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❖ The discovery is the work of ~1000 scientists and 
engineers across the globe 

❖ 3 different collaborations: LIGO, GEO600, Virgo 
❖ 15 countries, 80 institutions 
❖ 100’s of graduate students and postdocs  

❖ It is an engineering marvel, as much as it is a 
scientific discovery 

❖ Many thanks to hundreds of colleagues from the 
three collaborations who have made this possible
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the gravitational-wave signal extraction by broadening the
bandwidth of the arm cavities [51,52]. The interferometer
is illuminated with a 1064-nm wavelength Nd:YAG laser,
stabilized in amplitude, frequency, and beam geometry
[53,54]. The gravitational-wave signal is extracted at the
output port using a homodyne readout [55].
These interferometry techniques are designed to maxi-

mize the conversion of strain to optical signal, thereby
minimizing the impact of photon shot noise (the principal
noise at high frequencies). High strain sensitivity also
requires that the test masses have low displacement noise,
which is achieved by isolating them from seismic noise (low
frequencies) and designing them to have low thermal noise
(intermediate frequencies). Each test mass is suspended as
the final stage of a quadruple-pendulum system [56],
supported by an active seismic isolation platform [57].
These systems collectively provide more than 10 orders
of magnitude of isolation from ground motion for frequen-
cies above 10 Hz. Thermal noise is minimized by using
low-mechanical-loss materials in the test masses and their

suspensions: the test masses are 40-kg fused silica substrates
with low-loss dielectric optical coatings [58,59], and are
suspended with fused silica fibers from the stage above [60].
To minimize additional noise sources, all components

other than the laser source are mounted on vibration
isolation stages in ultrahigh vacuum. To reduce optical
phase fluctuations caused by Rayleigh scattering, the
pressure in the 1.2-m diameter tubes containing the arm-
cavity beams is maintained below 1 μPa.
Servo controls are used to hold the arm cavities on

resonance [61] and maintain proper alignment of the optical
components [62]. The detector output is calibrated in strain
by measuring its response to test mass motion induced by
photon pressure from a modulated calibration laser beam
[63]. The calibration is established to an uncertainty (1σ) of
less than 10% in amplitude and 10 degrees in phase, and is
continuously monitored with calibration laser excitations at
selected frequencies. Two alternative methods are used to
validate the absolute calibration, one referenced to the main
laser wavelength and the other to a radio-frequency oscillator

(a)

(b)

FIG. 3. Simplified diagram of an Advanced LIGO detector (not to scale). A gravitational wave propagating orthogonally to the
detector plane and linearly polarized parallel to the 4-km optical cavities will have the effect of lengthening one 4-km arm and shortening
the other during one half-cycle of the wave; these length changes are reversed during the other half-cycle. The output photodetector
records these differential cavity length variations. While a detector’s directional response is maximal for this case, it is still significant for
most other angles of incidence or polarizations (gravitational waves propagate freely through the Earth). Inset (a): Location and
orientation of the LIGO detectors at Hanford, WA (H1) and Livingston, LA (L1). Inset (b): The instrument noise for each detector near
the time of the signal detection; this is an amplitude spectral density, expressed in terms of equivalent gravitational-wave strain
amplitude. The sensitivity is limited by photon shot noise at frequencies above 150 Hz, and by a superposition of other noise sources at
lower frequencies [47]. Narrow-band features include calibration lines (33–38, 330, and 1080 Hz), vibrational modes of suspension
fibers (500 Hz and harmonics), and 60 Hz electric power grid harmonics.

PRL 116, 061102 (2016) P HY S I CA L R EV I EW LE T T ER S week ending
12 FEBRUARY 2016

061102-4

(b) 

A BNS Signal @ 50 Mpc

Abbott+ PRL, 2016
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Caltech group pointed out the importance 
of computing phasing beyond leading 
order, followed by very impressive 
progress in post-Newtonian computation 
of two-body dynamics 

construction of LIGO, Virgo, GEO600 and 
TAMA brought theory and observations 
closer 

effective one-body approach developed: 
bold prediction for the late inspiral, 
merger and ringdown 

first successful NR  simulations broke 
conventional wisdom - a far simpler 
merger than anyone predicted 
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B I N A R Y  B L A C K  H O L E  WAV E F O R M S
waveform characterized by 

slow adiabatic inspiral, fast and luminous merger, rapid ringdown 
very large parameter space 

mass ratio, large BH spins misaligned with orbit, eccentricity 
waveform shape can tell us about component masses, spins and 
eccentricity 
waveform amplitude (in a detector network) can tell us about 
source’s orientation, sky position, polarization and distance
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N U M E R I C A L  S I M U L AT I O N  O F  B I N A R Y  
B L A C K  H O L E  M E R G E R :  S X S  

C O L L A B O R AT I O N
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No Spin Spin-Linear Spin-Squared Tidal

Conservative 4PN 3.5PN 3PN 7PN

Dynamics

Energy Flux 3.5PN 4PN 2PN 6PN

at Infinity

RR Force 4.5PN 4PN 4.5PN 6PN

Waveform 3.5PN 4PN 2PN 6PN

Phase

Waveform 3PN 2PN 2PN 6PN

Amplitude

BH Horizon 5PN 3.5PN 4PN �
Energy Flux

1

Table from Buonanno and BSS 2014

0.5 PN=v/c



14
Taracchini+ 2012

0 1000 2000 3000 4000 5000 6000

-0.4
-0.2
0.0
0.2
0.4

gr
av

ita
tio

na
l w

av
ef

or
m

NR
EOB

6000 6100 6200 6300 6400
c3t/GM

non-precessing: q=1, c|S1|/Gm2
1 = 0.98, c|S2|/Gm2

2 = 0.98 

0 1000 2000 3000 4000 5000 6000 7000

-0.2

-0.1

0.0

0.1

0.2
gr

av
ita

tio
na

l w
av

ef
or

m

NR
EOB

7000 7200 7400 7600 7800
c3t/GM

precessing: q=5,  c|S1|/Gm1
2=0.5,  c|S2|/Gm2

2=0

E O B  V I S - A - V I S  N R  S I M U L AT I O N S



D I S C O V E R Y

15



L I G O  D E T E C T I O N S  S O  F A R

16



G W 1 5 0 9 1 4

17

Signal can be identified and reconstructed without 
the knowledge of the waveform, but waveform 
models are essential for interpretation

Abbott+ PRL, 2016



18

properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.

PRL 116, 061102 (2016) P HY S I CA L R EV I EW LE T T ER S week ending
12 FEBRUARY 2016

061102-2
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Results of the searches for binary neutron stars and neutron
star–black hole binaries are reported in Ref. [43]. These
matched-filter searches are complemented by generic
transient searches which are sensitive to BBH mergers
with total mass of about 30M⊙ or greater [61].
A bank of template waveforms is used to cover the

parameter space to be searched [54,62–65]. The gravita-
tional waveforms depend upon the masses m1;2 (using the
convention that m1 ≥ m2) and angular momenta S1;2 of the
binary components. We characterize the angular momen-
tum in terms of the dimensionless spin magnitude

a1;2 ¼
c

Gm2
1;2

jS1;2j; ð2Þ

and the component aligned with the direction of the orbital
angular momentum, L, of the binary [66,67],

χ1;2 ¼
c

Gm2
1;2

S1;2 · L̂: ð3Þ

We restrict this template bank to circular binaries for which
the spin of the systems is aligned (or antialigned) with the
orbital angular momentum of the binary. The resulting
templates can nonetheless recover systems with misaligned
spins, which will exhibit orbital precession, with good
sensitivity over much of the parameter space, particularly
for near equal-mass binaries [44].
At leading order, the phase evolution during inspiral

depends on the chirp mass of the system [68–70]

M ¼ ðm1m2Þ3=5

M1=5 : ð4Þ

At subsequent orders in the PN expansion, the phase
evolution depends predominantly upon the mass ratio [19]

q ¼ m2

m1

≤ 1; ð5Þ

and the effective spin parameter [71–76]

χeff ¼
m1χ1 þm2χ2

M
; ð6Þ

where M ¼ m1 þm2 is the binary’s total mass. The
minimum black hole mass is taken to be 2M⊙, consistent
with the largest known masses of neutron stars [77]. There
is no known maximum black hole mass [78]; however, we
limit this template bank to binaries with a total mass less
thanM ≤ 100M⊙. For higher-mass binaries, the Advanced
LIGO detectors are sensitive to only the final few cycles of
inspiral plus merger, making the analysis more susceptible
to noise transients. The results of searches for more massive
BBH mergers will be reported in future publications. In
principle, black hole spins can lie anywhere in the range

from −1 (maximal and antialigned) to þ1 (maximal and
aligned). We limit the spin magnitude to less than 0.9895,
which is the region over which the EOBNR waveform
model [8,9] used in the search is able to generate valid
template waveforms [8]. The bank of templates used for the
analysis is shown in Fig. 2.
Both analyses separately correlate the data from each

detector with template waveforms that model the expected
signal. The analyses identify candidate events that are
detected at both the Hanford and Livingston observatories
consistent with the 10-ms intersite propagation time.
Additional signal consistency tests are performed to mit-
igate the effects of nonstationary transients in the data.
Events are assigned a detection-statistic value that ranks
their likelihood of being a gravitational-wave signal. For
PyCBC, the observed SNR in each detector is reweighted
using the signal consistency tests. These reweighted SNRs
are added in quadrature to obtain the detection statistic ρ̂c.
For GstLAL, lnL is the log-likelihood ratio for the signal
and noise models. The detection statistics are compared to
the estimated detector noise background to determine, for
each candidate event, the probability that detector noise
would give rise to at least one equally significant event.
Further details of the analysis methods are available in
Appendix A.
The results for the two different analyses are presented in

