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GW DISCOVERY - TRULY
COLLABORATIVE WORK

+ The discovery is the work of ~1000 scientists ana

engineers across the globe

% 3 different collaborations: LIGO, GEO600, Virgo

<+ 15 countries, 80 institutions

+ 100’s of graduate students and postdocs

+ |t is an engineering marvel, as much as it is a

scientific discovery

% Many than
three colla

s to hundreds of colleagues from the

oorations who have made this possible



Joint Run Planning Committee

Working schedule for O2

(G1501561- v10)
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LIGO SENSITIVITY DURING FIRST
OBSERVING RUN (O1)
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BINARY BLACK HOLES (BBH)



PROGRESS IN TWO-BODY PROBLEM

- Caltech group pointed out the importance
of computing phasing beyond leading
order, followed by very impressive
progress in post-Newtonian computation
of two-body dynamics

- construction of LIGO, Virgo, GEO600 and
TAMA brought theory and observations
closer

- effective one-body approach developed:
bold prediction for the late inspiral,
merger and ringdown

- first successful NR simulations broke
conventional wisdom - a far simpler
merger than anyone predicted

- remarkable interactions between GW
data analysts, astrophysicists and theorists
to open a new observational window
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BINARY BLACK HOLE WAVEFORMS

-® waveform characterized by

- slow adiabatic inspiral, fast and luminous merger, rapid ringdown
-® very large parameter space

-® mass ratio, large BH spins misaligned with orbit, eccentricity

-® waveform shape can tell us about component masses, spins and
eccentricity

-® waveform amplitude (in a detector network) can tell us about
source’s orientation, sky position, polarization and distance

adiabatic Inspiral
~ same for BNS and BBH

o
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merger| 11



NUMERICAL SIMULATION OF BINARY
BLACK HOLE MERGER: SXS
COLLABORATION

-0.76s

S3S
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CURRENT STATUS OF PN CALCULATIONS

0.5 PN=v/c No Spin  Spin-Linear Spin-Squared Tidal
Conservative 4PN 3.5PN 3PN 7PN
Dynamics
Energy Flux 3.5PN 4PN 2PN 6PN
at Infinity
RR Force 4.5PN 4PN 4.5PN 6PN
Waveform 3.5PN 4PN 2PN 6PN
Phase
Waveform 3PN 2PN 2PN 6PN
Amplitude
BH Horizon 5PN 3.5PN 4PN —

Energy Flux

Table from Buonanno and BSS 2014
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DISCOVERY
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LIGO DETECTIONS SO FAR
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Strain (10%7)

GW150914
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Abbott+ PRL, 2016

|

_LIGO Hanford Data

|

Predicted

—

© © o
bV © WU

-
o
l

|

|

| | | |
LIGO Livingston Data Predicted

Signal can be identified and reconstructed without

the knowledge of the waveform, but waveform
models are essential for interpretation
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Hanford, Washington (H1) Livingston, Louisiana (L1)
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Matched filtering and waveform models were
critical for detection and signal reconstruction

Hanford Livingston
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TEMPLATE BANK USED IN O1 SEARCH
FOR COMPACT BINARY COALESCENCES

x1| < 0.9895, |x2| < 0.05

x1,2| < 0.05

x1,2] < 0.9895

GW150914

GW151226 e
LVT151012 (gstlal) /7 o0

LVT151012 (PyCBC),~ i e

E I

T

o, "'ﬁ'1

i A =
H-:-.‘.E" ey ﬁg

(A *?if:‘:'-ﬁ’.é‘!!
R

1 s it

s 2

i ,*E-

4

Abbott+ PRD, 2016 my [Mo)]



PARAMETER ESTIMATION

21



PROBLEM OF PARAMETER ESTIMATION

Bayesian analysis is used to infer the posterior probability density of
parameters p = {y1, Y2, ..., Un} given the data x:

Plufo) = “

in the case of binary black holes, signal parameters are masses
(mq,my), spins (S1,S>), eccentricity (e), sky position (0,¢), distance
(D), binary orientation angles (t,0), time of and phase at coalescence

(tCl (pC)

the choice of prior could significantly influence the posterior when
the likelihood is small (and there is no such thing as “uniform” or
“uninformative” prior as this is a parameter-dependent statement; if
the likelihood is large (or if we have a large number of observations)
then prior doesn’t matter

22



ONE-D AND TWO-D DISTRIBUTIONS

-® one can integrate the multivariate posterior distributions to
obtain one-d and two-d distributions to compute mean,
median, mode, confidence interval, etc.

