
Analytical solutions and attractors of higher-order
viscous hydrodynamics for Bjorken flow

Amaresh Jaiswal

NISER Bhubaneswar, India

From QCD matter to hadrons
Hirschegg 2019

January 18, 2019

Collaborators: Chandrodoy Chattopadhyay, Sunil Jaiswal, Subrata Pal
(To appear on arXiv soon)

Amaresh Jaiswal Hirschegg 2019 1



Relativistic ideal fluids

The energy-momentum tensor of an ideal fluid can be written in
terms of the available tensor degrees of freedom:

Tµν
(0) = c1u

µuν + c2g
µν

In local rest frame, i.e., uµ = (1, 0, 0, 0),

Tµν
(0) = diag(ε, P, P, P)⇒ c1 = ε+ P, c2 = −P.

Energy-momentum tensor for the ideal fluid, Tµν
(0) is

Tµν
(0) = εuµuν − P∆µν ; ∆µν = gµν − uµuν

∆µνuµ = ∆µνuν = 0 and ∆µν∆α
ν = ∆µα, hence serves as a

projection operator on the space orthogonal to the fluid velocity uµ.

Similarly, Nµ
(0) = nuµ.

Fluids are in general dissipative; dissipation needs to be included.
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Ideal and dissipative hydrodynamics

Dissipation can be included in the energy momentum tensor and
conserved current as

Tµν = Tµν
(0) − Π∆µν + πµν ; Nµ = Nµ

(0) + nµ

Ideal Dissipative

Tµν = εuµuν − P∆µν Tµν = εuµuν − (P + Π)∆µν + πµν

Nµ = nuµ Nµ = nuµ + nµ

Unknowns: ε, P, n, uµ︸ ︷︷ ︸
1+1+ 1+ 3

= 6 ε, P, n, uµ, Π, πµν , nµ︸ ︷︷ ︸
1+1+ 1 + 3 + 1 + 5 + 3

= 15

Equations: ∂µT
µν = 0, ∂µN

µ = 0, EOS︸ ︷︷ ︸
4 + 1 + 1

= 6

Closed set of equations 9 more equations required

Landau frame chosen: Tµνuν = εuµ.
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Dissipative equations [L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 1987]

Second law in covariant form: ∂µS
µ ≥ 0, where

Sµ = s uµ ; s =
ε+ P − µn

T
.

Demanding second-law from this entropy current,

Π = −ζθ, nα = λT∇α(µ/T ), πµν = 2η∇〈µuν〉,

where,

θ ≡ ∂µuµ, ∇α ≡ ∆αβ∂β, ∇〈µuν〉 ≡ (∇µuν+∇νuµ)/2−∆µνθ/3.

The transport coefficients η, ζ, λ ≥ 0.

In the non-relativistic limit, above equations reduces to the
Navier-Stokes equations.

Beautiful and simple but flawed! Exhibits acausal behavior.
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Maxwell-Cattaneo law

One possible way out is the “Maxwell-Cattaneo” law,

τππ̇
〈µν〉 + πµν = 2η∇〈µuν〉.

A relaxation-type equation with relaxation time τπ: restores causality.

Brings rich structure to the evolution.

Consider Bjorken flow with π ≡ −τ2πηη, π̄ ≡ π/(ε+ P). Energy
conservation and shear evolution:

1

ετ4/3
d(ετ4/3)

dτ
=

4

3

π̄

τ
,

d π̄

dτ
+
π̄

τπ
=

4

15τ
.

Can be solved analytically for constant τπ to give

π̄ = e−τ/τπ
∫

4eτ/τπ

15τ
dτ + α e−τ/τπ ,

where α is constant of integration.

Existence of attractor behaviour:
d π̄

dα
= e−τ/τπ .
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Attractor behaviour for Maxwell-Cattaneo equation
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Proper time evolution of π̄ for Maxwell-Cattaneo equation.
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Attractors in hydrodynamics and microscopic theories

Attractors and its implications were first explored in [Heller and Spalinski,

Phys. Rev. Lett. 115 (7), 072501 (2015); 1503.07514].

Attractors can be found in a variety of settings including AdS/CFT
simulations of non-equilibrium dynamics, simple kinetic models, and
QCD- based kinetic approaches [Romatschke Phys. Rev. Lett. 120 (2018)

012301; Spalinski, Phys. Lett. B776 (2018) 468; Denicol and Noronha, 1711.01657;

Strickland, JHEP2018, 128; 1809.01200].

