Hirschegg, 17.01.2017

Compact binary mergers: what else apart from gravitational waves?

Stephan Rosswog

collaborators for *this* project: A.Goobar, U. Feindt, O. Korobkin, G. Martinez-Pinedo, J. Sollerman, M.-R. Wu ⇒ "Detectability of compact binary merger macronovae", arXiv:1611.09822

Outline

• I. Introduction

- Glueing fields together
- GWs: EM needed
- Types of expected EM

• II. Overview mass loss and nucleosynthesis

- Mechanisms
- Dynamic ejection + nucleo
- v-winds + nucleo
- Other types of "winds"
- Rate constraints from nucleo
 - a) mass in Galaxy
 - b) constraints nucleo + sGRB + GW

• III. Macronovae

- Our model
- Explored parameter space
- Impact of mass formula
- Detection prospects
- "Tanvir+ event"

• IV. Summary

I.1 Neutron star mergers: "glueing together separate fields"

I.1 Neutron star mergers: "glueing together separate fields"

nucleosynthesis

(short) Gamma-Ray Bursts

Chemical enrichment of the Cosmos

Radioactively powered transients ("macronovae")

Gravitational wave detection

I.2 Gravitational wave astronomy

The first gravitational wave detection

GW150914

 \Rightarrow "physics from gravitational wave signal"

 \Rightarrow "astronomy/astrophysics from the electromagnetic (EM) transient"

I.2 Gravitational wave astronomy

The first gravitational wave detection

GW150914

 \Rightarrow "physics from gravitational wave signal"

 \Rightarrow "astronomy/astrophysics from the electromagnetic (EM) transient"

I.2 Gravitational wave astronomy

The first gravitational wave detection

GW150914

⇒ "physics from gravitational wave signal"⇒ "astronomy/astrophysics from the electromagnetic (EM) transient"

location in the sky essentially unknown, $\sim 600 \text{ deg}^2$ error region

==> electromagnetic (EM)-transient needed for sky location!

I.3 Which EM-transients can we expect to accompany a gravitational wave chirp?

for binary black holes:

• IF the merger occurs in gaseous environment: post-merger black hole has mass reduced by Δm , has received "kick"

S.R. 2017

"BH kicked through disk"

parameters of this illustrative example:

- m_1 = 29 M_o & m_2 = 36 M_o
- $\triangle m=3 M_{\odot}$
- $m_{disk} = 0.01 \ M_{\odot}$
- $v_{kick} = 500 \text{ km/s}$

I.3 Which EM-transients can we expect to accompany a gravitational wave chirp?

for binary black holes:

• IF the merger occurs in gaseous environment: post-merger black hole has mass reduced by Δm , has received "kick"

S.R. 2017

"BH kicked through disk"

parameters of this illustrative example:

- m_1 = 29 M_o & m_2 = 36 M_o
- $\triangle m=3 M_{\odot}$
- $m_{disk} = 0.01 \ M_{\odot}$
- $v_{kick} = 500 \text{ km/s}$

for compact binaries involving neutron stars:

(1) Short Gamma-Ray Bursts

- collimated into $\sim 8^{\circ} \Rightarrow$ detect ~ 1 out of 70 bursts time scales \sim second

(2) Radioactively powered transients ("macronovae")

- de-compressed neutron star matter forms heavy nuclei
- "cloud of radioactive, expanding matter"
- isotropic emission

time scales ~ days

(3) Radio flares

 from dissipation of kinetic energy in ambient medium time scales ~ months

II.1 Mass loss channels for NSNS and NSBH:

• dynamic ejecta: by hydrodynamics and gravitational torques nsns: few 10^{-3} to few 10^{-2} M_{\odot} (mass ratio!) nsbh: up to ~0.2 M_{\odot} (mass ratio, bh spin χ)

II.1 Mass loss channels for NS² "dynamic" vitational torques • dynamic ejecta: by hydro "dynamic" vitational torques nsns: few 10⁻¹ $(-10^{-10} \text{ M}_{\odot})$ (mass ratio!) nsbh: up to ~0.2 M_☉ (mass ratio, bh spin χ)

II.1 Mass loss channels for NS • dynamic ejecta: by hydro "dynamic" vitational torques nsns: few 10 $\sim 10^{-2}$ M_o (mass ratio!) nsbh: up to ~0.2 M_o (mass ratio, bh spin χ)

