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Numerical simulations
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Powerful tools... but they don't come for free.



Numerical methods

Besides physical research, there is research on better numerical methods.
An ideal numerical scheme should be:

- Accurate - Parallelizable

- Fast - Scalable

. and hopefully easy to implement.



Euler equations

The relativistic Euler equations: Several issues arise when solving
these equations, stemming from

Viu(put) =0 their non-linearity, most importantly

Ut + ihP“VV;LP -0 the generation of shocks.
p
u'V,e+ phV, u" =0,

where h = (e + p)/p and b
P, = guv + uyu,, closed by an EoS

p = P(P, e)'

Cast them into a flux-conservative o
formulation (the “Valencia

formulation”):

0.U+0,F =§.



High-resolution shock-capturing techniques

The standard way: use of HRSC techniques to preserve stability without
sacrificing accuracy. HRSC methods feature:

— second order of accuracy (or higher)
— sharp resolution of discontinuities

— no oscillations

e.g. PPM, ENO, WENO, MP5. ..

However successful, these methods can potentially suffer from a few
shortcomings. . .



ELH: entropy limited hydrodynamics

Flux-limiter approach

fiy1/2 = 9’(/'1?/2 +(1- 9)":'5:;/2

fii?m is a high order, but unfiltered f,.frFl/Q is the Lax-Friedrichs flux,
approximation of the flux which is only first order but stable
We want:

0 {1 when the flow is smooth

0 in troubled regions

With v € [0,1] a troubled cell indicator, we define therefore:
0 = min[0,1— 1]

where @ guarantees the positivity of the density.



Entropy viscosity

Consider the physical specific entropy s, which for the ideal-gas EoS
p= (F — 1)p6 equals s = log (pr;_l)

The second principle of thermodynamics can be written:
R =V,(spu")>0

Therefore one expects the entropy production rate (or entropy residual) R
to be a Dirac delta centered at the location of shocks, R = §(x — x°).

This suggests to define the viscosity as proportional to the entropy
residual:

Entropy viscosity

V= min[CeA|R|, CmaX]

Note the presence of two arbitrary constants, c. and Cpax-



Implementation: the WhiskyTHC code

t=10 ]

We implemented the ELH
scheme in the WhiskyTHC code
(Radice et al.), which features:

- finite differences flux
reconstruction. ..

- applied to components or
characteristics variables. . .

- with upwinding;

- a positivity preserving
limiter.




Implementation: entropy viscosity

In the 341 decomposition of GR, one can write:

ds? = —a?dt? + ~;(dx" + B'dt)(dx + Fdt)

U
w ) .
o A [0rs + (av' — B')0;s]

@
Computed by 2nd order Computed by nth+1 order
one-sided central finite-differences, e.g. :
finite-differences on the 1 5 5
past timelevels: Oxs = Esi—z—gsi—1+§si+1—ﬁsi+2

1

Os = —2At(35"745”*1+5"*2)




Tests: smooth wave
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Figure 1: Density
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profiles at initial time and t = 1.55

A non-linear, smooth
hydrodynamical wave,
propagating to the
right and tilting in
the direction of its
motion, until a
caustic is produced.



Tests: smooth wave

T T T

H — EL7
— MP5

1 sl |

log(||Error||1)
Convergence order
o
T
!

4+ N
_12 L . 5 . . . .
102 10° 10* —1.6 —1.2 —0.8 —0.4 0.0
N. of Grid points t—to
Figure 2: Li-norm of the error at time Figure 3: Convergence order as function
g
t=20.8 of time to caustic

10



Sod’s relativistic shock tube test, with initial data:

(pr,vr, pr) = (0.125,0,0.1).

(pr,vi, pr) = (1,0,1),

t=0.6
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Figure 4: Density, velocity and pressure profiles at time t = 0.8

Tests: shock tube
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Tests: Cowling TOV

TOV star in the Cowling approximation (i.e. the spacetime is fixed, only

the matter is evolved).
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Figure 5: Viscosity distribution on xy
plane at t = 4500 Mg
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Figure 6: Density distribution on xy

plane at t = 4500 My e



Cowling TOV
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Figure 7: Baryonic mass conservation violation and evolution of the central density
as a function of time
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Tests: dynamical TOV
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Figure 8: Continuous lines: Power spectral density of the central density evolution.
Dashed lines: physical oscillation eigenfrequencies
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Tests: migration test
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Figure 9: Density distribution on xy plane at t = 1167 Mg (i.e. during the 7th
contraction cycle)
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Tests: migration test
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Figure 10: Central density evolution Figure 11: Central density evolution,

zoom on the first maximum. Thick lines:
low resolution; Thin lines: high resolution
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Tests: rotating star
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Figure 12: Density distribution on xy plane at t = 4300 M,
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Tests: collapse to a black hole
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Figure 15: From the top: central density, Figure 16: Black hole mass evolution
minimum lapse and Hamiltonian constraint as

function of time 18



Conclusions

The entropy limited hydrodynamics scheme is an interesting, robust
alternative to the common HRSC schemes. It addresses the issues of

— Accuracy
— Speed
— Ease of implementation and extendability

with no tuning of the free parameters.
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Future prospects
- application to binary neutron stars with nuclear equation of state
- exploit the simplicity of the scheme to efficiently run on MICs/GPUs
- coupling to discontinuous Galerkin scheme

+ use of truly multidimensional methods
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Conclusions

The entropy limited hydrodynamics scheme is an interesting, robust
alternative to the common HRSC schemes. It addresses the issues of

— Accuracy
— Speed
— Ease of implementation and extendability

with no tuning of the free parameters.

Future prospects
- application to binary neutron stars with nuclear equation of state
- exploit the simplicity of the scheme to efficiently run on MICs/GPUs
- coupling to discontinuous Galerkin scheme

+ use of truly multidimensional methods

Thank you!
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