOsat are
essential to arrive at physical nuclei, similarly to the role
of NNN forces in the saturation of nuclear matter with
low-momentum potentials [33]. This situation is reminiscent
of the role the three-body terms play in nuclear density
functional theory [113].

Summary. We have developed a consistently optimized
interaction from chiral EFT at NNLO that can be applied
to nuclei and infinite nuclear matter. Our guideline was the
simultaneous optimization of NN and NNN forces to experi-
mental data, including two-body and few-body data, as well as
properties of selected light nuclei such as carbon and oxygen
isotopes. The optimization is based on low-energy observables
including binding energies and radii. The predictions made
with the new interaction NNLOsat include accurate charge radii
and binding energies. Spectra for 40Ca and selected isotopes
of lithium, nitrogen, oxygen and fluorine isotopes are well
reproduced, as well as the energies of 3−

1 excitations in 16O
and 40Ca. To our knowledge, NNLOsat is currently the only
microscopically founded interaction that allows for a good
description of nuclei (including their masses and radii) in a
wide mass range from few-body systems to medium mass.

Acknowledgments. We thank K. Hebeler and E. Epelbaum
for providing the matrix elements of the nonlocal three-body
interaction. This material is based upon work supported
by the U.S. Department of Energy, Office of Science, Of-
fice of Nuclear Physics under Award Numbers DEFG02-
96ER40963 (University of Tennessee), DE-SC0008499 and
DE-SC0008511 (NUCLEI SciDAC collaboration), the Field
Work Proposal ERKBP57 at Oak Ridge National Laboratory
and the National Science Foundation with award number
1404159. It was also supported by the Swedish Foundation for
International Cooperation in Research and Higher Education
(STINT, IG2012-5158), by the European Research Council
(ERC-StG-240603), by the Research Council of Norway
under contract ISP-Fysikk/216699, and by NSERC Grant No.
401945-2011. TRIUMF receives funding via a contribution
through the National Research Council Canada. Computer
time was provided by the Innovative and Novel Computational
Impact on Theory and Experiment (INCITE) program. This re-
search used resources of the Oak Ridge Leadership Computing
Facility located in the Oak Ridge National Laboratory, which is
supported by the Office of Science of the Department of Energy
under Contract No. DE-AC05-00OR22725 and used compu-
tational resources of the National Center for Computational
Sciences, the National Institute for Computational Sciences,
the Swedish National Infrastructure for Computing (SNIC),
and the Notur project in Norway.

[1] P. F. Bedaque and U. van Kolck, Annu. Rev. Nucl. Part. Sci.
52, 339 (2002).

[2] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Rev. Mod.
Phys. 81, 1773 (2009).

[3] R. Machleidt and D. Entem, Phys. Rep. 503, 1
(2011).

[4] H.-W. Hammer, A. Nogga, and A. Schwenk, Rev. Mod. Phys.
85, 197 (2013).

[5] S. K. Bogner, T. T. S. Kuo, and A. Schwenk, Phys. Rep. 386,
1 (2003).
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FIG. 1. Chiral expansion of the 3H Eg.s. based on the NN potentials of Refs. [15,16] for the regulator R = 1.0 fm and using Q = Mπ/"b.
Panel (a) shows incomplete results based on NN forces only, with uncertainties being estimated via Eqs. (5) and (6). Panel (b) shows incomplete
results based on NN forces only, with uncertainties being estimated via Eqs. (5) and (6) for chiral order i = 0,2 and via Eqs. (7) and (8) for
i ! 3. Panel (c) shows the projected results assuming that the LECs in the N2LO 3NF are tuned to reproduce the 3H Eg.s. and using Eqs. (5)
and (6) to specify the uncertainty.

long-range part of the NN potential is regularized in position
space by multiplying with the function

f

(
r

R

)
=

[
1 − exp

(
− r2

R2

)]6

, (1)

with the cutoff R chosen in the range 0.8–1.2 fm.
In this paper we, for the first time, apply these novel chiral

NN forces beyond the two-nucleon system and demonstrate
their suitability for modern ab initio few- and many-body
methods. By applying the new method for error analysis, we
present unambiguous evidence for missing 3NF effects and
demonstrate that the size of the required 3NF contributions
agrees well with expectations based on Weinberg’s power
counting. We also estimate the theoretical accuracy for various
observables achievable at N4LO and identify the energy region
in elastic Nd scattering that is best suited for testing the chiral
3NF.

II. UNCERTAINTY QUANTIFICATION

We first describe our procedure for estimating the the-
oretical uncertainty. Let X(p) be some observable with p
referring to the corresponding momentum scale and X(i)(p),
i = 0,2,3, . . ., a prediction at order Qi in the chiral expansion.