Fig. 3. The figure shows the observed distribution of
events, as well as the background distribution used to

FIG. 2. The four-dimensional search parameter space covered
by the template bank shown projected into the component-mass
plane, using the convention m1 > m2. The colors indicate mass
regions with different limits on the dimensionless spin parameters
χ1 and χ2. Symbols indicate the best matching templates for
GW150914, GW151226, and LVT151012. For GW150914 and
GW151226, the templates were the same in the PyCBC and
GstLAL searches, while for LVT151012 they differed. The
parameters of the best matching templates are consistent, up to
the discreteness of the template bank, with the detector frame
mass ranges provided by detailed parameter estimation in Sec. IV.

BINARY BLACK HOLE MERGERS IN THE FIRST … PHYS. REV. X 6, 041015 (2016)

041015-9

Abbott+ PRD, 2016
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P R O B L E M  O F  PA R A M E T E R  E S T I M AT I O N
Bayesian analysis is used to infer the posterior probability density of 
parameters μ = {μ1, μ2, …, μn} given the data x: 

in the case of binary black holes, signal parameters are masses 
(m1,m2), spins (S1,S2), eccentricity (e), sky position (θ,φ), distance 
(D), binary orientation angles (ι,δ), time of and phase at coalescence 
(tc,φc) 

the choice of prior could significantly influence the posterior when 
the likelihood is small (and there is no such thing as “uniform” or 
“uninformative” prior as this is a parameter-dependent statement; if 
the likelihood is large (or if we have a large number of observations) 
then prior doesn’t matter

22

P (µ|x) = P (x|µ)P (µ)

P (x)



O N E - D  A N D  T W O - D  D I S T R I B U T I O N S
one can integrate the multivariate posterior distributions to 
obtain one-d and two-d distributions to compute mean, 
median, mode, confidence interval, etc.

23

P (µ1) =

Z
P (µ|x) dµ2 dµ3, . . .

P (µ1, µ2) =

Z
P (µ|x) dµ3 dµ4, . . .
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M A S S E S  A N D  S P I N S :  A L L  E V E N T S

GW150914 

(36, 29) solar mass 

GW151226 

(14, 8) solar mass 

one of the BHs has nonzero 
spin 

LVT151012 

(23, 13) solar mass

25
Abbott+ PRL, PRD, 2016
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A S T R O P H Y S I C A L  I M P L I C AT I O N S

❖ existence of heavy black holes 
❖ black holes ~30 M⊙ can be in merging binaries, black 

holes of ~60 M⊙ exist 
❖ questions on formation scenarios of black hole binaries; 

what does that imply for other types of binaries? 
❖ rate of BH mergers: [9, 240] yr-1 Gpc-3 

❖ at the higher end of the predicted rate 
❖ at design sensitivity we will observe ~1 merger a day

28Abbott+ PRL and PRD 2016
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uncertainty in either direction [5]. In all cases, the upper
limits derived here are 2 to 3 orders of magnitude above the
realistic estimated rates, and about a factor of 10 above the
most optimistic predictions. These results are summarized
in Fig. 5.

VII. DISCUSSION

We performed a search for gravitational waves from
compact binary coalescences with total mass between 2
and 25M! with the LIGO and Virgo detectors using data
taken between July 7, 2009, and October 20, 2010. No
gravitational waves candidates were detected, and we
placed new upper limits on CBC rates. These new limits
are up to a factor of 1.4 improvement over those achieved
using previous LIGO and Virgo observational runs up to
S5/VSR1 [4], but remain 2 to 3 orders of magnitude above
the astrophysically predicted rates.

The installation of the advanced LIGO and Virgo detec-
tors has begun. When operational, these detectors will
provide a factor of 10 increase in sensitivity over the initial
detectors, providing a factor of "1000 increase in the
sensitive volume. At that time, we expect to observe tens
of binary coalescences per year [5].

In order to detect this population of gravitational-wave
signals, we will have to be able to confidently discriminate
it from backgrounds caused by both stationary and

transient detector noise. It is customary [5] to assume
that a signal with SNR of 8 in each detector would stand
far enough above background that we would consider it to
be a detection candidate. The blind injection had somewhat
larger SNR than 8 in each detector, and we were able
estimate a FAR of 1 in 7000 yr for that event.
Alternatively, consider a coincident signal with exactly
SNR of 8 in two detectors. Provided the signal is a good
match to the template waveform (!2

r # 1 in Eq. (1)) this
corresponds to "c ¼ 11:3. As can be seen from the ex-
tended background events with the blind injection removed
in Fig. 3 (light gray crosses), this gives a FAR of "1 in
2% 104 yr in a single trial, or 1 in 3000 yr over all trials.
Achieving similar-or-better background distributions in
Advanced LIGO and Virgo will require detailed data qual-
ity studies of the detectors and feedback from the CBC
searches, along with well-tuned signal-based vetoes. We
have continued to develop the pipeline with these goals in
mind. For this analysis we significantly decreased the
latency between taking data and producing results, which
allowed data quality vetoes to be finely tuned for the CBC
search. These successes, along with the successful recov-
ery of the blind injection, give us confidence that wewill be
able to detect gravitational waves from CBCs at the ex-
pected rates in Advanced LIGO and Virgo.
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FIG. 5 (color online). Comparison of CBC upper limit rates for
BNS, NSBH, and BBH systems. The light gray regions display
the upper limits obtained in the S5/VSR1 analysis; dark gray
regions show the upper limits obtained in this analysis, using the
S5/VSR1 limits as priors. The new limits are up to a factor of 1.4
improvement over the previous results. The lower (blue hatched)
regions show the spread in the astrophysically predicted rates,
with the dashed-black lines showing the realistic estimates [5].
Note: in Ref. [5], NSBH and BBH rates were quoted using a
black hole mass of 10M!. We have therefore rescaled the S5 and
S6 NSBH and BBH upper limits in this plot by a factor of
ðM5=M10Þ5=2, where M10 is the chirp mass of a binary in
which the black hole mass is 10M! and M5 is the chirp mass of
a binary in which the black hole mass is 5M!.
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FIG. 8. Snapshots of the rest-mass density on the (x, y) plane for the binary ALF2-q10-M1325. From left to right, the panels refer to
five characteristic times: the initial time, the time of the merger, the time right after the merger (i.e., at t = 1.0ms), when the ` = m = 2
deformation in the HMNS starts to develop (i.e., at t = 3.0ms), and a later time (i.e., at t = 10.0ms). Note that only in the last panel is the
bar-deformed HMNS well defined and quasistationary.

on the (x, y) plane at five characteristic times: the initial time,
the time of the merger, the time right after the merger (i.e., at
t = 1.0ms), when the stellar core stops oscillating and an
` = m = 2 deformation in the HMNS starts to develop (i.e., at
t = 3.0ms), and then when the bar-deformed HMNS (cf., re-
gion in white) is well defined and with a quasistationary core
(i.e., at t = 10.0ms).

Following this phenomenology, it is possible to build a me-
chanical toy model, whose mathematical details are presented
in Appendix A, in which the object produced right after the
stellar contact is composed of an axisymmetric disk rotating
rapidly at a given angular frequency, say ⌦(t), to which two
spheres are connected (e.g., via a shaft) but are also free to
oscillate via a spring that connects them (see Fig. 17 in Ap-
pendix A). In such a system, the two spheres will either ap-
proach each other, decreasing the moment of inertia of the
system, or move away from each other, increasing the moment
of inertia. Because the total angular momentum is essentially
conserved, the system’s angular frequency will vary between
a minimum value ⌦1 (corresponding to the time when the two
spheres are at the largest separation) and a maximum value
⌦3 (corresponding to the time when the two spheres are at the
smallest separation). The values of ⌦1 and ⌦3 depend nonlin-
early on the properties of the system (i.e., the mass and radius
of the disk, and the mass of the spheres) but are such that
⌦2 = 1

2 (⌦1 + ⌦3), just as f2 ⇡ 1
2 (f1 + f3) in the PSDs we

have computed. Stated differently, the mechanical toy model
considered here will rotate with an angular frequency that is a
function of time and bounded by ⌦1 and ⌦3. Because the time
spent at a given frequency is ⌧⌦ ⌘ ⌦/(d⌦/dt), more time is
obviously spent at the frequencies ⌦(t) = ⌦1 and ⌦(t) = ⌦3,
where d⌦/dt ' 0. As a result, more power is expected to ap-
pear in the GW signal at these frequencies, hence producing
a low-frequency peak around ⌦1 and a high-frequency peak
around ⌦3. If dissipative processes are present, e.g., if the
spring is not ideal and the oscillations are damped, then the
angular frequency will tend secularly to ⌦2, i.e., ⌦(t) = ⌦2

for t ! 1 (cf., Fig. 18 below). As a result, most of the power
in the PSD will appear around ⌦2, with two main sidebands
at ⌦1 and ⌦3. Conversely, if dissipative processes are not
present, then the GW signal will have contributions at fre-
quencies ⌦2 and at its overtones ⌦

n

' (n/2)⌦2, such that

⌦2 ' 1
2 (⌦1 + ⌦3). (Note that in the presence of dissipative

processes a ' sign is needed in the estimate of ⌦2 because
the asymptotic frequency is only approximately the average
of ⌦1 and ⌦3; this is shown in the middle panel of Fig. 18
and reflects the fact that the system is not perfectly balanced.)
Overall, and as we will discuss in more detail in Appendix A,
this toy model can therefore account for both the presence of
the main peak f2 and for the two equally distant sidebands at
f1 and f3.