• v-driven winds: massive neutron star present: ~0.01 M_{\odot} bh + torus: « ~0.01 M_{\odot}

II.1 Mass loss channels for NS • dynamic ejecta: by hydro "dynamic" vitational torques nsns: few 10 -10^{-2} M_o (mass ratio!) nsbh: up to ~0.2 M_o (mass ratio, bh spin χ)

• v-driven winds: massive neutron star present: ~0.01 M_{\odot} bh + torus: « ~0.01 M_{\odot}

• magnetically-driven winds:

either from disks and/or massive "neutron star"

II.1 Mass loss channels for NS • dynamic ejecta: by hydro "dynamic" vitational torques nsns: few 10 $\sim 10^{-2}$ M_{\odot} (mass ratio!) nsbh: up to ~0.2 M_{\odot} (mass ratio, bh spin χ)

• v-driven winds: massive neutron star present: ~0.01 M_{\odot} bh + torus: « ~0.01 M_{\odot}

• magnetically-driven winds: either from disks and/or massive "neutron star"

• torus unbinding (viscous diss., nuclear recomb.): $\sim 20\%$ of initial torus mass

(Fernandez & Metzger 13, Just+15)

• initial torus mass can be large!

 \Rightarrow could plausibly unbind ~0.02 ... 0.1 M $_{\odot}$

II.1 Mass loss channels for NS "dynamic" vitational torques • dynamic ejecta: by hydro nsns: few 10⁻¹ M_{\odot} (mass ratio!) nsbh: up to ~0.2 M $_{\odot}$ (mass ratio, bh spin χ)

• v-driven winds: massive neutron star present: $\sim 0.01 \text{ M}_{\odot}$

'winds'': - stay longer closer the central neutrino source \Rightarrow electron fraction driven towards equilibrium (Qian & Woosley 96)

$$Y_e^{\text{fin,wind}} \approx \left(1 + \frac{L_{\bar{\nu}_e}}{L_{\nu_e}} \frac{\epsilon_{\bar{\nu}_e} - 2\Delta + 1.2\Delta^2 / \epsilon_{\bar{\nu}_e}}{\epsilon_{\nu_e} + 2\Delta + 1.2\Delta^2 / \epsilon_{\nu_e}} \right)^{-1} \sim 0$$

- different velocities

• ma

• tori

• init

 \Rightarrow different nucleosynthesis

 \Rightarrow different EM-transients

3

II.2 Nucleosynthesis for dynamic ejecta

II.2 Nucleosynthesis for dynamic ejecta

II.2 Nucleosynthesis for dynamic ejecta

r-process calculations for dynamic ejecta

(Korobkin, S.R, Arcones, Winteler, MNRAS 426, 1940 (2012))

 $ho[{
m g/cm}^3]$

Winnet network (Winteler 2012)

5 831 isotopes

r-process calculations for dynamic ejecta

(Korobkin, S.R, Arcones, Winteler, MNRAS 426, 1940 (2012))

Winnet network (Winteler 2012) 5 831 isotopes

Resulting abundances

- - 1. all binaries reach the "platinum peak" (A=195) without any tuning, not much below A \sim 130
 - 2. the abundance pattern is extremely robust with respect to astrophysics:
 A. all mass ratios (even NSBH-systems) deliver the same pattern
 B. Ye ≤ 0.25 needed for 3rd r-process peak ("platinum peak")
 - 3. sensitivity to nuclear physics \Rightarrow e.g. talks Eichler, Giuliani, Surman, Wu
 - tidal dynamic ejecta component delivers very low-Y_e material (Y_e~ 0.04), likely complemented by higher Y_e components (v-driven wind, disk evaporation etc.)

