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Relativistic ideal fluids
@ The energy-momentum tensor of an ideal fluid can be written in
terms of the available tensor degrees of freedom:
p
T(o) = cutu” + gt
@ In local rest frame, i.e., u* = (1, 0, 0, 0),
T(g; = diag(e, P, P, P) = c1=¢+ P, co = —P.

@ Energy-momentum tensor for the ideal fluid, T(%'; is

T(’ég =eutu” — PAM . APV = gt — ytyY

o A*u, = Ay, = 0 and AMY AR = AF*, hence serves as a
projection operator on the space orthogonal to the fluid velocity u”.

@ Similarly, Nég) = nu*.

@ Fluids are in general dissipative; dissipation needs to be included.

Amaresh Jaiswal Hirschegg 2019 2



Ideal and dissipative hydrodynamics

@ Dissipation can be included in the energy momentum tensor and

conserved current as

T = TH DA 4 N = N

(0)

Ideal H

Dissipative

T = eutu” — PAM
NH = nut

Unknowns: ¢, P, n, u* =6
—_——

1+1+ 1+ 3

TH = eutu” — (P + M)A 4 7
NH = nu* + nt

e, P, n, u", N, 7", p" =15

14141 +3+1+5+3

Equations: 0, T"" =0,

9,N* =0, EOS =6

4

+ 1 + 1

Closed set of equations

9 more equations required

@ Landau frame chosen: TH"u, = eut.
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Dissipative equations [L. b. Landau and E. M. Lifshitz, Fluid Mechanics, 1987]

@ Second law in covariant form: 9,5 > 0, where

€+ P —pun
—

@ Demanding second-law from this entropy current,

Sh=su" ; s=

N=—C0, n*=\TVu/T), = =2pVHuy",
where,
0=0,u", V=Ads VHW = (VA HVYuH)/2—-AF)3.
@ The transport coefficients n, (, A > 0.

@ In the non-relativistic limit, above equations reduces to the
Navier-Stokes equations.

@ Beautiful and simple but flawed! Exhibits acausal behavior.
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Maxwell-Cattaneo law

@ One possible way out is the “Maxwell-Cattaneo” law,
o) gy — anﬂtul’)‘
@ A relaxation-type equation with relaxation time 7,.: restores causality.

@ Brings rich structure to the evolution.

o Consider Bjorken flow with 7 = —727", 7 = /(¢ + P). Energy
conservation and shear evolution:
1 d(er*3) 4x di 7 4
B dr 31 dr m o Der

@ Can be solved analytically for constant 7,; to give

4e7/Tr
T = e_T/T"/ i57‘ dr+ae /™,

where « is constant of integration.

. . dm _
e Existence of attractor behaviour: — = e~ 7/
«
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Attractor behaviour for Maxwell-Cattaneo equation
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Proper time evolution of 7 for Maxwell-Cattaneo equation.
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Attractors in hydrodynamics and microscopic theories

@ Attractors and its implications were first explored in [Heller and Spalinski,
Phys. Rev. Lett. 115 (7), 072501 (2015); 1503.07514].

@ Attractors can be found in a variety of settings including AdS/CFT
simulations of non-equilibrium dynamics, simple kinetic models, and
QCD- based kinetic approaches [Romatschke Phys. Rev. Lett. 120 (2018)
012301; Spalinski, Phys. Lett. B776 (2018) 468; Denicol and Noronha, 1711.01657;
Strickland, JHEP2018, 128; 1809.01200].

@ More about attractors and its implications on applicability of
hydrodynmaics: see Mike's talk today.
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Second-order hydrodynamics from kinetic theory

@ Variants of Maxwell-Cattaneo equation can be derived from kinetic
theory for a system close to equilibrium, f = fy + §f.

T"(x) —/dp plp” f(x,p), 7= AZZ/dppapﬁéf-
@ Boltzmann equation in the relxn. time approx. is solved iteratively:

u.
pro,f = —T—R”(f —f) = f=f—(rr/u-p)p O.f

o Expand f about its equilibrium value: f = fo + (1) + 672 +

(5f(1) = —7TR p'uaufb ) (5f(2) P'u Yo (78 ﬂ)) .
u-p p
o Substituting 6 = 6f(V) 4 §f(D [aJ, PRC 87, 051901(R) (2013))],
p 4 10 4p
) 4 % = 200" — 577‘“’9 + 27T§“w”>”’ — 77T§“UV>7, Br = 5

[G. S. Denicol, T. Koide and D. H. Rischke, PRL 105, 162501 (2010)]

Amaresh Jaiswal Hirschegg 2019 8



Higher-order hydrodynamics

@ Third-order equation for shear stress tensor [AJ, PRC 88, 021903(R) (2013)]:

77’“’

4 10

10
i) = p + 280" + 27r<“w gl - 7r,<y”a">7 - 5%‘“’9 —@W“”02
50 76 44
+7r {77r"’<“w”>70m - EWWUWUM - @WPWJVMO'VY

7,7Tp(uwl/>"/wm _ %wpwwvwﬂm + = 6 <uwl/>v9 _ iﬁgyal/)“/g}

—%Vﬂ, (TWVWW gl ) — fV ( V”’WW’)) + 7VA, (rﬁuww”w).

@ Improved accuracy compared to second-order equations.