There is a simple way of testing whether these modes are
coming just from the immediate post-merger phase or are pro-
duced on longer time scales in terms of nonlinear couplings.
This is shown in Fig. 9, which reports again the PSDs for
the five EOSs and for a representative value of the mass,
i.e., M̄ = 1.30M�. Thin solid lines of different colors show
the same PSDs as in Fig. 7, with the two vertical dashed
lines marking the positions of the peak frequencies f1 and f2.
Shown instead with thick solid lines of the same colors are
the PSDs when the waveforms are restricted to the interval
t 2 [609, 5000]M� ⇡ [3.00, 24.63]ms, that is, when the first
3ms after the merger are cut from the time series. Remark-
ably, in this case the f1 and f3 peaks essentially disappear,
while the f2 peaks remain very strong and without consider-
able changes in frequency apart for the very soft EOSs. We
find this result a convincing validation of the correctness of
the toy model and a strong evidence that most of the power in
the f1 and f3 peaks is built essentially over 2-3ms after the
merger.

We should also note that when the dominant contribution
from the initial f1 and f3 peaks is removed, and hence one
is able to measure the power produced by the long evolution
of the HMNS, smaller peaks do appear on either side of f2,
and they are close to the f1 or f3 frequencies. It is then pos-
sible that these smaller-amplitude peaks represent the mani-
festation of the nonlinear couplings mentioned above and are
therefore carriers of interesting information on the properties
of the HMNS. Clearly, more work is needed to validate these
results and explore the long-term spectrum of the HMNS.

Another concrete indication that the toy model provides a
good description of the dynamics right after the merger is of-
fered by Fig. 10, whose top panel shows the full numerical-
relativity strain in the + polarization as computed for the bi-
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Following this phenomenology, it is possible to build a me-
chanical toy model, whose mathematical details are presented
in Appendix A, in which the object produced right after the
stellar contact is composed of an axisymmetric disk rotating
rapidly at a given angular frequency, say ⌦(t), to which two
spheres are connected (e.g., via a shaft) but are also free to
oscillate via a spring that connects them (see Fig. 17 in Ap-
pendix A). In such a system, the two spheres will either ap-
proach each other, decreasing the moment of inertia of the
system, or move away from each other, increasing the moment
of inertia. Because the total angular momentum is essentially
conserved, the system’s angular frequency will vary between
a minimum value ⌦1 (corresponding to the time when the two
spheres are at the largest separation) and a maximum value
⌦3 (corresponding to the time when the two spheres are at the
smallest separation). The values of ⌦1 and ⌦3 depend nonlin-
early on the properties of the system (i.e., the mass and radius
of the disk, and the mass of the spheres) but are such that
⌦2 = 1

2 (⌦1 + ⌦3), just as f2 ⇡ 1
2 (f1 + f3) in the PSDs we

have computed. Stated differently, the mechanical toy model
considered here will rotate with an angular frequency that is a
function of time and bounded by ⌦1 and ⌦3. Because the time
spent at a given frequency is ⌧⌦ ⌘ ⌦/(d⌦/dt), more time is
obviously spent at the frequencies ⌦(t) = ⌦1 and ⌦(t) = ⌦3,
where d⌦/dt ' 0. As a result, more power is expected to ap-
pear in the GW signal at these frequencies, hence producing
a low-frequency peak around ⌦1 and a high-frequency peak
around ⌦3. If dissipative processes are present, e.g., if the
spring is not ideal and the oscillations are damped, then the
angular frequency will tend secularly to ⌦2, i.e., ⌦(t) = ⌦2

for t ! 1 (cf., Fig. 18 below). As a result, most of the power
in the PSD will appear around ⌦2, with two main sidebands
at ⌦1 and ⌦3. Conversely, if dissipative processes are not
present, then the GW signal will have contributions at fre-
quencies ⌦2 and at its overtones ⌦
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processes a ' sign is needed in the estimate of ⌦2 because
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of ⌦1 and ⌦3; this is shown in the middle panel of Fig. 18
and reflects the fact that the system is not perfectly balanced.)
Overall, and as we will discuss in more detail in Appendix A,
this toy model can therefore account for both the presence of
the main peak f2 and for the two equally distant sidebands at
f1 and f3.

There is a simple way of testing whether these modes are
coming just from the immediate post-merger phase or are pro-
duced on longer time scales in terms of nonlinear couplings.
This is shown in Fig. 9, which reports again the PSDs for
the five EOSs and for a representative value of the mass,
i.e., M̄ = 1.30M�. Thin solid lines of different colors show
the same PSDs as in Fig. 7, with the two vertical dashed
lines marking the positions of the peak frequencies f1 and f2.
Shown instead with thick solid lines of the same colors are
the PSDs when the waveforms are restricted to the interval
t 2 [609, 5000]M� ⇡ [3.00, 24.63]ms, that is, when the first
3ms after the merger are cut from the time series. Remark-
ably, in this case the f1 and f3 peaks essentially disappear,
while the f2 peaks remain very strong and without consider-
able changes in frequency apart for the very soft EOSs. We
find this result a convincing validation of the correctness of
the toy model and a strong evidence that most of the power in
the f1 and f3 peaks is built essentially over 2-3ms after the
merger.

We should also note that when the dominant contribution
from the initial f1 and f3 peaks is removed, and hence one
is able to measure the power produced by the long evolution
of the HMNS, smaller peaks do appear on either side of f2,
and they are close to the f1 or f3 frequencies. It is then pos-
sible that these smaller-amplitude peaks represent the mani-
festation of the nonlinear couplings mentioned above and are
therefore carriers of interesting information on the properties
of the HMNS. Clearly, more work is needed to validate these
results and explore the long-term spectrum of the HMNS.

Another concrete indication that the toy model provides a
good description of the dynamics right after the merger is of-
fered by Fig. 10, whose top panel shows the full numerical-
relativity strain in the + polarization as computed for the bi-
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chanical toy model, whose mathematical details are presented
in Appendix A, in which the object produced right after the
stellar contact is composed of an axisymmetric disk rotating
rapidly at a given angular frequency, say ⌦(t), to which two
spheres are connected (e.g., via a shaft) but are also free to
oscillate via a spring that connects them (see Fig. 17 in Ap-
pendix A). In such a system, the two spheres will either ap-
proach each other, decreasing the moment of inertia of the
system, or move away from each other, increasing the moment
of inertia. Because the total angular momentum is essentially
conserved, the system’s angular frequency will vary between
a minimum value ⌦1 (corresponding to the time when the two
spheres are at the largest separation) and a maximum value
⌦3 (corresponding to the time when the two spheres are at the
smallest separation). The values of ⌦1 and ⌦3 depend nonlin-
early on the properties of the system (i.e., the mass and radius
of the disk, and the mass of the spheres) but are such that
⌦2 = 1
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have computed. Stated differently, the mechanical toy model
considered here will rotate with an angular frequency that is a
function of time and bounded by ⌦1 and ⌦3. Because the time
spent at a given frequency is ⌧⌦ ⌘ ⌦/(d⌦/dt), more time is
obviously spent at the frequencies ⌦(t) = ⌦1 and ⌦(t) = ⌦3,
where d⌦/dt ' 0. As a result, more power is expected to ap-
pear in the GW signal at these frequencies, hence producing
a low-frequency peak around ⌦1 and a high-frequency peak
around ⌦3. If dissipative processes are present, e.g., if the
spring is not ideal and the oscillations are damped, then the
angular frequency will tend secularly to ⌦2, i.e., ⌦(t) = ⌦2

for t ! 1 (cf., Fig. 18 below). As a result, most of the power
in the PSD will appear around ⌦2, with two main sidebands
at ⌦1 and ⌦3. Conversely, if dissipative processes are not
present, then the GW signal will have contributions at fre-
quencies ⌦2 and at its overtones ⌦
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processes a ' sign is needed in the estimate of ⌦2 because
the asymptotic frequency is only approximately the average
of ⌦1 and ⌦3; this is shown in the middle panel of Fig. 18
and reflects the fact that the system is not perfectly balanced.)
Overall, and as we will discuss in more detail in Appendix A,
this toy model can therefore account for both the presence of
the main peak f2 and for the two equally distant sidebands at
f1 and f3.