II.3 Nucleosynthesis neutrino-driven winds

(Perego, et al. 2014, Martin, et al. 2015)

Questions:

- neutrino properties?
- impact v-oscillations \Rightarrow talk Gail McLaughlin
- neutrino-driven winds:
 - mass loss?
 - geometry?
 - nucleosynthesis?
 - resulting radioactively powered transients?

$$L_{\nu} \sim 10^{53} \text{ erg/s} \quad \langle E_{\nu} \rangle \sim 15 \text{ MeV}$$

(from Perego et al. 2014)

 $\implies 0.2 \leq Y_e \leq 0.4$

II.3 Nucleosynthesis neutrino-driven winds

(Perego, et al. 2014, Martin, et al. 2015)

Questions:

- neutrino properties?
- impact v-oscillations \Rightarrow talk Gail McLaughlin
- neutrino-driven winds:
 - mass loss?
 - geometry?
 - nucleosynthesis?
 - resulting radioactively powered transients?

$$L_{\nu} \sim 10^{53} \text{ erg/s} \quad \langle E_{\nu} \rangle \sim 15 \text{ MeV}$$

(from Perego et al. 2014)

 $\implies 0.2 \leq Y_e \leq 0.4$

nucleosynthesis in neutrino-driven winds

(Martin, Perego, Arcones, Thielemann, Korobkin, S.R. (2015))

Winnet network (Winteler 2012, 5831 isotopes)

complementary r-process in the range $80 \leq A \leq 130$

nucleosynthesis in neutrino-driven winds

(Martin, Perego, Arcones, Thielemann, Korobkin, S.R. (2015))

Winnet network (Winteler 2012, 5831 isotopes)

complementary r-process in the range $80 \leq A \leq 130$

II.4 Rate constraints

In the Milky Way:

all r-process: $19\ 000M_{\odot}$ r-process A > 80: 14 000 M_{\odot} r-process A > 130: 2530 M_{\odot}

II.4 Rate constraints

In the Milky Way:

all r-process: $19\ 000M_{\odot}$ r-process A > 80: 14 000 M_{\odot} r-process A > 130: 2530 M_{\odot}

What does this imply for the production rate?

Rate constraints

Rate constraints

Rate constraints

III. Macronovae (MN)

use here two simple models, i.e. no full radiative transfer (\Rightarrow talk Ryan Wollager):

macronova model I:

(Grossman++ 14)

- spher. symmetric, homologously expanding ρ -profile
- "radiating volume": above "diffusion surface" ($\tau_{dyn} = \tau_{diff}$)
- nuclear heating rate direct from nuclear network
- "Finite Range Droplet Model" (FRDM) for nuclear mass (Moeller++ 95)
- constant thermalization used f= 0.5
- BB-spectrum with effective temperature of the photosphere ($\tau_{ph}=2/3$)
- opacities:
 - dynamic ejecta: $\kappa = 10 \text{ cm}^2/\text{g}$ (Kasen+13, Barnes+13)
 - "wind" ejecta: $\kappa = 1 \text{ cm}^2/g$ (Grossman+14)

macronova model II:

like model I, BUT:

- either FRDM mass model or Duflo-Zuker (DZ31, Duflo-Zuker 95)
- time-dependent thermalization efficiencies for each species according to the model developed by Barnes et al. 16

III.2 Explored parameter space

Dynamic ejecta nsns- & nsbh mergers

lanthanide + actinides > 20% of mass

Dynamic ejecta NSNS mergers								
Run	$m_1 [{\rm M}_\odot]$	$m_2[{\rm M}_\odot]$	tend [ms]	$\mathit{m}_{\rm ej} [10^{-2} \rm M_\odot]$	$\langle v_{\rm ej,\infty} \rangle$ [c]	$m_{\rm ej,max}$ [10^{-2} ${ m M}_{\odot}$]	$X_{\rm lan} [10^{-2}]$	$X_{\rm act} [10^{-2}]$
N1	1.2	1.2	32.1	0.79	0.12	3.17	17.22	5.06
N2	1.3	1.3	31.1	1.26	0.11	2.70	17.01	5.69
N3	1.4	1.4	38.3	0.84	0.11	2.25	17.93	6.03
N4	1.2	1.4	30.6	1.59	0.11	2.92	17.82	5.39
N5	14	1.8	25.3	3 40	0.12	4.76	16.90	7 57

