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Astronomical evidence for rate sources
244pu
ii. Binary neutron star kicks and all that
iii. Dwarf Galaxies

Conclusion - Low rate high yield - SNe*f
Merger rates:
.  Short GRBs
Il.  Binary NS

Conclusion mergers - Mergers s
The Li-Paczynski Macronova (kilonova)
Macronove 130603b/060614/050709

If correct sGRBs == Mergers o
Evidence for “stuff” around SGRBs s

Galactic Chemical Evolution o=

* The cocoons macronova - the strongest EM
counterpart?



Some References

Hotokezaka TP & Paul Nature Phys 2015- #*4Pu

TP & Shaviv PRL2005; Dall’'Osso, TP & Shaviv MNRAS,
2013, Beniamini & TP MNRAS 2015 - NS Kkicks

Beniamini, Hotokezaka & TP 2016a,b - Dwarf Galaxies

@ Wanderman & TP, MNRAS 2015 - sGRB rate

Yang + Nature comm. 2015; Jin + Nature comm. 2016 -
macronvoa candidates

Moharana, + in prep 2017 - mass ejection evidence
Hotokezaka & TP in prep 2017 - Chemical evolution

Nakar & TP ApJ 2017; Gottelib, Nakar & TP in prep 2017
- Cocoon signature

Nakar & TP Nature 2011; Hotokezaka & TP MNRAS 2014;
Horesh + ApJ 2016 Hotokezaka + ApJ 2016 - Radio Flare
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lines of R-mass: Current event rate is lower than the average one
by a factor of 5 (lower line), 3 (middle line).
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Can we break the yield - rate degeneracy?
Hotokezaka, TP Paul, Nature Pays 2015
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Radioactive Elements

Rare Events

Frequent events




Mean life (Myr)
10

A p-process
O s+r-process 1465 m
Or-process

10 35 100 A (Myr)

Tissot + 16




244py (half life 81Myr)

=~ 24Py flux measured
P> 24py flux upper limit (20)

B 244py flux ISM-model

The early
solar system
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High ¢**Pu at the early
solar system =>

@ 24Py Radioactive decay time ~ 100 Myear
@ A nevent near the early solar system
@ Mixing time < 150 Myr

@ Large fluctuations possible => Event rate
s low

@ Lack of Cu => 10 Myr < Mixing time



Rare and "massive” events
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A remark about binary neutron stars

TP & Shaviv 2005; Dall’Osso, TP & Shaviv 2013,
Beniamini & TP 2015

*Most observed Galactic NN

! : ———U OO
NSNS

binary neutron stars have :f_ \\\\\\ '
almost circular orbits and a \N :
low proper motion |

= \Very low mass ejection (<0.1
Msun for JO737-30398)

=NOT formed in a regular SNe

= Most wont be ejected from a
Dwarf Galaxy
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r-process material in Dwarf Galaxies
(Beniamini, Hotokezaka & TP 16a,b)

Ret Il
UMa ll

Coma i Seg | Coma
Segl _pat| —— =

3 i ] UMa Il
[ Seg Il ; 71 Seg i

102 10° 10* 10° 10* 10° 10° 107
Ly [Ly sunl Ly [Ly sunl

107 104

My, PEr event




VR I P BN
0.0001  0.001 0.01

Mej [Msun]




The most enriched Galactic low metallicity star
(Macias & Ramirez Ruiz 2016)

EMP star
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EMP star

ular SNe?
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Cnclusions so far

*Rate ~20-30 Myr!
*Yield ~0.01-0.1 Msyr
=|ow rate high yield events
= SNe'F

=>Mergers? or Rare SNe?



The Rate of short GRBs

(Wanderman & TP 2015)
® Current observed rate

~ 5 Gpc yr! 70.5 Myr!
@ Earlier rate is larger
@ Uncertainties
@ Short delay mergers (need
high redshift sGRBs) can
be 720 Myr!ll
@ Lowest energy (rate can be
higher)
@ Beaming factor  x10-70
(Very uncertain)

@ Galactic rate from binary pulsars 21142 My~ (Kim + 15)



With estimates of the merger rate
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MGC rO N OVG*(u & Paczynski 1997)

® Radioactive decay of the
neutron rich matter.

Bohdan Paczynski

® E dioactive ® 0.001 Mc? =
10°° erg

® A weak short Supernova
like event.

*Also called Kilonova



MGC rO N OVG*(u & Paczynski 1997)

® Radioactive decay of the
neutron rich matter.

® E dioactive ® 0.001 Mc? =
10°° erg

® A weak short Supernova
like event.

* Also called kiHene®a Hektanova




MGC rO N OVG*(u & Paczynski 1997)

® Radioactive decay of the
neutron rich matter.