There is a simple way of testing whether these modes are
coming just from the immediate post-merger phase or are pro-
duced on longer time scales in terms of nonlinear couplings.
This is shown in Fig. 9, which reports again the PSDs for
the five EOSs and for a representative value of the mass,
i.e., M̄ = 1.30M�. Thin solid lines of different colors show
the same PSDs as in Fig. 7, with the two vertical dashed
lines marking the positions of the peak frequencies f1 and f2.
Shown instead with thick solid lines of the same colors are
the PSDs when the waveforms are restricted to the interval
t 2 [609, 5000]M� ⇡ [3.00, 24.63]ms, that is, when the first
3ms after the merger are cut from the time series. Remark-
ably, in this case the f1 and f3 peaks essentially disappear,
while the f2 peaks remain very strong and without consider-
able changes in frequency apart for the very soft EOSs. We
find this result a convincing validation of the correctness of
the toy model and a strong evidence that most of the power in
the f1 and f3 peaks is built essentially over 2-3ms after the
merger.

We should also note that when the dominant contribution
from the initial f1 and f3 peaks is removed, and hence one
is able to measure the power produced by the long evolution
of the HMNS, smaller peaks do appear on either side of f2,
and they are close to the f1 or f3 frequencies. It is then pos-
sible that these smaller-amplitude peaks represent the mani-
festation of the nonlinear couplings mentioned above and are
therefore carriers of interesting information on the properties
of the HMNS. Clearly, more work is needed to validate these
results and explore the long-term spectrum of the HMNS.

Another concrete indication that the toy model provides a
good description of the dynamics right after the merger is of-
fered by Fig. 10, whose top panel shows the full numerical-
relativity strain in the + polarization as computed for the bi-
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gion in white) is well defined and with a quasistationary core
(i.e., at t = 10.0ms).

Following this phenomenology, it is possible to build a me-
chanical toy model, whose mathematical details are presented
in Appendix A, in which the object produced right after the
stellar contact is composed of an axisymmetric disk rotating
rapidly at a given angular frequency, say ⌦(t), to which two
spheres are connected (e.g., via a shaft) but are also free to
oscillate via a spring that connects them (see Fig. 17 in Ap-
pendix A). In such a system, the two spheres will either ap-
proach each other, decreasing the moment of inertia of the
system, or move away from each other, increasing the moment
of inertia. Because the total angular momentum is essentially
conserved, the system’s angular frequency will vary between
a minimum value ⌦1 (corresponding to the time when the two
spheres are at the largest separation) and a maximum value
⌦3 (corresponding to the time when the two spheres are at the
smallest separation). The values of ⌦1 and ⌦3 depend nonlin-
early on the properties of the system (i.e., the mass and radius
of the disk, and the mass of the spheres) but are such that
⌦2 = 1

2 (⌦1 + ⌦3), just as f2 ⇡ 1
2 (f1 + f3) in the PSDs we

have computed. Stated differently, the mechanical toy model
considered here will rotate with an angular frequency that is a
function of time and bounded by ⌦1 and ⌦3. Because the time
spent at a given frequency is ⌧⌦ ⌘ ⌦/(d⌦/dt), more time is
obviously spent at the frequencies ⌦(t) = ⌦1 and ⌦(t) = ⌦3,
where d⌦/dt ' 0. As a result, more power is expected to ap-
pear in the GW signal at these frequencies, hence producing
a low-frequency peak around ⌦1 and a high-frequency peak
around ⌦3. If dissipative processes are present, e.g., if the
spring is not ideal and the oscillations are damped, then the
angular frequency will tend secularly to ⌦2, i.e., ⌦(t) = ⌦2

for t ! 1 (cf., Fig. 18 below). As a result, most of the power
in the PSD will appear around ⌦2, with two main sidebands
at ⌦1 and ⌦3. Conversely, if dissipative processes are not
present, then the GW signal will have contributions at fre-
quencies ⌦2 and at its overtones ⌦
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processes a ' sign is needed in the estimate of ⌦2 because
the asymptotic frequency is only approximately the average
of ⌦1 and ⌦3; this is shown in the middle panel of Fig. 18
and reflects the fact that the system is not perfectly balanced.)
Overall, and as we will discuss in more detail in Appendix A,
this toy model can therefore account for both the presence of
the main peak f2 and for the two equally distant sidebands at
f1 and f3.

There is a simple way of testing whether these modes are
coming just from the immediate post-merger phase or are pro-
duced on longer time scales in terms of nonlinear couplings.
This is shown in Fig. 9, which reports again the PSDs for
the five EOSs and for a representative value of the mass,
i.e., M̄ = 1.30M�. Thin solid lines of different colors show
the same PSDs as in Fig. 7, with the two vertical dashed
lines marking the positions of the peak frequencies f1 and f2.
Shown instead with thick solid lines of the same colors are
the PSDs when the waveforms are restricted to the interval
t 2 [609, 5000]M� ⇡ [3.00, 24.63]ms, that is, when the first
3ms after the merger are cut from the time series. Remark-
ably, in this case the f1 and f3 peaks essentially disappear,
while the f2 peaks remain very strong and without consider-
able changes in frequency apart for the very soft EOSs. We
find this result a convincing validation of the correctness of
the toy model and a strong evidence that most of the power in
the f1 and f3 peaks is built essentially over 2-3ms after the
merger.

We should also note that when the dominant contribution
from the initial f1 and f3 peaks is removed, and hence one
is able to measure the power produced by the long evolution
of the HMNS, smaller peaks do appear on either side of f2,
and they are close to the f1 or f3 frequencies. It is then pos-
sible that these smaller-amplitude peaks represent the mani-
festation of the nonlinear couplings mentioned above and are
therefore carriers of interesting information on the properties
of the HMNS. Clearly, more work is needed to validate these
results and explore the long-term spectrum of the HMNS.

Another concrete indication that the toy model provides a
good description of the dynamics right after the merger is of-
fered by Fig. 10, whose top panel shows the full numerical-
relativity strain in the + polarization as computed for the bi-
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FIG. 6. Gravitational waveforms for all the binaries with equal masses and nuclear-physics EOSs as evolved at the reference medium resolution.
Each row refers to a given EOS, while each column concentrates on a given initial mass. The different EOSs are distinguished by different
colors, and we will adopt this color coding also for all the subsequent plots; more details on the various binaries are shown in Table II.

Also in the frequency domain, a rapid scan of the panels
allows one to discern the most important features. First, and
as discussed by several authors [8, 23–27, 66, 70], all PSDs
show a clear and strong peak, i.e., the f2 peak, which, at these
distances, can be 1 order of magnitude or more above the sen-
sitivity curve of the Advanced LIGO detectors. This peak
is clearly related to the rotation of the bar-deformed HMNS
and corresponds, in a corotating frame, to a (quadrupolar)
` = m = 2 mode moving at a positive pattern speed in
the prograde direction [28]4. As we will comment later in
Sec. V E, this mode can be seen to correlate with a number
of properties of the stars comprising the binary, although this
dependence is different for different EOSs and is “universal”
only at a fixed mass.

All of the panels also show the presence of a low-frequency
peak, i.e., the f1 peak, which has already been discussed in

4 As customary, the prograde direction is the direction of rotation of the
HMNS as seen in an inertial frame.

detail in Ref. [28], where it was indicated as f�. This peak
always has a power smaller than that of f2 and it can hap-
pen that if the EOS is particularly soft (e.g., as for the bi-
nary APR4-q10-M1275) or if the mass is particularly small
(e.g., as for the binary SLy-q10-M1250), it is hard to dis-
tinguish it from the background. However, because the peak
is also sitting in a region where the sensitivity of detectors
is higher, it will be detectable at these distances with a SNR
smaller but comparable to that of the f2 peak (cf., Table III).
As remarked in [30], this peak is is produced by the nonlin-
ear oscillations of the two stellar cores that collide and bounce
repeatedly right after the merger. More important, as we will
comment later in Sec. V D, this mode correlates tightly with
the stellar compactness C in a way that is essentially universal,
that is independent of the EOS.

In addition to the f1 and f2 peaks, the PSDs also show the
presence of an additional peak at frequencies higher than f2

(see top left panel of Fig. 7). We have dubbed this peak as
f3 (in Ref. [28] it was instead indicated as f+) and its value
is approximated as f3 ⇠ 2f2 � f1 with a precision of about

Takami, Rezzolla, Baiotti, 2014
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FIG. 7. PSDs 2h̃(f)f1/2 for the equal-mass binaries with nuclear-physics EOS shown in Fig. 6. Solid lines of different colors refer to the
high-passed waveforms, while the dashed lines refer to the full waveforms. Indicated with colored circles are the various contact frequencies
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cont

, while the curves of Advanced LIGO and ET are shown as green and light-blue lines, respectively.