More about attractors and its implications on applicability of
hydrodynmaics: see Mike’s talk today.
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Second-order hydrodynamics from kinetic theory

Variants of Maxwell-Cattaneo equation can be derived from kinetic
theory for a system close to equilibrium, f = f0 + δf .

Tµν(x) =

∫
dp pµpν f (x , p), πµν = ∆µν

αβ

∫
dp pαpβ δf .

Boltzmann equation in the relxn. time approx. is solved iteratively:

pµ∂µf = −u · p
τR

(f − f0) ⇒ f = f0 − (τR/u · p) pµ∂µf

Expand f about its equilibrium value: f = f0 + δf (1) + δf (2) + · · · ,

δf (1) = − τR
u · p

pµ∂µf0 , δf (2) =
τR
u · p

pµpν∂µ
( τR
u · p

∂ν f0
)
.

Substituting δf = δf (1) + δf (2) [AJ, PRC 87, 051901(R) (2013)],

π̇〈µν〉 +
πµν

τπ
= 2βπσ

µν − 4

3
πµνθ + 2π〈µγ ω

ν〉γ − 10

7
π〈µγ σ

ν〉γ , βπ =
4P

5
.

[G. S. Denicol, T. Koide and D. H. Rischke, PRL 105, 162501 (2010)]
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Higher-order hydrodynamics

Third-order equation for shear stress tensor [AJ, PRC 88, 021903(R) (2013)]:

π̇〈µν〉=− πµν

τπ
+ 2βπσ

µν + 2π〈µγ ω
ν〉γ − 10

7
π〈µγ σ

ν〉γ − 4

3
πµνθ−10

63
πµνθ2

+τπ

[
50

7
πρ〈µων〉γσργ −

76

245
πµνσργσργ −

44

49
πρ〈µσν〉γσργ

−2

7
πρ〈µων〉γωργ −

2

7
ωρ〈µων〉γπργ +

26

21
π〈µγ ω

ν〉γθ − 2

3
π〈µγ σ

ν〉γθ

]
−24

35
∇〈µ

(
πν〉γ u̇γτπ

)
+

6

7
∇γ
(
τπu̇

γπ〈µν〉
)

+
4

35
∇〈µ

(
τπ∇γπν〉γ

)
−2

7
∇γ
(
τπ∇〈µπν〉γ

)
− 1

7
∇γ
(
τπ∇γπ〈µν〉

)
+

12

7
∇γ
(
τπu̇
〈µπν〉γ

)
.

Improved accuracy compared to second-order equations.

Neccessary for incorporation of colored noise in fluctuating hydro
evolution [J. Kapusta and C. Young, Phys. Rev. C 90, 044902 (2014)].
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Third-order theory: A better description of microscopics
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Bjorken flow

For boost-invariant longitudinal expansion, v z = z
t , v x = v y = 0.

Milne coordinate system: proper time τ =
√
t2 − z2 and space-time

rapidity ηs = tanh−1(z/t).

dε

dτ
= −1

τ

(
4

3
ε− π

)
,

dπ

dτ
= − π

τπ
+

1

τ

[
4

3
βπ −

(
λ+

4

3

)
π − χπ

2

βπ

]
,

The coefficients are: βπ =
4P

5
, λ =

10

21
, χ =

72

245
.

In terms of normalized shear stress π̄ ≡ π/(ε+ P),

1

ετ4/3
d(ετ4/3)

dτ
=

4

3

π̄

τ
,

d π̄

dτ
= − π̄

τπ
+

1

τ

(
a− λπ̄ − γπ̄2

)
where a = 4/15 , γ = 5χ+ (4/3) = 412/147 and τπ ∝ 1/T .
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Case 1: Analytical solutions for constant relaxation time

The equation to be solved:
d π̄

dτ
= − π̄

τπ
+

1

τ

(
a− λπ̄ − γπ̄2

)
.

Assume a constant relaxation time [Denicol and Noronha arXiv:1711.01657].

Make variable transformation:
1

y

dy

dτ
= γ

π̄

τ
⇒ π̄ =

τ

γy

dy

dτ
.

To obtain a linear ODE:
d2y

dτ2
+

(
1 + λ

τ
+

1

τπ

)
dy

dτ
− aγ

τ2
y = 0.