We further define the order-Qi corrections to X(p) via

#X(2) ≡ X(2) − X(0), #X(i) ≡ X(i) − X(i−1), i ! 3, (2)

so that the chiral expansion for X takes the form

X(i) = X(0) + #X(2) + · · · + #X(i). (3)

Generally, the size of the corrections is expected to be

#X(i) = O(QiX(0)). (4)

In Ref. [16], the validity of this estimate was confirmed
for the total neutron-proton cross section. In Refs. [15,16],
quantitative estimates of the theoretical uncertainty δX(i) of the
chiral EFT prediction X(i) were made by using the expected
and actual sizes of higher-order contributions. Specifically, the
following procedure was employed:

δX(0) = Q2|X(0)|,
δX(i) = max

2"j"i
(Qi+1|X(0)|, Qi+1−j |#X(j )|), (5)

where i ! 2 and Q = max(p/"b, Mπ/"b) with "b =
600, 500, and 400 MeV for the regulator choices of R =
0.8–1.0, 1.1, and 1.2 fm, respectively. The sizes of actual
higher-order calculations provide additional information on

TABLE I. Ground-state energies Eg.s. of 3H and 4He (in MeV) and the point-proton radius rp of 4He (in fm) calculated by using the
improved NN chiral potentials of Refs. [15,16] up to N4LO for the cutoff R = 1.0 fm in comparison with empirical information. The quoted
uncertainties for the theoretical predictions are estimated via Eqs. (5) and (6) for chiral order i = 0,2 and via Eqs. (7) and (8) for i ! 3.

LO NLO N2LO N3LO N4LO Empirical

Eg.s. (3H) −11.3(3.7) −8.36(83) −8.26(20) −7.53(5) −7.63(1) −8.48
Eg.s. (4He) −45.5(21.7) −28.6(4.8) −28.1(1.2) −23.75(28) −24.27(6) −28.30
rp (4He) 1.064(499) 1.389(174) 1.405(41) 1.563(9) 1.547(2) 1.462(6)
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FIG. 1. (Color online) Ground-state energy (negative of binding
energy) per nucleon (top), and residuals (differences between com-
puted and experimental values) of charge radii (bottom) for selected
nuclei computed with chiral interactions. In most cases, theory
predicts too-small radii and too-large binding energies. References:
a [40,41], b [24], c [23], d [22], e [42], f [43], g [44], h [45], i [46].
The red diamonds are NNLOsat results obtained in this work.

to low-energy observables (as opposed to the traditional
adjustment of two-nucleon forces to NN scattering data at
higher energies). Third, the impact of many-body effects
entering at higher orders (e.g., higher-rank forces) might be
reduced if heavier systems, in which those effects are stronger,
are included in the optimization.

Besides these theoretical arguments, there is also one
practical reason for a paradigm shift: predictive power and
large extrapolations do not go together. In traditional ap-
proaches, where interactions are optimized for A = 2,3,4,
small uncertainties in few-body systems (e.g., by forcing a
rather precise reproduction of the A = 2,3,4 sectors at a
rather low order in the chiral power counting) get magnified
tremendously in heavy nuclei; see, for example, Ref. [24].
Consequently, when aiming at reliable predictions for heavy
nuclei, it is advisable to use a model that performs well for
light- and medium-mass systems. In our approach, light nuclei
are reached by interpolation while medium-mass nuclei by a
modest extrapolation. In this context, it is worth noting that the
most accurate calculations for light nuclei with A ! 12 [59]
employ NNN forces adjusted to 17 states in nuclei with
A ! 8 [60]. Finally, we point out that nuclear saturation can
be viewed as an emergent phenomenon. Indeed, little in the
chiral EFT of nuclear forces suggest that nuclei are self-bound
systems with a central density (or Fermi momentum) that is
practically independent of mass number. This viewpoint makes
it prudent to include the emergent momentum scale into the
optimization, which is done in our case by the inclusion of
charge radii for 3H, 3,4He, 14C, and 16O. This is similar in spirit
to nuclear mean-field calculations [61] and nuclear density
functional theory [62,63] where masses and radii provide key
constraints on the parameters of the employed models.

Optimization protocol and model details. We seek to
minimize an objective function to determine the optimal set
of coupling constants of the chiral NN + NNN interaction
at NNLO. Our dataset of fit-observables includes the binding
energies and charge radii of 3H, 3,4He, 14C, and 16O, as well

TABLE I. Binding energies (in MeV) and charge radii (in fm)
for 3H, 3,4He, 14C, and 16,22,23,24,25O employed in the optimization of
NNLOsat.