./

Bohdan Paczynski

® Eqdioactive ® 0.001 Mc? =
10°° erg

® A weak short Supernova
like event.




Lanthanides dominate the opacity
(Kassen & Barnes 13, Tanaka & Hotokezaka 13) )
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Lanthanides dominate the opacity
(Kassen & Barnes 13, Tanaka & Hotokezaka 13) )

@ »= 10cm?/gm
@ Trmax O<%1/2 =>lon ger

D Lmax OC%-O'és => weaker

T o 04 —

uv or o tical ->



GRB130603B @ 9 days AB

(6.6 days at the source frame)

\V/ nlR

HST image (Tanvir + 13)
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If correct

i Confirmaiton of the GRB neutron —
* star merger model (Eichler, Livio,
TP & Schramm 1989).

M, Confirmation of the Li-Paczynski
* Macronova (Li-Paczynski 1997).

g2 Confirmation that compact binary
¥ mergers are the source of heavy
(A>130) r-process material: Gold,
Silver, Platinum, Plotonium,
Uranium etc...(Lattimer &
Schramm, 75).




GRB 060614

Need M=0.1 mgyn *
=> BH-NS ?

* mass estimate may
increase (efficiency)
BUT may decrease if
additional energy
source beyond
radioactivity!

Yang et al., 2015



GRB 050709

Need M=0.05Mmsun *
— BH-NS ?
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Are Macronova Frequent?

@ There are 3 (6) possible (nearby) historical
candidates with a good enough data

@ In 3/3 (3/6) there are possible
Macronovae

Macronova Mass estimates

@ 0.02-0.1 mgy, * mass estimate may increase
(efficiency) BUT may decrease if additional
energy source beyond radioactivity! (see

Kisaka, Nakar & Ioka 2016 for an additional
energy source)




EMP star
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lines of R-mass: Current event rate is lower than the average one

by a factor of 5 (lower line), 3 (middle line).
lines of SGRB: beaming factor f_b”-1 =10, 30, 70 (Wanderman & Piran 2015)

lines of NSNS: 95% confidence level (Kim et al 2015)




The Secret Signatures of GRB cocoons

Nakar & TP, ApJ 17




The Jet drills a hole in the star
or in the surrounding ejecta

Model 3P3, 8s




Jet breakout

(Bromberg Nakar, TP, Sari 11 ApJ 2011)

—1/3

LI ¢, ~ 8 Lo PO R M s

SO 7, ~0.37 L,y'0 "R, "M s

The engine must be active until
the jet’s head breaks out!*



Jet breakout

(Bromberg Nakar, TP, Sari 11 ApJ 2011)

SO 7, ~0.37 L,y'0 "R, "M s

The engine must be active until
the jet’s head breaks out!*



3D simulation

4Msun, R*=4x101%m. L; =10°Terg/s, 8=8° Using Pluto with high
resolution AR=107cm. Credit: Ore Gottlieb



3D simulation

4Msun, R*=4x101%m. L; =10°Terg/s, 8=8° Using Pluto with high
resolution AR=107cm. Credit: Ore Gottlieb



2D simulation

SGRB with a wind velocity of 0.2¢c. Credit: Ore Gottlieb
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SGRB with a wind velocity of 0.2¢c. Credit: Ore Gottlieb



A prediction jet
penetration model

Observed
duration
Too = Te-Tg
Engine Break out

fime fime



A prediction jet
penetration model

Observed dN(Tgo0)/dt
duration
Too = Te-Tg =P
Engine Break out

fime fime



A prediction jet
penetration model

Observed dN(Tgo0)/dt
duration I
Too = Te-Tg =P
Engine Break out

fime fime




The Collapsar Plateau

(Bromberg Nakar, TP & Sari, 2011)




The Collapsar Plateau

(Bromberg Nakar, TP & Sari, 2011)

A direct observational proof of the Collapsar
model.



The short GRB Plateau

(Moharana, Hotokezaka, Nakar & TP in prep2017)
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The short GRB Plateau

(Moharana, Hotokezaka, Nakar & TP in prep2017)

' S Batse
N Swift (x/5)

" 1, Fermi (x/100)
Sl Tl T Y

A direct observational evidence for
~0.05 msun ejecta around sGRB




Chemical Evolution
(Hotokezaka & TP 2017)

@ Galactic low meftallicity stars

@ Argast + 2004 result ruling mergers is wrong
Unfortunately, they neglected turbulent and
rotational mixing. There is good evidence for
such mixing over a time scale of 20-100 Myr
(from radioactive elements).

@ The minimal time delay of a binary mergers is
highly uncertain.