Dynamic ejecta NSBH mergers

Run	$m_{\rm ns}~[{ m M}_\odot]$	$m_{\rm bh}[{\rm M}_\odot]$	χ	$m_{\rm ej}~[10^{-2}{\rm M}_\odot]$	$\langle v_{ej,\infty} \rangle$ [c]	$X_{\rm lan} [10^{-2}]$	$X_{\rm act} [10^{-2}]$	comment
B1 B2 B3	1.4 1.4 1.2	7.0 7.0 7.0	0.7 0.9	4.0 7.0	0.20 0.18 0.25	19.87 19.27 19.48	4.10 4.83 4.64	Foucart et al. (2014), run M14-7-S7 Foucart et al. (2014), run M14-7-S9 Foucart et al. (2014), run M14-7-S9

$m_{ej}\,up$ to ~0.04 M_{\odot}

q=0.78 compare with J0453+1559: q= 0.75

$m_{ej}\,up$ to ${\sim}0.16~M_{\odot}$

(parametrized) winds

run	$m_W [M_\odot]$	Ye	$v_{w,\infty}$ [c]	Ekin [erg]	X_{lan}	Xact	comment
			*****	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	200202543/ARMADIAN2F43/ARMADIAN		Manual Management Management Management
wind 1	0.01	0.30	0.05	2.2×10^{49}	1.61×10^{-7}	$< 10^{-15}$	insp. by Perego et al. (2014)
wind 2	0.01	0.25	0.05	2.2×10^{49}	6.30×10^{-5}	$< 10^{-15}$	insp. by Perego et al. (2014)
wind 3	0.01	0.35	0.05	2.2×10^{49}	$< 10^{-15}$	$< 10^{-15}$	insp. by Perego et al. (2014)
wind 4	0.05	0.25	0.05	1.1×10^{50}	2.41×10^{-4}	< 10 ⁻¹⁵	unb. disk material
wind 5	0.05	0.30	0.05	1.1×10^{50}	2.45×10^{-7}	$< 10^{-15}$	unb. disk material; low-viscosity
wind 6	0.05	0.35	0.05	1.1×10^{50}	$< 10^{-15}$	$< 10^{-15}$	unb. disk material; low-viscosity
wind 7	0.05	0.25	0.10	4.5.4.40	4.28×10		***************************************
wind 8	0.05	0.30	0.01	4.5×10^{48}	1.57×10^{-4}	$< 10^{-15}$	
wind 9	0.10	0.25	0.10	9.0×10^{50}	7.70×10^{-5}	$< 10^{-15}$	
wind 10	0.01	0.25	0.10	9.0×10^{49}	3.49×10^{-5}	$< 10^{-15}$	
wind 11	0.01	0.25	0.25	5.9×10^{50}	2.13×10^{-2}	6.34×10^{-6}	
wind 12	0.01	0.25	0.50	2.8×10^{51}	7.50×10^{-2}	1.66×10^{-3}	
wind 13	0.10	0.35	0.01	8.9×10^{48}	$< 10^{-15}$	$< 10^{-15}$	
wind 14	0.10	0.30	0.05	2.3×10^{50}	1.35×10^{-7}	$< 10^{-15}$	
wind 15	0.20	0.35	0.01	1.8×10^{49}	$< 10^{-15}$	$< 10^{-15}$	
wind 16	0.20	0.30	0.05	4.5×10^{50}	8.39×10^{-8}	$< 10^{-15}$	
wind 17	0.20	0.25	0.10	1.8×10^{51}	1.27×10^{-4}	$< 10^{-15}$	
wind 18	0.01	0.35	0.01	8.9×10^{47}	$< 10^{-15}$	$< 10^{-15}$	
wind 19	0.05	0.25	0.25	2.9×10^{51}	3.91×10^{-4}	$< 10^{-15}$	
wind 20	0.10	0.25	0.25	5.8×10^{51}	4.95×10^{-5}	$< 10^{-15}$	
wind 21	0.20	0.25	0.25	1.1×10^{52}	3.20×10^{-5}	$< 10^{-15}$	

"disk evaporation inspired"

explore "unknown" parameter space

- mass: $0.01 \dots 0.2 M_{\odot}$
- velocity: 0.01 ... 0.50 c
- electron fraction: 0.25 ... 0.35
- entropy:

15 kB/bar.