Pjun) = / P(yul) dpiz das, ..

P(pu1, p2) = /P(u\w) dps dpg, - ..

23



MASSES OF GW150914 AND GW151226
FROM BAYESIAN ESTIMATION

Overall 12 -
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MASSES AND SPINS: ALL EVENTS
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ASTROPHYSICAL IMPLICATIONS

+ existence of heavy black holes

+ black holes ~30 M, can be in merging binaries, black
holes of ~60 M exist

% questions on formation scenarios of black hole binaries;
what does that imply for other types of binaries?

+ rate of BH mergers: [9, 240] yr' Gpc™
+ at the higher end of the predicted rate

+ at design sensitivity we will observe ~1 merger a day

Abbott+ PRL and PRD 2016 28



LIGO-VIRGO BEST UPPER LIMITS AND

IMPLICATIONS FOR DETECTION

1073

Rate Estimates (Mpc_?’yr_l)

—_
3
Ne)

10710}

Abadie+ (LVC) 2013 BNS

NSBH

BBH
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BINARY

NEUTRON STARS (BNS)

[Bartos, Brady, Marka, CQG 30, 123001 (2013)]
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BINARY NEUTRON STAR MERGER
m
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Takami+ 2014
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BINARY NEUTRON STARS

TIIIIIITI]TTTT[TITT]IIIIIIIII

-® could be progenitors of
some short gamma ray
bursts

-

|
O

|
&

-® observations should:

I
$)

Ill‘lllllllll|llllllllllllllllllllIIII |

-® constrain models of

Cumulative shift of periastron time (s)

lI1111'111!'!!!![1111'1111Illll‘llll |

R . —ev General Relativity ;gsc-il‘/
formation and evolution 5
of compact binaries
- 30
-® possibly equation of
-39
state of supra-nuclear
— _lllllllllllllllllllllllllllllll
Mmatter *0 0975 1980 1985 1990 1995 2000 2005

Year

- rates highly uncertain

Plot: Weisberg+, Image: NASA
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EXPECTED NS-NS MERGER RATES

- observed short GRB rate ~ 10 yr'' Gpc™
-® we won't observe all GRBs because

- most GRB satellites are not sensitive to the whole sky and
gamma emission is not expected to be isotropic

-® comoving volume rate depends on the beaming angle

-2 smaller the beaming angle, less likely we will observe
them and so greater the intrinsic rate

-2 half beaming angle of [5° ,90°] gives a comoving volume rate
of [20, 2,000] yr' Gpc™

-» implies a detection rate of ~ 0.2-50 yr' at LIGO-Virgo
design sensitivity; population synthesis models predict
uncertain rates; radio observations are consistent with this
range

33



ANATOMY OF A BINARY NEUTRON
STAR COALESCENCE WAVEFORM

early inspiral
modeled by
post-Newtonian
theory - (v/c)"

late inspiral
modeled by
effective one- merger and post-merger oscillations
body : : : :

R using numerical simulations
approximation

|
/
34

Image: Bernuzzi
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PHYSICAL EFFECTS IN BINARY
NEUTRON STAR COALESCENCE

dominated by
gravitational
radiation back
reaction - masses
and spins

WAVEFORMS

tidal effects
appear at high

PN order, | Hvsics of th
: complex physics of the merger
dynamical prex phy . 9
: : remnant, multi-messenger source,
tides might be

signature of neutron star EoS

important

Image: Bernuzzi 35



BINARY NEUTRON STARS
POST-MERGER WAVEFORMS
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BINARY NEUTRON STARS:
POST-MERGER SPECTRUM
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SIZING UP NEUTRON STARS