Solution in terms of Whittaker functions Mk,m(τ) and Wk,m(τ):

π̄(τ) =
(2k + 2m + 1)Mk+1,m(τ/τπ)− 2αWk+1,m(τ/τπ)

2γ [Mk,m(τ/τπ) + αWk,m(τ/τπ)]
,

where k = −λ+1
2 , m = 1

2

√
4aγ + λ2 and α is constant of integration.
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Emergent attractor behavior

To prove the existence of attractor, we look at late time behavior of
the analytical solution.

We find that for large τ
∂π̄

∂α
∝ e−τ

τ̂
.

The information of initial state is damped exponentially: suggestive of
attractor behaviour.

Next we find the attractor solution.

We propose that the attractor solution corresponds to the value of α
for which

lim
τ→0

∂π̄

∂α
=∞.
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Results for constant relaxation time
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Case 2: Temperature from ideal hydrodynamic evolution

The equation to be solved:
d π̄

dτ
= − π̄

τπ
+

1

τ

(
a− λπ̄ − γπ̄2

)
.

From kinetic theory, τπ = 5
(η
s

) 1

T
.

To be absolutely consistent, one should consider the temperature

evolution from:
1

ετ4/3
d(ετ4/3)

dτ
=

4

3

π̄

τ

We approximate the temperature evolution from ideal hydro evolution.

τT 3 = const. ⇒ T = T0

(τ0
τ

)1/3
⇒ τπ =

τ1/3

c
, where c =

T0τ
1/3
0

5(η/s)
.

We make successive change of variables x3 = τ and
1

y

dy

dx
= 3γ

π̄

x
to

obtain the linear ODE

d2y

dx2
+

(
3λ+ 1

x
+ 3cx

)
dy

dx
− 9aγ

x2
y = 0.
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Case 2: Analytical solution

The solution is obtained in terms of the Kummer (confluent)
Hypergeometric functions:

π̄(τ) = − 2m + λ

2γ
+

[
8mτ2m 1F1

(
3

4
(2m − λ); 1 + 3m;−3c

2
τ2/3

)
− 3c(2m − λ)

1 + 3m
τ2/3+2m

1F1

(
1 +

3

4
(2m − λ); 2 + 3m;−3c

2
τ2/3

)
+ α3c(2m + λ)τ2/3 1F1

(
1− 3

4
(2m + λ); 2− 3m;−3c

2
τ2/3

)]/
[

4γτ2m 1F1

(
3

4
(2m − λ); 1 + 3m;−3c

2
τ2/3

)
+ 4γα 1F1

(
−3

4
(2m + λ); 1− 3m;−3c

2
τ2/3

)]
.

Here α is the constant of integration.
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Results for Case 2
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Case 3: Temperature from vsicous hydro evolution

The equation to be solved:
d π̄

dτ
= − π̄

τπ
+

1

τ

(
a− λπ̄ − γπ̄2

)
.

From kinetic theory, τπ = 5
(η
s

) 1

T
.

We approximate the temperature evolution from Navier-Stokes
viscous hydro evolution.

T = T0

(τ0
τ

)1/3 [{
1 +

2(η/s)

3τ0T0

}
− 2(η/s)

3τ0T0

(τ0
τ

)2/3]
.

The relaxation time can then be obtained as

τπ =
τ

c1τ2/3 − c2
where c1 =

T0τ
1/3
0

5(η/s)
+

2

15τ
2/3
0

, c2 =
2

15

We again make successive change of variables x3 = τ and
1

y

dy

dx
= 3γ

π̄

x
to obtain the linear ODE which is formally similar to

that in the previous case and therefore analytically solvable.
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Results for Case 3
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Case 4: Constant Knudsen number

The equation to be solved:
d π̄

dτ
= − π̄

τπ
+

1

τ

(
a− λπ̄ − γπ̄2

)
.

We consider constant Knudsen number,
τπ
τ

= f .

The equations reduces to

d π̄

dτ
=

1

τ

[
a−

(
λ+

1

f

)
π̄ − γπ̄2

]
The above equation is variable separable for which the solution is

π̄(τ) =
−1− f λ+ z tanh

(
z(αf+log(τ))

2f

)
2γf

where z =
√

4aγf 2 + (1 + f λ)2 and α is the constant of integral.
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Solutions for constant Knudsen number case
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The solutions do not converge to Navier-Stokes solution.
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Summary and outlook

Analytical solutions of third-order ‘hydrodynamics’ for Bjorken
expansion for several cases.

Criteria for existence of attractor behaviour.

Citeria for identifying the attractor solution.

One can further look for convergence/divergence of gradient
expansion and slow roll approximation in these cases.
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