10%. While equally interesting and potentially containing ad-
ditional information on the merging system, this peak is the
one with the least power of the three and is usually located at
very high frequencies, always below the sensitivity curve of
Advanced LIGO. Hence, more sensitive detectors, such as ET,
will be needed to observe this spectral feature even at moder-
ate distances.

B. On the origin of the f

1

and f

3

peaks

It has so far been unclear what is the actual physical ori-
gin of the two frequency peaks f1 and f3. It is possible to
attribute f1 to a nonlinear interaction between the quadrupole
and quasiradial modes [28]; similarly, it is possible that f3
is an overtone or the result of the nonlinear interaction of
the f2 mode with other nonquasiradial modes [28]. These
perturbative suggestions are given substance by the fact that
the f2 peak is, to first approximation, the average of the f1

and f3 frequencies, and it is well known that if a perturbed
system has eigenfrequencies f

i

, the nonlinearity of the equa-

tions will also produce modes at frequencies f

i

± f

j

(see
Sec. 28 of Ref. [76]). On the other hand, the amplitudes of
these nonlinear couplings are usually found to be considerably
smaller than the originating eigenfrequencies (see the discus-
sion in [77]), and our PSDs show instead that the amplitudes
in the f1 � f3 peaks vary by a factor of few and not of orders
of magnitude.

On the other hand, a different interpretation is possible on
the origin of these modes. In this interpretation, which we
suggest here, they are simply produced by the GW emission
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liseconds following the instant when the stars get in contact,
in fact, show that the HMNS attains a quasistationary con-
figuration with a marked bar-mode deformation only ⇠ 5ms
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• Tidal tensors εij of one of the component of the binary induces 
quadrupole moment Qij in the other 

• variation in the quadrupole moment causes GW emission 
• in the adiabatic approximation                                 

• where λ(m) is EoS dependent tidal deformability, k2(m) is the Love 
number and R is the NS radius 

• Just from the scaling this is a 5-PN effect (v/c)10

40

4

Hz [18], the tidal tensors Eij of one component of the
binary will start to induce a significant quadrupole mo-
ment Qij in the other. In the adiabatic approximation,
the two are related by [44, 64, 65]

Qij = ��(m) Eij , (3)

where m is the mass of the neutron star that is experienc-
ing the quadrupole deformation, and the function �(m) is
the tidal deformability, which is determined by the EOS.
The deformations of the two neutron stars in turn a↵ect
the orbital motion, and this is one way in which the EOS
gets imprinted upon the gravitational waveform. The
deformability �(m) is related to the second Love number
k2(m) and the neutron star radius R(m) through �(m) =
(2/3) k2(m)R5(m). Tidal e↵ects only enter the phase
starting at 5PN order [65], but as mentioned before, the

prefactors are sizable (�/M5 / (R/M)5 ⇠ 102 � 105),
which is why we can hope to infer information on the
EOS from the tidal deformation.

The e↵ects of tidal deformations on the orbital motion
were calculated up to 1PN (or 6PN in phase) by Vines,
Flanagan, and Hinderer [44], and more recently to 2.5PN
(or 7.5PN in phase) by Damour, Nagar, and Villain [19].
The latter expression is what we will be using in this
paper; for completeness we reproduce it here. In terms
of the characteristic velocity v = (⇡Mf)1/3, one has

 (v) =  PP(v) + tidal(v), (4)

where  PP(v) is the phase for the inspiral of point parti-
cles, and  tidal(v) is the contribution from tidal e↵ects.
The latter takes the form
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where XA = mA/M , A = 1, 2, and �A = �(mA). We
should note that the calculation leading to this expression
ignores (i) contributions from higher-order multipoles as
these are estimated to give small corrections, and (ii) a
number of as yet unknown functions that appear in the
7PN phase contribution; in [19] these too were argued
to be negligible and we refer to that paper for details.
Contributions to the phase at increasing PN order, for a
BNS system of (1.35, 1.35)M� with a sti↵ (MS1) EOS,
are illustrated in Fig. 4.

For the function �(m), in our simulated signals we will
use quartic polynomial fits to predictions corresponding
to di↵erent EOS from Hinderer et al. [18], with maximum
residuals of ⇠ 0.02 (which will turn out to be negligible
compared to the measurability of �). Examples of such
fits for a soft (labeled SQM3), a moderate (H4), and a
sti↵ EOS (MS1) are shown in Fig. 1.

C. Quadrupole-monopole e↵ects

As mentioned before, tidal e↵ects are not the only way
the EOS enters into the gravitational waveform. If a
neutron star is spinning, it takes on an oblate shape. As-
suming an axisymmetric mass distribution with respect
to the axis of rotation, the deformation can be expressed

to leading order by means of a dimensionless quadrupole
moment parameter q, defined as [50]

q = �5

2
lim
r!1

⇣ r

M

⌘3
Z 1

�1
⌫(r, ✓)P2(cos ✓) d cos ✓, (6)

where P2(x) = (3x2 � 1)/2 is the second Legendre poly-
nomial, and ⌫ is a potential related to the metric of
a stationary axially symmetric body; more specifically,
the line element in the form introduced by Komatsu-
Eriguchi-Hachisu [66] reads:

ds2 = �e�2⌫dt2 + r2 sin2 ✓ e2� (d�� !dt)2

+ e2↵
�
dr2 + r2d✓2

�
, (7)

where the undetermined ↵,�, ⌫ are all functions of (r, ✓).
The quadrupole moment q is the leading-order (1/r3)
coe�cient of the second multipole in the asymptotic ex-
pansion of ⌫(r, ✓) and can be calculated numerically. This
quantity is the general-relativistic equivalent of the New-
tonian mass quadrupole moment.
Since a sti↵er EOS implies a larger neutron star (NS)

radius for a given mass, the quadrupole moment increases
in absolute value with the sti↵ness of the EOS. Examples
of q estimates for di↵erent EOS were calculated numer-
ically in [50] based on the expressions of Ryan [67, 68].
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where XA = mA/M , A = 1, 2, and �A = �(mA). We
should note that the calculation leading to this expression
ignores (i) contributions from higher-order multipoles as
these are estimated to give small corrections, and (ii) a
number of as yet unknown functions that appear in the
7PN phase contribution; in [19] these too were argued
to be negligible and we refer to that paper for details.
Contributions to the phase at increasing PN order, for a
BNS system of (1.35, 1.35)M� with a sti↵ (MS1) EOS,
are illustrated in Fig. 4.
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Post-Newtonian phasing formula has binary M and freq. f together 

So it is possible to scale away cosmological frequency redshift:        
f → f / (1+z) and M → M (1+z) 

The tidal term, on the other hand, cannot be scaled away 

This helps measure neutron star radius and cosmological redshift 
directly from GW observations
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where XA = mA/M , A = 1, 2, and �A = �(mA). We
should note that the calculation leading to this expression
ignores (i) contributions from higher-order multipoles as
these are estimated to give small corrections, and (ii) a
number of as yet unknown functions that appear in the
7PN phase contribution; in [19] these too were argued
to be negligible and we refer to that paper for details.
Contributions to the phase at increasing PN order, for a
BNS system of (1.35, 1.35)M� with a sti↵ (MS1) EOS,
are illustrated in Fig. 4.
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to di↵erent EOS from Hinderer et al. [18], with maximum
residuals of ⇠ 0.02 (which will turn out to be negligible
compared to the measurability of �). Examples of such
fits for a soft (labeled SQM3), a moderate (H4), and a
sti↵ EOS (MS1) are shown in Fig. 1.
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where m is the mass of the neutron star that is experienc-
ing the quadrupole deformation, and the function �(m) is
the tidal deformability, which is determined by the EOS.
The deformations of the two neutron stars in turn a↵ect
the orbital motion, and this is one way in which the EOS
gets imprinted upon the gravitational waveform. The
deformability �(m) is related to the second Love number
k2(m) and the neutron star radius R(m) through �(m) =
(2/3) k2(m)R5(m). Tidal e↵ects only enter the phase
starting at 5PN order [65], but as mentioned before, the

prefactors are sizable (�/M5 / (R/M)5 ⇠ 102 � 105),
which is why we can hope to infer information on the
EOS from the tidal deformation.

The e↵ects of tidal deformations on the orbital motion
were calculated up to 1PN (or 6PN in phase) by Vines,
Flanagan, and Hinderer [44], and more recently to 2.5PN
(or 7.5PN in phase) by Damour, Nagar, and Villain [19].
The latter expression is what we will be using in this
paper; for completeness we reproduce it here. In terms
of the characteristic velocity v = (⇡Mf)1/3, one has

 (v) =  PP(v) + tidal(v), (4)

where  PP(v) is the phase for the inspiral of point parti-
cles, and  tidal(v) is the contribution from tidal e↵ects.
The latter takes the form

 tidal(v) =
3
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where XA = mA/M , A = 1, 2, and �A = �(mA). We
should note that the calculation leading to this expression
ignores (i) contributions from higher-order multipoles as
these are estimated to give small corrections, and (ii) a
number of as yet unknown functions that appear in the
7PN phase contribution; in [19] these too were argued
to be negligible and we refer to that paper for details.
Contributions to the phase at increasing PN order, for a
BNS system of (1.35, 1.35)M� with a sti↵ (MS1) EOS,
are illustrated in Fig. 4.