Eg.s. Expt. [69] rch Expt. [65,66]

3H 8.52 8.482 1.78 1.7591(363)
3He 7.76 7.718 1.99 1.9661(30)
4He 28.43 28.296 1.70 1.6755(28)
14C 103.6 105.285 2.48 2.5025(87)
16O 124.4 127.619 2.71 2.6991(52)
22O 160.8 162.028(57)
24O 168.1 168.96(12)
25O 167.4 168.18(10)

as binding energies of 22,24,25O as summarized in Table I.
To obtain charge radii rch from computed point-proton radii
rpp we use the standard expression [64]: ⟨r2

ch⟩ = ⟨r2
pp⟩ +

⟨R2
p⟩ + N

Z
⟨R2

n⟩ + 3!2

4m2
pc2 , where 3!2

4m2
pc2 = 0.033 fm2 (Darwin–

Foldy correction), R2
n = −0.1149(27) fm2 [65], and Rp =

0.8775(51) fm [66]. In this work we ignore the spin-orbit
contribution to charge radii [67]. From the NN sector, the
objective function includes proton-proton and neutron-proton
scattering observables from the SM99 database [68] up to
35 MeV scattering energy in the laboratory system as well
as effective range parameters, and deuteron properties (see
Table II). The maximum scattering energy was chosen such
that an acceptable fit to both NN scattering data and many-
body observables could be achieved.

In the present optimization protocol, the NNLO chiral
force is tuned to low-energy observables. The comparison
with the high-precision chiral NN interaction N3 LOEM [49]
and experimental data presented in Table II demonstrates the
quality of NNLOsat at low energies.

The results for 3H and 3,4He (and 6Li) were computed
with the no-core shell model (NCSM) [6,10] accompanied
by infrared extrapolations [75]. The NNN force of NNLOsat
yields about 2 MeV of binding energy for 4He. Heavier nuclei

TABLE II. Low-energy NN data included in the optimization.
The scattering lengths a and effective ranges r are in units of fm. The
proton-proton observables with superscript C include the Coulomb
force. The deuteron binding energy (ED , in MeV), structure radius
(rD , in fm), and quadrupole moment (QD , in fm2) are calculated
without meson-exchange currents or relativistic corrections. The
computed d-state probability of the deuteron is 3.46%.

NNLOsat N3 LOEM [49] Expt. Ref.

aC
pp −7.8258 −7.8188 −7.8196(26) [70]

rC
pp 2.855 2.795 2.790(14) [70]

ann −18.929 −18.900 −18.9(4) [71]
rnn 2.911 2.838 2.75(11) [72]
anp −23.728 −23.732 −23.740(20) [73]
rnp 2.798 2.725 2.77(5) [73]
ED 2.22457 2.22458 2.224566 [69]
rD 1.978 1.975 1.97535(85) [74]
QD 0.270 0.275 0.2859(3) [73]
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FIG. 2. (Color online) Selected neutron-proton scattering phase-
shifts as a function of the laboratory scattering energy TLab. (Top)
NNLOsat prediction (solid lines) compared to the Nijmegen phase
shift analysis [95] (symbols) at low energies TLab < 35 MeV. Note
the two vertical scales. (Bottom) Neutron-proton scattering phase
shifts from NNLOsat (red diamonds) compared to the Nijmegen
phase shift analysis (black squares) and the NNLO potentials (green)
from Ref. [77].

dominated by about 90% of 1p-1h(p1/2 → d5/2) excitations,
at 6.34 MeV. The energy of the 3−

1 state is strongly correlated
with the charge radius of 16O, with smaller charge radii
leading to higher excitation energies. For 1p-1h excited states,
the excitation energy depends on the particle-hole gap and
therefore on one-nucleon separation energies of the A = 16
and A = 17 systems. The charge radius depends also on the
proton separation energy Sp. For 16O we find Sp = 10.69 MeV
and the neutron separation energy Sn(17O) = 4.0 MeV, in an
acceptable agreement with the experimental values of 12.12
and 4.14 MeV, respectively. For 17F we find Sp = 0.5 MeV, to
be compared with the experimental threshold at 0.6 MeV.

The inset of Fig. 4 shows that the 2−
1 state in 16O also comes

out well, suggesting a 1p-1h nature. However, the 1−
1 state is

about 1.5 MeV too high compared with experiment. This state
is dominated by 1p-1h excitations from the occupied p1/2 to
the unoccupied s1/2 orbitals. In 17O the 1/2+ state is computed
at an excitation energy of 2.2 MeV, which is about 1.4 MeV

FIG. 3. (Color online) Energies (in MeV) of selected excited
states for various nuclei using NNLOsat. For 6Li we also include
spectra from the NCSM (dotted lines), and isospin quantum numbers
are also given. The NCSM results were obtained with Nmax = 10 and
!! = 16 MeV. Parenthesis denote tentative spins assignments for
experimental levels. Data are from Refs. [100–103].

too high. This probably explains the discrepancy observed for
the 1− state in 16O.

