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Motivation

Rotation and Polarization

Barnett Effect
S. J. Barnett, Rev. Mod. Phys. 7, 129 (1935)

Figure: Mechanical rotation of an
unmagnetized metallic object induces
magnetization, an effective magnetic
field emerges.

BΩ = Ω/ρ

Einstein-de Haas Effect
A. Einstein and W. de Haas, Deutsche Physikalische

Gesellschaft, Verhandlungen 17, 152 (1915)

Figure: Application of magnetic field on an
unmagnetized metallic object induces
magnetization, body start rotating
(mechanical angular momentum emerges)
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Motivation

Case of Heavy ion collision experiment

Global angular momentum J ≈ 104~ (RHIC Au-Au 200 GeV, b=2.5 fm) [F. Becattini, F.

Piccinini and J. Rizzo, Phys. Rev. C77, 024906 (2008)].
Global rotation of the matter created in the non-central collisions can induce spin
polarization, similar to magnetomechanical Barnett effect and Einstein and de
Haas effect.
Emerging particle are expected to be globally polarized with their spins on average
pointing along the system angular momentum.

Figure: Geometry of a non-central heavy ion collision
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Motivation

Global Λ-polarization in RHIC experiment

The average polarization P̄H (where H = Λ or Λ̄) from 20− 50% central Au+Au
collisions [L. Adamczyk et al. (STAR), Nature 548 (2017) 62-65, arXiv:1701.06657 [nucl-ex]].

Figure: The average polarization versus collision energy
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Motivation

Present phenomenological prescription used to describe the data make use
of hydrodynamic framework which deals with the spin polarization of
particles at freeze-out. The main idea is to identify the thermal vorticity with
the spin polarization tensor ωµν and then to obtain the results for spin
polarization.
[F. Becattini, I. Karpenko, M. Lisa, I. Upsal, S. Voloshin, Phys. Rev. C 95, 054902 (2017)] .
Note that the fact that thermal vorticity and spin polarization are same holds in
global equilibrium if energy momentum tensor Tµν is asymmetric.
[D. Zubarev, Nonequilibrium Statistical Thermodynamics (Springer, 1974); F. Becattini, Phys. Rev. Lett. 108, 244502 (2012)]

For symmetric Tµν thermal vorticity and spin polarization tensor are independent.
[W. Florkowski, AK, and R. Ryblewski, Phys. Rev. C 98, 044906 (2018)]

=⇒ Talk by Wojtek
A natural framework for dealing simultaneously with polarization and vorticity would be
relativistic hydrodynamics with spin.

In this talk

We use relativistic hydrodynamics with spin to determine the space-time evolution
of the spin polarization in a boost-invariant and transversely homogeneous
background.

In our approach we use the forms of the energy-momentum and spin tensors
proposed by de Groot, van Leeuwen, and van Weert.
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Relativistic fluid dynamics with spin

Relativistic fluid dynamics with spin

Conservation of charge:
∂αNα(x) = 0,

Nα = nUα, n = 4 sinh(ξ) n(0)(T ).

The quantity n(0)(T ) defines the number density of spinless and neutral Boltzmann
particles,

n(0)(T ) = 〈p · U〉0 , where 〈 · · ·〉0 ≡
∫

dP (· · · ) e−β·p.

=
1

2π2 T 3 m̂2K2 (m̂) ,

m̂ ≡ m/T is the ratio of the particle mass and the temperature, and K2 (m̂) denotes the
modified Bessel function.
The variable ξ is the ratio of the chemical potential µ and the temperature, ξ = µ/T .
The factor 4 sinh(ξ) = 2

(
eξ − e−ξ

)
accounts for spin degeneracy and presence of

both particles and antiparticles in the system. The variable ξ is the ratio of the chemical
potential µ and the temperature, ξ = µ/T .

[W. Florkowski, B. Friman, A. Jaiswal, and E. Speranza, Phys. Rev. C97, 041901 (2018); W. Florkowski, B. Friman, A. Jaiswal, R. Ryblewski, and E.

Speranza, Phys. Rev. D97, 116017 (2018); W. Florkowski, AK, and R. Ryblewski, Phys. Rev. C 98, 044906 (2018)]
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Relativistic fluid dynamics with spin

Relativistic fluid dynamics with spin

Conservation of energy and linear momentum:

∂αTαβGLW(x) = 0,

TαβGLW = (ε+ P)UαUβ − Pgαβ

Energy density and pressure is given by,

ε = 4 cosh(ξ) ε(0)(T )

P = 4 cosh(ξ) P(0)(T ).