For the function �(m), in our simulated signals we will
use quartic polynomial fits to predictions corresponding
to di↵erent EOS from Hinderer et al. [18], with maximum
residuals of ⇠ 0.02 (which will turn out to be negligible
compared to the measurability of �). Examples of such
fits for a soft (labeled SQM3), a moderate (H4), and a
sti↵ EOS (MS1) are shown in Fig. 1.

C. Quadrupole-monopole e↵ects

As mentioned before, tidal e↵ects are not the only way
the EOS enters into the gravitational waveform. If a
neutron star is spinning, it takes on an oblate shape. As-
suming an axisymmetric mass distribution with respect
to the axis of rotation, the deformation can be expressed

to leading order by means of a dimensionless quadrupole
moment parameter q, defined as [50]

q = �5

2
lim
r!1

⇣ r

M

⌘3
Z 1

�1
⌫(r, ✓)P2(cos ✓) d cos ✓, (6)

where P2(x) = (3x2 � 1)/2 is the second Legendre poly-
nomial, and ⌫ is a potential related to the metric of
a stationary axially symmetric body; more specifically,
the line element in the form introduced by Komatsu-
Eriguchi-Hachisu [66] reads:

ds2 = �e�2⌫dt2 + r2 sin2 ✓ e2� (d�� !dt)2

+ e2↵
�
dr2 + r2d✓2

�
, (7)

where the undetermined ↵,�, ⌫ are all functions of (r, ✓).
The quadrupole moment q is the leading-order (1/r3)
coe�cient of the second multipole in the asymptotic ex-
pansion of ⌫(r, ✓) and can be calculated numerically. This
quantity is the general-relativistic equivalent of the New-
tonian mass quadrupole moment.
Since a sti↵er EOS implies a larger neutron star (NS)

radius for a given mass, the quadrupole moment increases
in absolute value with the sti↵ness of the EOS. Examples
of q estimates for di↵erent EOS were calculated numer-
ically in [50] based on the expressions of Ryan [67, 68].

plus the quadrupole-monopole interaction
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D. Termination of the waveform at contact

In the recent simulations [25, 26], the waveform was
cut o↵ at a frequency corresponding to the last stable
circular orbit (LSO) in the point particle limit, given by

fLSO =
1

63/2⇡M
. (12)

However, as we shall see below, it will often happen
that the two neutron stars attain physical contact be-
fore the corresponding distance between the components
is reached. In this paper, we instead impose the cuto↵

fcut = min{fLSO, fcontact}, (13)

where, using Kepler’s third law, the “contact frequency”
is given by

fcontact =
1

⇡

✓
M

R(m1) +R(m2)

◆1/2

. (14)

We stress that the termination condition (13) is still
a heuristic one, but it will be more realistic than termi-
nation at fLSO. Moreover, the length of the waveform
itself carries physical information [75], in this case on the
EOS, which we wish to incorporate [84]. On the other
hand, shorter waveforms have a smaller number of cycles
from which information can be extracted; when we come
to the results of our simulations we will see which e↵ect
wins out.

In order to compute the radii R(m1), R(m2), we again
make use of a recently discovered phenomenological re-
lation, this time between the compactness C = m/R and
� [76]:

C = 0.371� 3.91⇥ 10�2 ln
�

m5
+1.056⇥ 10�3

✓
ln

�

m5

◆2

.
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FIG. 4: Phase contributions of the QM e↵ect and tidal e↵ects
up to di↵erent PN orders as functions of GW frequency for
a (1.35, 1.35)M� binary with a sti↵ EOS (MS1). The QM
contribution from each NS scales quadratically with its spin
and is shown here for �1 = �2 = 0.1. The dashed vertical
lines indicate the contact and LSO frequencies.

For a given EOS (i.e a given relationship �(m)), the
above expression gives us R(m), from which the con-
tact frequency (14) is obtained. The relative error in
the compactness (and hence in the radius) due to the fit
of Eq. (15) was found to be at the 2% level, implying a
similar error in the contact frequency.
Fig. 3 shows the dependence of fLSO and fcontact on

component massesm1, m2 for the EOS considered above.
Note how in the astrophysically relevant range mA 2
[1, 2]M�, A = 1, 2, it often happens that fcontact < fLSO,
especially for low masses and for the sti↵er EOS (MS1)
which can support larger neutron star radii.

III. BAYESIAN METHODS FOR INFERRING
THE NEUTRON STAR EQUATION OF STATE

In this section we present two qualitatively di↵erent
Bayesian methods that one may use to acquire informa-
tion on the neutron star equation of state: (i) hypothesis
ranking for di↵erent proposed EOS based on how well
each of them matches the available data, and (ii) the es-
timation of parameters which for a given EOS will be the
same across sources. Both of these allow us to combine
information from multiple detections so as to arrive at a
stronger result. These methods were already explained
in [25]; for completeness we recall the basic ideas.

A. Hypothesis ranking

Given a set of (finitely many) EOS models
{M1,M2, . . . ,MK}, we will be interested in ranking them
in the light of the available data. The ranking process
will be on a set of hypotheses {Hi; i = 1, . . . ,K}, where
Hi states that Mi is the true model for the neutron star

Agathos+,  2015
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D. Termination of the waveform at contact

In the recent simulations [25, 26], the waveform was
cut o↵ at a frequency corresponding to the last stable
circular orbit (LSO) in the point particle limit, given by

fLSO =
1

63/2⇡M
. (12)

However, as we shall see below, it will often happen
that the two neutron stars attain physical contact be-
fore the corresponding distance between the components
is reached. In this paper, we instead impose the cuto↵

fcut = min{fLSO, fcontact}, (13)

where, using Kepler’s third law, the “contact frequency”
is given by

fcontact =
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We stress that the termination condition (13) is still
a heuristic one, but it will be more realistic than termi-
nation at fLSO. Moreover, the length of the waveform
itself carries physical information [75], in this case on the
EOS, which we wish to incorporate [84]. On the other
hand, shorter waveforms have a smaller number of cycles
from which information can be extracted; when we come
to the results of our simulations we will see which e↵ect
wins out.

In order to compute the radii R(m1), R(m2), we again
make use of a recently discovered phenomenological re-
lation, this time between the compactness C = m/R and
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For a given EOS (i.e a given relationship �(m)), the
above expression gives us R(m), from which the con-
tact frequency (14) is obtained. The relative error in
the compactness (and hence in the radius) due to the fit
of Eq. (15) was found to be at the 2% level, implying a
similar error in the contact frequency.
Fig. 3 shows the dependence of fLSO and fcontact on

component massesm1, m2 for the EOS considered above.
Note how in the astrophysically relevant range mA 2
[1, 2]M�, A = 1, 2, it often happens that fcontact < fLSO,
especially for low masses and for the sti↵er EOS (MS1)
which can support larger neutron star radii.

III. BAYESIAN METHODS FOR INFERRING
THE NEUTRON STAR EQUATION OF STATE

In this section we present two qualitatively di↵erent
Bayesian methods that one may use to acquire informa-
tion on the neutron star equation of state: (i) hypothesis
ranking for di↵erent proposed EOS based on how well
each of them matches the available data, and (ii) the es-
timation of parameters which for a given EOS will be the
same across sources. Both of these allow us to combine
information from multiple detections so as to arrive at a
stronger result. These methods were already explained
in [25]; for completeness we recall the basic ideas.

A. Hypothesis ranking

Given a set of (finitely many) EOS models
{M1,M2, . . . ,MK}, we will be interested in ranking them
in the light of the available data. The ranking process
will be on a set of hypotheses {Hi; i = 1, . . . ,K}, where
Hi states that Mi is the true model for the neutron star



S TAT I S T I C A L  A N D  S Y S T E M AT I C  E R R O R S  
O N  C 0

44

14

FIG. 10: The same as in Fig. 9, but now the signals not only
have Gaussian distributed masses, but non-zero spins as well.
Systematic errors remain, and statistical errors have increased
due to the larger parameter space that needs to be probed.

probed by the sampling algorithm.
Finally, we mention that the higher-order coe�cients

c1 and c2 are essentially unmeasurable in all the cases we
considered (with or without a Gaussian mass distribution
or spins); even with 100 sources, the posteriors are not
significantly di↵erent from the priors.

