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Numerical simulations

Powerful tools... but they don’t come for free.
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Numerical methods

Besides physical research, there is research on better numerical methods.

An ideal numerical scheme should be:

· Accurate

· Fast

· Parallelizable

· Scalable

... and hopefully easy to implement.
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Euler equations

The relativistic Euler equations:

∇µ(ρuµ) = 0

uµ∇µuν +
1

ρh
Pµν∇µp = 0

uµ∇µe + ρh∇µuµ = 0 ,

where h = (e + p)/ρ and

Pµν = gµν + uµuν , closed by an EoS

p = p(ρ, e).

Cast them into a flux-conservative

formulation (the “Valencia

formulation”):

∂tU + ∂iF i = S .

Several issues arise when solving

these equations, stemming from

their non-linearity, most importantly

the generation of shocks.
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High-resolution shock-capturing techniques

The standard way: use of HRSC techniques to preserve stability without

sacrificing accuracy. HRSC methods feature:

– second order of accuracy (or higher)

– sharp resolution of discontinuities

– no oscillations

e.g. PPM, ENO, WENO, MP5. . .

However successful, these methods can potentially suffer from a few

shortcomings. . .
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ELH: entropy limited hydrodynamics

Flux-limiter approach

fi+1/2 = θf HOi+1/2 + (1− θ)f LFi+1/2

f HOi+1/2 is a high order, but unfiltered

approximation of the flux

f LFi+1/2 is the Lax-Friedrichs flux,

which is only first order but stable

We want:

θ '

{
1 when the flow is smooth

0 in troubled regions

With ν ∈ [0, 1] a troubled cell indicator, we define therefore:

θ = min[θ̃, 1− ν]

where θ̃ guarantees the positivity of the density.
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Entropy viscosity

Consider the physical specific entropy s, which for the ideal-gas EoS

p = (Γ− 1)ρε equals s = log
(

ε
ρΓ−1

)
.

The second principle of thermodynamics can be written:

R = ∇µ(sρuµ) ≥ 0

Therefore one expects the entropy production rate (or entropy residual) R

to be a Dirac delta centered at the location of shocks, R = δ(x− xs).

This suggests to define the viscosity as proportional to the entropy

residual:

Entropy viscosity

ν = min[ce∆|R|, cmax ]

Note the presence of two arbitrary constants, ce and cmax .
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Implementation: the WhiskyTHC code

We implemented the ELH

scheme in the WhiskyTHC code

(Radice et al.), which features:

· finite differences flux

reconstruction. . .

· applied to components or

characteristics variables. . .

· with upwinding;

· a positivity preserving

limiter.
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Implementation: entropy viscosity

In the 3+1 decomposition of GR, one can write:

ds2 = −α2dt2 + γij(dx
i + βidt)(dx j + βjdt)

⇓

R =
ρW

α

[
∂ts + (αv i − βi )∂i s

]
Computed by 2nd order

one-sided

finite-differences on the

past timelevels:

∂ts =
1

2∆t
(3sn−4sn−1+sn−2)

Computed by nth+1 order

central finite-differences, e.g. :

∂xs =
1

12
si−2−

2

3
si−1+

2

3
si+1−

1

12
si+2
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Tests: smooth wave
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Figure 1: Density profiles at initial time and t = 1.55

A non-linear, smooth

hydrodynamical wave,

propagating to the

right and tilting in

the direction of its

motion, until a

caustic is produced.

9



Tests: smooth wave
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Figure 2: L1-norm of the error at time

t = 0.8
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Figure 3: Convergence order as function

of time to caustic
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Tests: shock tube

Sod’s relativistic shock tube test, with initial data:

(ρl , vl , pl) = (1, 0, 1), (ρr , vr , pr ) = (0.125, 0, 0.1).
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Figure 4: Density, velocity and pressure profiles at time t = 0.8
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Tests: Cowling TOV

TOV star in the Cowling approximation (i.e. the spacetime is fixed, only

the matter is evolved).
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Figure 5: Viscosity distribution on xy

plane at t = 4500 M�
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Figure 6: Density distribution on xy

plane at t = 4500 M�
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Tests: Cowling TOV
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Figure 7: Baryonic mass conservation violation and evolution of the central density

as a function of time
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Tests: dynamical TOV
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Figure 8: Continuous lines: Power spectral density of the central density evolution.

Dashed lines: physical oscillation eigenfrequencies
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Tests: migration test
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Figure 9: Density distribution on xy plane at t = 1167 M� (i.e. during the 7th

contraction cycle)
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Tests: migration test

0 200 400 600 800 1000 1200

t [M�]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

ρ
/
ρ

0
,m

a
x
−

1

MP5
EL5

Figure 10: Central density evolution
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Figure 11: Central density evolution,

zoom on the first maximum. Thick lines:

low resolution; Thin lines: high resolution
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Tests: rotating star
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Figure 12: Density distribution on xy plane at t = 4300 M�
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Figure 13: Baryonic mass conservation violation and evolution of the central density as a

function of time
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Tests: collapse to a black hole
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Figure 14: Density distribution on xy plane at t = 61 M� (i.e. just after collapse)
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Figure 15: From the top: central density,

minimum lapse and Hamiltonian constraint as

function of time
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Figure 16: Black hole mass evolution
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Conclusions

The entropy limited hydrodynamics scheme is an interesting, robust

alternative to the common HRSC schemes. It addresses the issues of

– Accuracy

– Speed

– Ease of implementation and extendability

with no tuning of the free parameters.

Future prospects

· application to binary neutron stars with nuclear equation of state

· exploit the simplicity of the scheme to efficiently run on MICs/GPUs

· coupling to discontinuous Galerkin scheme

· use of truly multidimensional methods

Thank you!
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