The late time evolution puzzle?
(Hotokezaka & TP 2017)

cosmic SFR

[O/Fe]

EwFe], 20 Myr -~
ke somyy:




Resolved for a Galactic SFR
(Hotokezaka & TP 2017)

constant SFR

[O/Fe]
[Eu/Fe], 20 Myr
50 Myr
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Short GRBs Cocoons

109 — 1019 em.

Merger shock breakout

Dynamical ejecta
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shocked jet
cocoon \
Merger shock breakeut /é

" shocked e|ect
‘ cocoon

Nakar & TP 2017




SGRB cocoon signatures

Rel. Cocoon cooling
=™ breakout radius of 1010 6=

~ 10%" erg/s & ~ 10,000 K.

Rel. Cocoon Afterglow,
scaling from the regular SGRB afterglow

optical magnitude of about —14.
This is a wide angle signal 0.5 rad is stronger

than typical SGRB orphan afterglow

optical magnitude of about —14.




Macronova cocoon signature

_ € er
Lun ~ 4 x 1040 E9325¢0. OSZ\ISJOanl 0.65 ¢ ©I5 '
’ €0 S

= 1010(t_/day)_1'3 erg/gr/s.

TA/IN ~ 11, 000 EAE)O'O401_OO.24A[_]O 122h,1_0 41 (6
0

Blue signal at around 0.5-1 day! Brighter or
comparable fo the classical Macronova



Summary

@ Cocoons are the forgotten
cousins in the GRB story. They
carry a comparable amount of
energy to the GRB and are ol e
wider than the GRBs. R

Mergar shock breakeut

® Short GRBs have their own shocked fcta
cocoons whose signatures might | '
be the best EM counterpart to




The rCldiO s ﬂdre (Nakar & Piran 2011)
Testing the Macronova interpretation

A long lasting radio flare
due to the interaction of
the ejecta with
surrounding matter may
follow the macronova.
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The radio - ﬂdre (Nakar & Piran 2011)

Testing the Macronova inferpretation
r_,,__,__._,_x Stith. ~

A long lasting radio flare
due to the interaction of
the ejecta with
surrounding matter may
follow the macronova.



The radio - ﬂdre (Nakar & Piran 2011)

Testing the Macronova inferpretation
r_,,__,__._,_x Stith. ~

A long lasting radio flare
due to the interaction of
the ejecta with
surrounding matter may
follow the macronova.

Supernova -> Supernova remnant
GRB -> Afterglow
Macronova -> Radio Flare



Summary

@ Ample independent evidence for r-process
production in rare events with large yield per
event. => SNe "¢ Mergers o=

® Macronovae ==> Merger - GRBs connection
(even with GW).

@ nIR Macronovae ==> r-process nucleosynthesis
iIn Mergers.

@ Chemical galactic evolution explained if the
distribution of mergers time delay begins at
~20 Myr with a constant Galactic SFR

Advertisemenk - An pas%cloe opening
under my TReX ERC!



Search for the flare from GRB
130603B by the EVLA
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Search for the flare from GRB
130603B by the EVLA




Radio limits on Maqgnetars
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Do GRBs need
magnetars?

® Quasars eject
magnetic jets.

@ => GRBs also have
magnetic jets =>
Mangetars

@ But quasars
produce magnetic
jets without
magnetars




@ Prompt?

@ Afterglow?

Time since trigger (s)

Is impossible to have both from the same
magnetar?



If a magnetar did this

What did that?

Cellapses
1o form a

alack hole

-

Typical

/ afterglow

MAg nelar
signature

Time since trigger (s)



If a magnetar did this

What did that?

{ Ceollapses

. '\ 1o form a

| : alack hole

i )

| N X il >,
l Magnelar Typical
j signature / -.;fthglOW
:

1 ‘

Time since trigger (s)



Energy Generation
Hotokezaka, Sari & TP + 16
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Efficiency

Hotokezaka, Wajano +...TP 16; Barnes +

M¢;=0.01Mg,,

@ Photon losses: The ejecta becomes
optically thin to gamma-rays long
before it becomes optically thin fo

NSM-solar
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optical/IR photons => photon i =
leakage during the macronova | e et
peak (Hotokezaka + 16)
— spherical ==— 4=1
@ Electron losses: Unlike previous T\ g
. 6 B icles
believes not all the electrons | — s—r;::ides

energy is deposited (Barnes + 16)




Summary

® The nIR flare that followed the short
GRB 130603B could have been a
Macronova. If so than:

v Short GRBs arise from mergers.
v Gold and other A>130 elemets are S

produced in mergers. (But large me;).

@ A radio flare may confirm this!

@ A second & third Macronovae suggest a
BH-NS merger

® “#*Pu suggests that R-process production
IS in rare events.

@ Cocoon produces a short bright macronova
@ We wait for the sGRB-GW coincidence e —
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