VI. DISCUSSION

We have revisited the question of how well the equa-
tion of state of neutron stars can be measured with obser-
vations of binary neutron star inspirals using Advanced
Virgo and Advanced LIGO. Our starting points were
the Bayesian model selection and parameter estimation
frameworks introduced in our earlier paper [25]. Given a
set of hypotheses associated with a list of di↵erent EOSs
one can calculate the odds ratios for all pairs in the set,
which provides a ranking in which EOSs that are more
similar to the underlying one will tend to come out near
the top, whereas EOSs that di↵er from it signficantly will
get deprecated. Another way to gain information about
the EOS from multiple sources is to model the tidal de-
formability �(m) as a series expansion in (m�m0)/M�
(with m0 some reference mass), which is truncated at
some suitable order. Since the coe�cients in such an ex-
pansion are source-independent, their posterior density
distributions can be combined. For the EOS we con-
sidered a “sti↵” (MS1), “moderate” (H4), and “soft”
(SQM3) equation of state, as well as the point particle
model (PP). In [25] it was found that for m0 = 1.4M�,
the deformability �(m0) could be determined with ⇠ 10%
accuracy by combining information from O(20) sources.
This was confirmed in recent work by Lackey and Wade
[26], who used a qualitatively similar waveform model as
in [25] but implemented a more physical parametrization
of the EOS in terms of piecewise polytropes.

We have significantly extended our earlier study [25],

not only by expanding the number of simulated BNS
sources, but also by incorporating as much of the rele-
vant astrophysics as has been analytically modeled, such
as tidal e↵ects to the highest known order [19], neutron
star spins, the quadrupole-monopole interaction [49, 50],
the impact of possible early waveform termination due
to the finite radii of the neutron stars, and a strongly
peaked Gaussian distribution of the component masses
[51–54].

In order to separate the impact of spins from the other
e↵ects, we first set spins to zero both in injections and
templates (in which case the QM e↵ect is also absent)
while retaining the tidal e↵ects as well as the potentially
earlier termination of the waveform, and looked at hy-
pothesis ranking for MS1 injections. When choosing a
wide, uniform distribution for the component masses,
we saw that, as in [25], EOSs tend to be ordered cor-
rectly according to sti↵ness and similarity to the true
EOS. On the other hand, the log odds ratios between
the incorrect and correct EOSs seemed to stretch to less
negative values, presumably because of early waveform
termination. Nevertheless (and again as in [25]), hy-
pothesis ranking worked well with catalogs of O(20) de-
tected sources. The picture changed dramatically when
the injected mass distribution was taken to be a strongly
peaked Gaussian while keeping the mass prior to be uni-
form and wide as before. In that case & 100 detections
were needed to approach the discernibility of EOS seen
in earlier work. Next we focused on a Gaussian distribu-
tion for the masses, and switched on spins. At least for
MS1 injections, this turned out not to have a significant
additional detrimental e↵ect on our ability to distinguish
between the EOSs. For H4, being in between MS1 and
SQM3 in terms of sti↵ness, we saw that the correct EOS
got ranked above the others a reasonable fraction of the
time, but the internal ordering became less clear. Finally,
for SQM3, even with catalogs of 100 sources only MS1
could be distinguished from the injected EOS reasonably
well, but not H4 or PP.

We also looked at parameter estimation for the coef-
ficients in a series expansion of �(m) in the small quan-
tity (m � m0)/M�, truncated at some suitable order.
Contrary to our earlier work we used a quadratic rather
than a linearized approximation; nevertheless we found
that, here too, only the leading-order coe�cient is mea-
surable. When the signals have a strongly peaked Gaus-
sian mass distribution rather than a flat one, again keep-
ing the wide, flat mass prior, systematic errors are intro-
duced. Switching on spins as additional parameters also
increases the statistical errors.

In the Appendix we investigated the e↵ect on parame-
ter estimation of the prior on the masses. We found that,
if we can assume to have exact knowledge of the astro-
physical distribution of the source masses so that it can
be used as the prior distribution, the biases in the esti-
mation of c0 largely disappear. Recent estimates for this
distribution [51–54] are based on a rather small number
of observed BNS systems and show dependence on the

Agathos+,  2015
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Goal of this work

- Develop analytical time-domain fits of post-merger (Takami, 
Rezzolla, Baiotti, PRL 2014) waveforms and combine them 
with those of pre-merger waveforms. 

- Use these waveforms to estimate errors in BNS parameters, 
including NS EOS parameters.  

- Future work: combine Mtotal estimate from pre-merger phase 
with post-merger spectral features to break Mtotal - redshift 
degeneracy (more relevant for future detectors). [Cf. 
Messenger et al. arXiv:1312.1862v2.]



P R E L I M I N A R Y  R E S U LT S - I

• We have analytically modelled (in black below) NR post-merger 
waveforms (in blue, with emphasis on frequencies f1 and f2 (also 
called fpeak ). 

• This has been done for a set of EOS, e.g., GNH3, H4, ALF2, SLy.

48

EOS:	GNH3,	m1	=	m2	=	1.25	Msun.



P R E L I M I N A R Y  R E S U LT S - I

• We have analytically modelled (in black below) NR post-merger 
waveforms (in blue, with emphasis on frequencies f1 and f2 (also 
called fpeak ). 

• This has been done for a set of EOS, e.g., GNH3, H4, ALF2, SLy.
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EOS:	H4,	m1	=	m2	=	1.325	Msun.



A C C U R A C Y  O F  
M E A S U R E M E N T  O F  

C O M PA C T N E S S

• Above: Statistical error estimates of f_2, and the compaction C deduced 
from it, for 100 post-merger systems distributed uniformly in aLIGO 
volume, with an average distance of 200Mpc and SNR of 8. 

• If component masses can be determined to an accuracy of 10 - 20% from 
the inspiral phase, then the above compaction errors imply that the radius 
will be measured to an accuracy of ~10-20%. (But this is a loose statement 
since masses and radii will vary among the 100 sources.) 

• CAVEAT: At the moment systematic errors between post-merger 
waveforms from different NR groups can be as high as ~10% in estimating 
the compaction. (Compare this to a few percent statistical error listed in 
the table above, arising from detector noise.) 50
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an artists’s impression of ET
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E X T R E M E  G R AV I T Y

Quasi-normal modes and the no-hair theorem 

Dynamical spacetime: Higher modes, 
precessing orbits, Extremal spins… 

GR violations and alternative gravity theories 

Bursts and stochastic background from 
cosmic strings 

Gravitational collapse, supernova
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E X T R E M E  M AT T E R

What are the most compact object in Nature 

Equation of state of neutron star cores 

GRB physics from Binary neutron star observations 

Dynamics of neutron star interiors, tidal 
instabilities 

Nature of Low-mass x-ray binaries
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Mapping the history of black hole formation 

Do gravitational waves see the same universe as light  

Formation and evolution of compact objects 
throughout the Universe  

The chemical content of the Universe from NS-NS and 
NS-BS 

Cosmic string bursts and backgrounds
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S U M M A R Y
• binary neutron star signals are to GW observations as atomic spectra 

are to EM observations 
• signature of nuclear equation of state is imprinted in the inspiral 

and post-merger signal  
• GW amplitude gives us distance and spectra could give us redshift  

• measuring the NS-EoS and radius via GW observations will take  
sometime 
• lack of accurate waveform models and systematic biases 
• unknown distribution of neutron star masses and spins 
• insufficient sensitivity frequencies beyond ~ 500 Hz 
• difficulties with calibration of phase and amplitude of the data 

• third generation detectors, and probably new ideas, are needed to 
impact microphysics from GW observations 

64
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FIG. 1: The tidal deformability parameter �(m) as a func-
tion of neutron star mass for three di↵erent EOS: a soft
one (SQM3), a moderate one (H4), and a sti↵ one (MS1).
Adapted from [18]. Curves are fitted quartic polynomials,
whose residuals are shown in the lower subplot. Only masses
within the unshaded region [1, 2]M� will be considered in our
analyses.

These demonstrated the dependence on the dimension-
less spin �, which for a fixed NS mass can be fit very well
up to the maximum spin value �max (also dependent on
the EOS) by a quadratic rule:

q ' �a�2, (8)

where a = aEOS(m) is a mass-dependent parameter. Fur-
ther evidence to support the quadratic relation Eq. (8) is
given in [69, 70]. The authors of [69, 71] also point out a
spin correction in the identification of multipole moments
that was previously overlooked; this correction preserves
the quadratic spin behaviour of Eq. (8), and vanishes in
the slow-rotation limit. Assuming that this relation will
hold for any EOS, we will only be concerned with the
spin-independent parameter a which, similar to the tidal
deformability parameter �, has a functional dependence
on the neutron mass that is determined by the EOS.