Neutron Star Strange Quark Star

Densities ~
4 x10" kg/m?3

CONFINED

NEUTRONS ' " QUARKS QUARKS

Hinderer 2008, Flanagan and Hinderer 2008, Hinderer+ 2010, Read+ 2009,
2013, Pannarale+ 2011, Damour+ 2012, Lackey+ 2012, Del Pozzo+ 2012,
Lackey & Wade 2014 38
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SIGNATURE OF EOS IN BNS WAVEFORMS

* Tidal tensors &;; of one of the component of the binary induces
quadrupole moment Q;; in the other

e variation in the quadrupole moment causes GW emission

* in the adiabatic approximation
Qi; = —A(m)&j,  Am) = (2/3) ka(m) R°(m)

» where A(m) is EoS dependent tidal deformability, k,(m) is the Love
number and R is the NS radius
« Just from the scaling this is a 5-PN effect (v/c:)10

@  size of quadrupole deformation

A — o = . . M ofe
E strength of external tidal field Tidal deformability

Love number ko ) — gk RS (G=c=1) A = GX\(Gmyg/c?) "
Radius R 3" A € [300, 600]

~ —,

image: J. Read



COSMOLOGY FROM MICROPHYSICS

-# Post-Newtonian phasing formula has binary M and freq. f together

7
U(f) =21 fte — o+ »  ag (tM f)F 77
k=0

-# So it is possible to scale away cosmological frequency redshift:
fo>f/(1+z2and M > M (1+2)

> The tidal term, on the other hand, cannot be scaled away

1250ko0x B R\’
Uride(f) = 3 =2 (e f) BT (M)

-#- This helps measure neutron star radius and cosmological redshift
directly from GW observations

Messenger+Read PRL 2012; Messenger+ PRX 2014



TIDAL TERMS IN THE INSPIRAL REGIME

\IJ(U) — \IJPP( ) T \Ijtldal( )

\Ijtidal(v) —

—9 10
12— 11X
12877 Az_: M5XA { 4( a) v

5
+ 5 (3179 — 919X 4 — 2286X 3 + 260X5) v'?

+24m(12 — 11X 4)v*3

39927845 480043345 9860575 _ 4
003032 9144576 127008

- 421821905 3 4359700X4 10578445 >

2286144 AT 35721 T4 285768
+ o (27719 — 22127X4 + 7022X5 — 10232X3) ™|

XA — mA/M, A = 1,2, and >\A — )\(mA)

plus the quadrupole-monopole interaction
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WILL THERE BE A PLUNGE PHASE?
1

63/2n M

fuso =

m
2 2.0

1.5

1.0
Juso
2000
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STATISTICAL AND SYSTEMATIC ERRORS
ON CO
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ACCURATE WAVEFORM MODELS

'SLv135. kX ~ 73.55
: o 1 b

IS KEY
TO GW MEASUREMENT OF NS RADIUS
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NS EQUATION OF STATE
INCLUDING THE POST-MERGER PHASE

with
Sukanta Bose, Kabir Chakravarti (IUCAA), Luciano Rezzolla
(U. Frankfurt), Kentaro Takami (Kobe)
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Goal of this work

- Develop analytical time-domain fits of post-merger (Takami,
Rezzolla, Baiotti, PRL 2014) waveforms and combine them
with those of pre-merger waveforms.

- Use these waveforms to estimate errors in BNS parameters,
including NS EOS parameters.

- Future work: combine M,,, estimate from pre-merger phase

tota

with post-merger spectral features to break M, - redshift

degeneracy (more relevant for future detectors). [Cf.
Messenger et al. arXiv:1312.1862v2.]
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PRELIMINARY RESULTS-I

« We have analytically modelled (in black below) NR post-merger

waveforms (in blue, with emphasis on frequencies f, and f, (also

called f, ., )-

 This has been done for a set of EOS, e.g., GNH3, H4, ALF2, SLy.

EOS: GNH3, m, =m, =1.25 M.

— GNH3-1250 — GNH3-1250
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PRELIMINARY RESULTS-I

« We have analytically modelled (in black below) NR post-merger
waveforms (in blue, with emphasis on frequencies f, and f, (also
called f, ., )-

 This has been done for a set of EOS, e.g., GNH3, H4, ALF2, SLy.

EOS: H4, m, =m, = 1.325 M, .