@ Neccessary for incorporation of colored noise in fluctuating hydro
evolution [J. Kapusta and C. Young, Phys. Rev. C 90, 044902 (2014)].
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Third-order theory: A better description of microscopics

-0.2

Proper time evolution
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of pressure anisotropy: P, /Pt = (P —7)/(P + 7/2).
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Bjorken flow

@ For boost-invariant longitudinal expansion, vZ = 2, v¥ = v¥ = 0.

@ Milne coordinate system: proper time 7 = v/t2 — z2 and space-time
rapidity 75 = tanh~1(z/t).

dE__l ﬂ — dﬂ-—_i_i_l iﬂ — /\_|_i — 7T2

dr ~ r\3° ") dr 1 71|37 3)" Xﬂw’
.. _ 4P 10 72

@ The coefficients are: B, = 5 A= 510 X< o5

@ In terms of normalized shear stress 7 = /(e + P),

1 d(er*?) 4n dz T 1 L
43 dr 37’ E——E-i-;(a—/\ﬂ—’yﬂ')

where a =4/15, v =5x+ (4/3) =412/147 and 7, x1/T.
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Case 1: Analytical solutions for constant relaxation time

. dm T 1

The equation to be solved: — = —— 4+ —
dr Tr T

Assume a constant relaxation time [Denicol and Noronha arXiv:1711.01657].

(a— AT —7?).

1d
Make variable transformation: —— =vy— = 7= ——.
ydr T vy dT

2
To obtain a linear ODE: Iy <1 +A + L ) dy o

a2 T\ T

Solution in terms of Whittaker functions My ,(7) and Wi m(7):

(2k +2m + V)M y1,m(7/77) — 20 Wiy 1, m(7/7x)

() = 29 Mign(7/7) + aWiem(7 /)]

where k = —%, m= %\/437 + A2 and « is constant of integration.
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Emergent attractor behavior

@ To prove the existence of attractor, we look at late time behavior of
the analytical solution.

@ We find that for large 7
o e
da 7

@ The information of initial state is damped exponentially: suggestive of
attractor behaviour.

@ Next we find the attractor solution.

@ We propose that the attractor solution corresponds to the value of «
for which
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Results for constant relaxation time
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Attractor behaviour and the attractor solution.
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Case 2: Temperature from ideal hydrodynamic evolution

dm |
@ The equation to be solved: ar_ Ty (a— AT —7?).
dr Tw T
. n\ 1
@ From kinetic theory, 7, =5 (7> —.
s/ T

@ To be absolutely consistent, one should consider the temperature
1 d(er*3) 47

evolution from:

er3  dr 37
@ We approximate the temperature evolution from ideal hydro evolution.
1/3 1/3 T 1/3
T3 =const. = T = To <@> = 7'7(:7——, Wherec:&.
T c (n/s)
. . 3 1dy T
@ We make successive change of variables x*> = 7 and Tk 37— to
y X
obtain the linear ODE
d?y 3 +1 dy 9avy
— 3 — — —y=0.
dx? * ( X I dx  x2”
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Case 2: Analytical solution

@ The solution is obtained in terms of the Kummer (confluent)
Hypergeometric functions:

_ 2m+)\ 2 3 3C 2
= - MR 2(2m =)l - 723
7(7) > + [SmT 1A (4( m )i 1+ 3m; 5T )
3c(2m —A) 5/310m 3 . o3¢ o3
1+ 3m T 1FL {1+ 4(2/77 )\),2—|—3m, 5 T

3
+a3c(2m+ \)7m?3 1R (1 — %(2m +A);2—3m; _;Tz/a> }/
[477'2'7' 1h <i(2m —A); 14 3m; _32(:7_2/3)
+4ya 1k <—i(2m+ A);1—3m; —32C7'2/3> ]

@ Here «v is the constant of integration.
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Results for Case 2
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Case 3: Temperature from vsicous hydro evolution

dr -
@ The equation to be solved: an T

1
—(a— 7 —~7?).
dr T + T (a Team )
— n\ 1
@ From kinetic theory, 7 =5 <7> T
@ We approximate the temperature evolution from Navier-Stokes
viscous hydro evolution.

(3”3} 2]

-
@ The relaxation time can then be obtained as

1/3
T Tory! 2 2
Tn = 3 where ¢ =
C17'/ —

+ , G =
5(n/s) = 15722

15
o We again make successive change of variables x> = 7 and
1d
—d—y = 37 to obtain the linear ODE which is formally similar to
y dx

that in the previous case and therefore analytically solvable
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Results for Case 3
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Case 4: Constant Knudsen number

) dr T 1 _ _
o The equation to be solved: - = — " 4 = (a— A7 —7?).
dr T T
@ We consider constant Knudsen number, T _ f.
T

@ The equations reduces to

drw 1 1\ _ 2

@ The above equation is variable separable for which the solution is

—1— FA+ ztanh (2(e0es))
2vf

(1) =

where z = \/4ayf2 4+ (1 + f))2 and « is the constant of integral.
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Solutions for constant Knudsen number case
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The solutions do not converge to Navier-Stokes solution.
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Summary and outlook

@ Analytical solutions of third-order ‘hydrodynamics’ for Bjorken
expansion for several cases.

@ Criteria for existence of attractor behaviour.
o Citeria for identifying the attractor solution.

@ One can further look for convergence/divergence of gradient
expansion and slow roll approximation in these cases.
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