Log(kinetic energy)

(broad-brush) nucleosynthesis:

"winds"

"dynamic ejecta"

"strong r-process, $A \ge 130$ "

"weak r-process, $A \leq 130$ "

III.3 How big is the impact of nuclear physics on potential observability?

from SR++ (2016)

comparison nuclear mass formulae: Finite Range Droplet Model (FRDM) VS. Duflo Zuker 31 param. (DZ31)

(at example ns12 + ns14 at t= 100 days)

⇒ substantially larger amounts of trans-lead elements for Duflo Zuker 31 (as first discussed in Barnes et al. (2016) ⇒ talk Jennifer Barnes)

comparison networks:

heating rate for same mass formula

comparison of mass formulae:

heating rate for FRDM vs DZ31

(for same network (Mendoza-Temis++ 2015))

from SR++ (2016)

 \Rightarrow at relevant times (days): ~ order of magnitude larger heating rate due to α -decays of trans-lead elements for Duflo Zuker 31

thermalization efficiency FRDM

thermalization efficiency DZ31

from SR++ (2016)

\Rightarrow at ~ 10 days ~factor of two larger for Duflo Zuker 31

impact on optical/near IR light-curves:

our brightest nsns-example: $1.4~M_{\odot}~+1.8~M_{\odot}$

Macronova model 1:

- original Grossman++(2014)
- FRDM mass model
- efficiency = 0.5 = const.

broadband filters

T S S T

g	~380 - 580 nm
r	~520 - 700 nm
i	~650 - 850 nm
Ζ	~780 - 950 nm
у	~950 - 1050 nm
	2MASS
J	~1.1 - 1.4 micron
H	~1.5 - 1.8 micron
K	~2.0 - 2.4 micron

- "faint and fast in blue"
- "bright in NIR for weeks"
- "up to a magnitude brighter for DZ 31"

Macronova model 2:

- like model 1, butDZ31time dep officien
- time-dep. efficiencies

III.4 What are the detection prospects?

~ 10 detections per year VISTA/LSST

from SR++ (2016)

squares: Zwicky Transient Facility (ZTF; for depth 21 mag)
circles: 60 second exposures VISTA (J & K band) and LSST (grizy)
diamonds: 180 second exposures VISTA (J & K band) and LSST (grizy)

III.5 Comparison with "macronova candidate" GRB130603B

 possibly first detection of "macronova" in the aftermath of short GRB 130603B

Figure 1 HST imaging of the location of SGRB 130603B. The host is well resolved

sGRB130603B (Tanvir et al. 2013): optical $-T_{90} \approx 0.18$ s, z=0.356 - nIR-transient, present at ≈ 9 days, but faded away after 30 days

nIR

• If interpretation correct:

- short Gamma-ray Bursts caused by compact binary mergers
- compact binary mergers are a major source of rapid neutron capture elements
- isotropic macronovae promising accompanying signature for "chirp" GW signals

black: HST-band F160W (1.5 μm) red: HST-band F606W (peak: 5.9 μm)

 $\begin{array}{l} \text{nshs 1.4} + 1.0 \text{ M}_{\odot}, \\ \text{nsbh 1.2 } M_{\odot} + 7.0 \text{ M}_{\odot}, \chi = 0.9, \\ \text{wind } m_{ej} = 0.10 \text{ M}_{\odot}, \text{ v}_{ej} = 0.10 \text{ c}, \text{ Y}_{e} = 0.25) \end{array}$

many models much dimmer

V. Summary

- EM-transients crucial for GW-source localization
- EM-transients \Leftrightarrow matter ejection \Leftrightarrow r-process nucleo. \Leftrightarrow sGRBs
- various ejection channels:
 - dynamic (very low Ye component \Rightarrow "strong r-process" \Rightarrow large opacities \Rightarrow "late + red")
 - various types of "winds" (higher Ye \Rightarrow "weak" r-process \Rightarrow lower opacities \Rightarrow "early + blue")
- nuclear physics has substantial impact on observability, e.g. α-decaying trans-lead nuclei (DZ31) impacts on
 - heating rates
 - thermalization efficiencies
 - \Rightarrow substantially brighter lightcurves
- detection prospects: LSST could see ~10 nsns-events yr⁻¹
- several of our dyn. ejecta and wind models are good candidates for "Tanvirevent" (prov. DZ31, trans-lead α-decay, standard opacities), but many will be very difficult to observe
- caveats of current MN model:
 - I) opacities
 - II) wait for full radiative transfer