—— H4-1325 —  H4-1325

log[hf*/#],normalized
| | |
N N

_12 I I I I I I I
1000 1500 2000 2500 3000 3500 4000 4500 5000
time f (kHz)
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EOS |NS mass|Afs AC/C
(M) (Hz)

A C C U R A C Y O F GNH3 |1.250 29 1.0%

MEASUREMENT OF H4 11250 |43 1.2%

ALF2 |1.250 133 3.4%
C O M PA C T N E S S GNH3 |1.325 40 1.0%
H4 1.325 27 1.0%
ALF2 [1.325 60 1.6%

« Above: Statistical error estimates of f_2, and the compaction C deduced
from it, for 100 post-merger systems distributed uniformly in aLIGO
volume, with an average distance of 200Mpc and SNR of 8.

« If component masses can be determined to an accuracy of 10 - 20% from
the inspiral phase, then the above compaction errors imply that the radius
will be measured to an accuracy of ~10-20%. (But this is a loose statement
since masses and radii will vary among the 100 sources.)

« CAVEAT: At the moment systematic errors between post-merger
waveforms from different NR groups can be as high as ~10% in estimating
the compaction. (Compare this to a few percent statistical error listed in
the table above, arising from detector noise.)



A GLOBAL NETWORK OF
GRAVITATIONAL WAVE DETECTORS

Operational

Under Construction
| —Plammred—
Approved: 17/02/2016

51



Detector
Networks

2015+
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Detector
Networks

2016+
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Detector
Networks

2018+
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Detector
Networks

2024+
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TIME (MS)
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BEAM PATTERNS OF NETWORKS
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BEYOND ADVANCED DETECTORS RVEYZNcITE
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3G SCIENCE DRIVERS

Extreme gravity
Extreme matter

Cosmic history
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EXTREME GRAVITY

Quasi-normal modes and the no-hair theorem

Dynamical spacetime: Higher modes,
precessing orbits, Extremal spins...

GR violations and alternative gravity theories

Bursts and stochastic background from
cosmic strings

Gravitational collapse, supernova
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EXTREME MATTER

What are the most compact object in Nature
Equation of state of neutron star cores
GRB physics from Binary neutron star observations

Dynamics of neutron star interiors, tidal
instabilities

Nature of Low-mass x-ray binaries
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COSMIC HISTORY

Mapping the history of black hole formation
Do gravitational waves see the same universe as light

Formation and evolution of compact objects
throughout the Universe

The chemical content of the Universe from NS-NS and
NS-BS

Cosmic string bursts and backgrounds
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Strain

STRAIN SENSITIVITIES OF FUTURE
DETECTORS
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SenseMon Redshift

HOW FAR CAN WE SEE SOURCES?
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SUMMARY

* binary neutron star signals are to GW observations as atomic spectra
are to EM observations

* signature of nuclear equation of state is imprinted in the inspiral
and post-merger signal

« GW amplitude gives us distance and spectra could give us redshift

* measuring the NS-EoS and radius via GW observations will take
sometime

* lack of accurate waveform models and systematic biases

« unknown distribution of neutron star masses and spins

* insufficient sensitivity frequencies beyond ~ 500 Hz

o difficulties with calibration of phase and amplitude of the data

* third generation detectors, and probably new ideas, are needed to
impact microphysics from GW observations
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EOS USED IN AGATHOS+ PAPER

A [1072 s° ]

0.01 :
0.00 [P R45¢
—0.01

O [10723 s° ]

The tidal deformability parameter A(m) as a function of neutron star mass for three
different EOS: a soft one (SQM3), a moderate one (H4), and a stiff one (MS1). Adapted
from [18]. Curves are fitted quartic polynomials, whose residuals are shown in the lower
subplot. Only masses within the unshaded region [1, 2]Mo will be considered in our

analyses.
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QUADRUPOLE-MONOPOLE TERM

* Spin-induced deformation leads to quadrupole that
depends as spin-square

Uom(v) = 1;2770@\41}_1,
3 S (%) b
A=1.2
2 alma) () 3G L7 1] ¥
A=1,2

A A\
C=0.371-391x10"2In 1.056 x 102 (m —)

mP
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