In analogy to the density n(0)(T ), the auxiliary quantities ε(0)(T ) and P(0)(T ) are
defined as ε(0)(T ) = 〈(p · U)2〉0 and P(0)(T ) = −(1/3)〈p · p − (p · U)2〉0.
For an ideal relativistic gas of classical massive particles one finds

ε(0)(T ) =
g

2π2 T 4 m̂2
[
3K2 (m̂) + m̂K1 (m̂)

]
,

P(0)(T ) = T n(0)(T ).

At this point we have five equations for five unknown functions: ξ, T , and three
independent components of Uµ.

[ W. Florkowski, AK, and R. Ryblewski, Phys. Rev. C 98, 044906 (2018)]
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Relativistic fluid dynamics with spin

Relativistic fluid dynamics with spin

Conservation of total angular momentum

∂µJµ,αβ(x) = 0, Jµ,αβ(x) = −Jµ,βα(x) 6 equations

Total angular momentum is the sum of orbital and spin parts:

Jµ,αβ(x) = Lµ,αβ(x) + Sµ,αβ(x),

Lµ,αβ(x) = xαTµβ(x)− xβTµα(x),

Conservation of energy momentum and total angular momentum implies

∂µTµν(x) = 0, ∂λJλ,µν(x) = 0,⇒ ∂λSλ,µν(x) = T νµ(x)− Tµν(x).

Thus spin tensor Ŝµ,αβ(x) is conserved in GLW formulation.
=⇒Wojtek’s talk for different forms of spin tensors and the connection between them.
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Relativistic fluid dynamics with spin

Relativistic fluid dynamics with spin

Conservation of Spin:
∂αSα,βγGLW(x) = 0,

The GLW spin tensor is given by

Sα,βγGLW = cosh(ξ)n(0)(T )Uαωβγ +
2cosh(ξ)

m2 Sαβγ∆GLW.

Here, ωβγ is the spin polarization tensor.
The auxiliary tensor Sα,βγ∆GLW is defined as

Sα,βγ∆GLW = AUαUδU [βω
γ]
δ + B

(
U [β∆αδω

γ]
δ + Uα∆δ[βω

γ]
δ + Uδ∆α[βω

γ]
δ

)
,

B = −T
(
ε(0)(T ) + P(0)(T )

)
, A = T

[
3ε(0)(T ) +

(
3 +

m2

T 2

)
P(0)(T )

]
= −3B +

m2

T
P(0)(T ).

[W. Florkowski, AK, and R. Ryblewski, Phys. Rev. C 98, 044906 (2018)]
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Relativistic fluid dynamics with spin

Relativistic fluid dynamics with spin

Spin Polarization tensor:

The spin polarization tensor ωµν is antisymmetric and can be decomposed in terms of
four-vectors κµ and ωµ,

ωµν = κµUν − κνUµ + εµναβUαωβ ,

κ · U = 0, ω · U = 0.

Using above conditions we can write

κµ = ωµαUα, ωµ =
1
2
εµαβγω

αβUγ .
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Boost-invariant flow

Boost-invariant flow

Basis for transversely homogeneous longitudinal expansion

Uα =
1
τ

(t , 0, 0, z) = (cosh η, 0, 0, sinh η) ,

Xα = (0, 1, 0, 0) ,

Yα = (0, 0, 1, 0) ,

Zα =
1
τ

(z, 0, 0, t) = (sinh η, 0, 0, cosh η) .

Here τ =
√

t2 − z2 is the longitudinal proper time, while η = 1
2 ln((t + z)/(t − z)) is the

space-time rapidity. U · U = 1

X · X = Y · Y = Z · Z = −1,

X · U = Y · U = Z · U = 0,

X · Y = Y · Z = Z · X = 0.
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Boost-invariant flow

Boost-invariant flow and spin polarization tensor

One can introduce the following representation of the vectors κµ and ωµ

κα = CκX Xα + CκY Yα + CκZ Zα,

ωα = CωX Xα + CωY Yα + CωZ Zα.

Here, the scalar coefficients CκX , CκY , CκZ , CωX , CωY , and CωZ are functions of the
proper time τ only.
It is important to note that due to the orthogonality connditions κ · U = 0, ω · U = 0 ,
there are no terms proportional Uµ.
The following boost-invariant expression for the spin polarization tensor ωµν can be
obtained by using above decomposition of vectors κµ and ωµ,

ωµν = CκZ (ZµUν − ZνUµ) + CκX (XµUν − XνUµ) + CκY (YµUν − YνUµ)

+ εµναβUα(CωZ Zβ + CωX Xβ + CωY Yβ).