The e↵ect of such a quadrupole moment on the grav-
itational waveform emitted by a binary system was de-
rived in [49]. To Newtonian order it introduces an ad-
ditional coupling in the e↵ective gravitational potential,
between the mass quadrupole of each spinning neutron
star and the mass of its companion, whence the name
“quadrupole-monopole (QM) e↵ect”. In the stationary
phase approximation, the additional contribution to the
GW phase due to the QM interaction reads:

 QM(v) = � 30

128⌘
�QMv�1, (9)

making it of 2PN order in phase. The parameter �QM

FIG. 2: The quadrupole parameter a(m) as a function of neu-
tron star mass for the three di↵erent EOSs in Fig. 1. The hor-
izontal dashed line indicates the value for black holes, which is
a = 1 [74]. Only masses within the unshaded region [1, 2]M�
will be considered in our analyses.

depends on masses and spins through

�QM =� 5
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where the unit vectors �̂A are the direction of the spins.
In the last line we used the rule (8); we see that with
this assumption,  QM(v) is quadratic in the component
spins. Finally, note that in the case of (anti-)aligned
spins, which we will assume throughout, 3(�̂A · L̂)2�1 =
2.
As mentioned above, in our simulations we will use

predictions for �(m) corresponding to di↵erent EOSs
from [18]. In order to compute a(m), we make use of
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tion [72, 73], which is believed to hold irrespective of the
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The relative fractional errors due to the universal fit were
estimated in [73] for several EOSs to be at the 1% level.
Together with Eqs. (10) and (9), this then allows us to
compute the QM contribution to the phase. Fig. 2 shows
a(m) for the EOSs in Fig. 1. QM contributions to the
phase are expected to be subdominant compared to the
tidal e↵ects of Sec. II B, even for relatively fast spinning
NS, as shown in Fig. 4.

The tidal deformability parameter λ(m) as a function of neutron star mass for three 
different EOS: a soft one (SQM3), a moderate one (H4), and a stiff one (MS1). Adapted 
from [18]. Curves are fitted quartic polynomials, whose residuals are shown in the lower 
subplot. Only masses within the unshaded region [1, 2]M⊙ will be considered in our 
analyses. 
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FIG. 1: The tidal deformability parameter �(m) as a func-
tion of neutron star mass for three di↵erent EOS: a soft
one (SQM3), a moderate one (H4), and a sti↵ one (MS1).
Adapted from [18]. Curves are fitted quartic polynomials,
whose residuals are shown in the lower subplot. Only masses
within the unshaded region [1, 2]M� will be considered in our
analyses.

These demonstrated the dependence on the dimension-
less spin �, which for a fixed NS mass can be fit very well
up to the maximum spin value �max (also dependent on
the EOS) by a quadratic rule:

q ' �a�2, (8)

where a = aEOS(m) is a mass-dependent parameter. Fur-
ther evidence to support the quadratic relation Eq. (8) is
given in [69, 70]. The authors of [69, 71] also point out a
spin correction in the identification of multipole moments
that was previously overlooked; this correction preserves
the quadratic spin behaviour of Eq. (8), and vanishes in
the slow-rotation limit. Assuming that this relation will
hold for any EOS, we will only be concerned with the
spin-independent parameter a which, similar to the tidal
deformability parameter �, has a functional dependence
on the neutron mass that is determined by the EOS.

The e↵ect of such a quadrupole moment on the grav-
itational waveform emitted by a binary system was de-
rived in [49]. To Newtonian order it introduces an ad-
ditional coupling in the e↵ective gravitational potential,
between the mass quadrupole of each spinning neutron
star and the mass of its companion, whence the name
“quadrupole-monopole (QM) e↵ect”. In the stationary
phase approximation, the additional contribution to the
GW phase due to the QM interaction reads:

 QM(v) = � 30

128⌘
�QMv�1, (9)

making it of 2PN order in phase. The parameter �QM

FIG. 2: The quadrupole parameter a(m) as a function of neu-
tron star mass for the three di↵erent EOSs in Fig. 1. The hor-
izontal dashed line indicates the value for black holes, which is
a = 1 [74]. Only masses within the unshaded region [1, 2]M�
will be considered in our analyses.
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Together with Eqs. (10) and (9), this then allows us to
compute the QM contribution to the phase. Fig. 2 shows
a(m) for the EOSs in Fig. 1. QM contributions to the
phase are expected to be subdominant compared to the
tidal e↵ects of Sec. II B, even for relatively fast spinning
NS, as shown in Fig. 4.
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where the unit vectors �̂A are the direction of the spins.
In the last line we used the rule (8); we see that with
this assumption,  QM(v) is quadratic in the component
spins. Finally, note that in the case of (anti-)aligned
spins, which we will assume throughout, 3(�̂A · L̂)2�1 =
2.
As mentioned above, in our simulations we will use

predictions for �(m) corresponding to di↵erent EOSs
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estimated in [73] for several EOSs to be at the 1% level.
Together with Eqs. (10) and (9), this then allows us to
compute the QM contribution to the phase. Fig. 2 shows
a(m) for the EOSs in Fig. 1. QM contributions to the
phase are expected to be subdominant compared to the
tidal e↵ects of Sec. II B, even for relatively fast spinning
NS, as shown in Fig. 4.
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one (SQM3), a moderate one (H4), and a sti↵ one (MS1).
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within the unshaded region [1, 2]M� will be considered in our
analyses.
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where the unit vectors �̂A are the direction of the spins.
In the last line we used the rule (8); we see that with
this assumption,  QM(v) is quadratic in the component
spins. Finally, note that in the case of (anti-)aligned
spins, which we will assume throughout, 3(�̂A · L̂)2�1 =
2.
As mentioned above, in our simulations we will use

predictions for �(m) corresponding to di↵erent EOSs
from [18]. In order to compute a(m), we make use of
the recently discovered phenomenological Love-Q rela-
tion [72, 73], which is believed to hold irrespective of the
EOS:
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The relative fractional errors due to the universal fit were
estimated in [73] for several EOSs to be at the 1% level.
Together with Eqs. (10) and (9), this then allows us to
compute the QM contribution to the phase. Fig. 2 shows
a(m) for the EOSs in Fig. 1. QM contributions to the
phase are expected to be subdominant compared to the
tidal e↵ects of Sec. II B, even for relatively fast spinning
NS, as shown in Fig. 4.
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FIG. 3: The frequencies fLSO and fcontact as functions of m1,
m2 for the EOS shown in Fig. 1.

D. Termination of the waveform at contact

In the recent simulations [25, 26], the waveform was
cut o↵ at a frequency corresponding to the last stable
circular orbit (LSO) in the point particle limit, given by

fLSO =
1

63/2⇡M
. (12)

However, as we shall see below, it will often happen
that the two neutron stars attain physical contact be-
fore the corresponding distance between the components
is reached. In this paper, we instead impose the cuto↵

fcut = min{fLSO, fcontact}, (13)

where, using Kepler’s third law, the “contact frequency”
is given by

fcontact =
1

⇡

✓
M
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◆1/2

. (14)

We stress that the termination condition (13) is still
a heuristic one, but it will be more realistic than termi-
nation at fLSO. Moreover, the length of the waveform
itself carries physical information [75], in this case on the
EOS, which we wish to incorporate [84]. On the other
hand, shorter waveforms have a smaller number of cycles
from which information can be extracted; when we come
to the results of our simulations we will see which e↵ect
wins out.

In order to compute the radii R(m1), R(m2), we again
make use of a recently discovered phenomenological re-
lation, this time between the compactness C = m/R and
� [76]:

C = 0.371� 3.91⇥ 10�2 ln
�

m5
+1.056⇥ 10�3

✓
ln

�

m5

◆2

.

(15)

0 500 1000 1500

-50

-40

-30

-20

-10

0

f @HzD

D
Y
@rad
D

fcontact fLSO

Tidal 2.5PN

Tidal 2PN

Tidal 1.5PN

Tidal 1PN

Tidal Newt.

QM Hc1=c2=0.1L

FIG. 4: Phase contributions of the QM e↵ect and tidal e↵ects
up to di↵erent PN orders as functions of GW frequency for
a (1.35, 1.35)M� binary with a sti↵ EOS (MS1). The QM
contribution from each NS scales quadratically with its spin
and is shown here for �1 = �2 = 0.1. The dashed vertical
lines indicate the contact and LSO frequencies.

For a given EOS (i.e a given relationship �(m)), the
above expression gives us R(m), from which the con-
tact frequency (14) is obtained. The relative error in
the compactness (and hence in the radius) due to the fit
of Eq. (15) was found to be at the 2% level, implying a
similar error in the contact frequency.
Fig. 3 shows the dependence of fLSO and fcontact on

component massesm1, m2 for the EOS considered above.
Note how in the astrophysically relevant range mA 2
[1, 2]M�, A = 1, 2, it often happens that fcontact < fLSO,
especially for low masses and for the sti↵er EOS (MS1)
which can support larger neutron star radii.

III. BAYESIAN METHODS FOR INFERRING
THE NEUTRON STAR EQUATION OF STATE

In this section we present two qualitatively di↵erent
Bayesian methods that one may use to acquire informa-
tion on the neutron star equation of state: (i) hypothesis
ranking for di↵erent proposed EOS based on how well
each of them matches the available data, and (ii) the es-
timation of parameters which for a given EOS will be the
same across sources. Both of these allow us to combine
information from multiple detections so as to arrive at a
stronger result. These methods were already explained
in [25]; for completeness we recall the basic ideas.

A. Hypothesis ranking

Given a set of (finitely many) EOS models
{M1,M2, . . . ,MK}, we will be interested in ranking them
in the light of the available data. The ranking process
will be on a set of hypotheses {Hi; i = 1, . . . ,K}, where
Hi states that Mi is the true model for the neutron star