Figure 4 shows that the experimental charge-density of 16O
is well reproduced with NNLOsat, and our charge form factor
is, for momenta up to the second diffraction maximum, similar
in quality to what Mihaila and Heisenberg [11] achieved with
the Av18 + UIX potential. For the heavier isotopes 22,24O and
22,24F Fig. 3 shows good agreement between theory and experi-
ment for excited states. For 22F our computed spin assignments
agree with results from shell-model Hamiltonians [106] and
with recent ab initio results [89]. The binding energies for
14N, 22,24F are 103.7, 163, and 175.1 MeV, respectively, in
good agreement with data (104.7, 167.7, and 179.1 MeV). We
also computed the intrinsic charge (matter) radii of 22,24O and
obtained 2.72 fm (2.80 fm) and 2.76 fm (2.95 fm), respectively.
The matter radius of 22O agrees with the experimental result
from Ref. [91]. We note that the computed spectra in 18O is too

FIG. 4. (Color online) Charge density in 16O computed as in
Ref. [110] compared to the experimental charge density [111].
The inset compares computed low-lying negative-parity states with
experiment.
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FIG. 5. (Color online) Equation of state for symmetric nuclear
matter from chiral interactions. Solid red line is the prediction of
NNLOsat. Blue dashed-dotted and black dashed lines: Ref. [56].
Symbols (red diamond, blue circle, black square) mark the corre-
sponding saturation points. Triangles are saturation points from other
models (upward triangles [33], rightward triangles [112], downward
triangles [36]). The corresponding incompressibilities (in MeV) are
indicated by numbers. Green box shows empirical saturation point.

compressed compared to experiment (theory yields 0.7 MeV
compared to 1.9 MeV for the first excited 2+ state), possibly
due to the too-high 1/2+ excited state in 17O. In general,
the quality of our spectra for sd-shell nuclei is comparable
to those of recent state-of-the-art calculations with chiral
Hamiltonians [44,107–109], while radii are much improved.

For 40Ca the computed binding energy E = 326 MeV,
charge radius rch = 3.48 fm, and E(3−

1 ) = 3.81 MeV all agree
well with the experimental values of 342 MeV, 3.4776(19)
fm [65], and 3.736 MeV respectively. We checked that our
energies for the 3−

1 states in 16O and 40Ca are practically
free from spurious center-of-mass effects. The results for 40Ca
illustrate the predictive power of NNLOsat when extrapolating
to medium-mass nuclei.

Finally, we present predictions for infinite nuclear mat-
ter. The accurate reproduction of the saturation point and
incompressibility of symmetric nuclear matter has been a
challenge for ab initio approaches, with representative results
from chiral interactions shown in Fig. 5. The solid line shows
the equation of state for NNLOsat. Its saturation point is close
to the empirical point, and its incompressibility K = 253
lies within the accepted empirical range [21]. At saturation
density, coupled-cluster with doubles yields about 6 MeV per
particle in correlation energy, while triples corrections (and
residual NNN forces beyond the normal-ordered two-body
approximation) yield another 1.5 MeV.

Let us briefly discuss the saturation mechanism. Similar
to Vlow k potentials [5], the NN interaction of NNLOsat
is soft and yields nuclei with too-large binding energies
and too-small radii. The NNN interactions of NNLOsat are
essential to arrive at physical nuclei, similarly to the role
of NNN forces in the saturation of nuclear matter with
low-momentum potentials [33]. This situation is reminiscent
of the role the three-body terms play in nuclear density
functional theory [113].

Summary. We have developed a consistently optimized
interaction from chiral EFT at NNLO that can be applied
to nuclei and infinite nuclear matter. Our guideline was the
simultaneous optimization of NN and NNN forces to experi-
mental data, including two-body and few-body data, as well as
properties of selected light nuclei such as carbon and oxygen
isotopes. The optimization is based on low-energy observables
including binding energies and radii. The predictions made
with the new interaction NNLOsat include accurate charge radii
and binding energies. Spectra for 40Ca and selected isotopes
of lithium, nitrogen, oxygen and fluorine isotopes are well
reproduced, as well as the energies of 3−

1 excitations in 16O
and 40Ca. To our knowledge, NNLOsat is currently the only
microscopically founded interaction that allows for a good
description of nuclei (including their masses and radii) in a
wide mass range from few-body systems to medium mass.
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