In the plane z = 0 we find

ωµν =


0 CκX CκY CκZ

−CκX 0 −CωZ CωY

−CκY CωZ 0 −CωX

−CκZ −CωY CωX 0


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Boost-invariant flow

Boost-invariant form of fluid dynamics with spin
Charge conservation: ṅ +

n
τ

= 0.

Energy-momentum conservation:
ε̇+

(ε+ P)

τ
= 0.

Spin conservation:

L(τ) 0 0 0 0 0
0 L(τ) 0 0 0 0
0 0 L(τ) 0 0 0
0 0 0 P(τ) 0 0
0 0 0 0 P(τ) 0
0 0 0 0 0 P(τ)





ĊκX
ĊκY
ĊκZ
ĊωX
ĊωY
ĊωZ


=



Q1(τ) 0 0 0 0 0
0 Q1(τ) 0 0 0 0
0 0 Q2(τ) 0 0 0
0 0 0 R1(τ) 0 0
0 0 0 0 R1(τ) 0
0 0 0 0 0 R2(τ)





CκX
CκY
CκZ
CωX
CωY
CωZ


,

L(τ) = A1 −
1

2
A2 −A3,

P(τ) = A1,

Q1(τ) = −
(
Ȧ1 −

1

2
Ȧ2 − Ȧ3 +

A1

τ
−

1

2

A2

τ
−

1

2

A3

τ

)
,

Q2(τ) = −
(
Ȧ1 −

1

2
Ȧ2 − Ȧ3 +

A1

τ
−

1

2

A2

τ
−
A3

τ

)
,

R1(τ) = −
(
Ȧ1 +

A1

τ
−

1

2

A3

τ

)
,

R2(τ) = −
(
Ȧ1 +

A1

τ

)
.

A1 = C
(

n(0) −
2B

m2

)
,

A2 =
2C

m2
(A− 3B) ,

A3 =
2CB

m2
,

C = cosh(ξ).

Initial baryon chemical potential µ0 = 800 MeV,
initial temperature T0 = 155 MeV. The particle mass,
m = 1116 MeV. The initial proper time is τ0 = 1 fm
and final time τf =10 fm.
CκX0 = CκZ0 = CωX0 = CωZ0 = 0.1.
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Boost-invariant flow

Numerical Solutions
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Figure: Proper-time dependence of T divided by its initial
value T0 and the ratio of baryon chemical potential µ and
temperature T rescaled by the initial ratio µ0/T0.
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Figure: Proper-time dependence of the coefficients CκX ,
CκZ , CωX and CωZ .

Avdhesh Kumar (IFJ PAN) January 18, 2018 15 / 26



Boost-invariant flow

Relaxation of towards thermal vorticity

If the spin polarization relaxes towards thermal vorticity, it mean equations of each
C-coefficient must be modified similar to the following

ĊκX =
Q1(τ)

L(τ)
CκX +

(
C̄κX − CκX

τω

)
Thermal vorticity is defined as

$µν(x) = −1
2

(∂µβν − ∂νβµ)

Since, βµ = Uµ
T , we will have C̄κX = C̄κY = C̄κZ = C̄ωX = C̄ωY = C̄ωY = 0

ĊκX =
Q1(τ)

L(τ)
CκX−

CκX

τω

[F. Becattini, W. Florkowski, and E. Speranza, Phys.Lett. B789, 419 (2019) ]
[Giorgio Torrieri, arXiv:1810.12468[hep-th]]
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Boost-invariant flow

Numerical Solutions
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Figure: Proper-time dependence of the coefficients CκX , CκZ , CωX and CωZ at τω = 5 fm.
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Physical observable: spin polarization

Spin polarization of particles at freeze-out

The average spin polarization is given by

〈πµ〉 =
Ep

dΠµ(p)

d3p

Ep
dN (p)

d3p

where for GLW form of spin tensor, total Pauli-Lubański (PL) vector for particles with
momentum p is given by,

Ep
dΠµ(p)

d3p
= −

cosh(ξ)

(2π)3m

∫
∆Σλpλ e−β·p ω̃µβpβ .

while,

Ep
dN (p)

d3p
=

4 cosh(ξ)

(2π)3

∫
∆Σλpλ e−β·p .

We can carryout the integration very easily by assuming that freeze-out takes place at
a constant value of the proper time τ , in this case

∆Σλ = Uλdxdyτdη.

We can parametrize of the particle four-momentum pλ in terms of the transverse mass
mT and rapidity yp,

pλ = (mT cosh(yp), px , py ,mT sinh(yp))

∆Σλpλ = mT cosh (yp − η) dxdyτdη.

Avdhesh Kumar (IFJ PAN) January 18, 2018 18 / 26



Physical observable: spin polarization

Boost to local rest frame (LRF) of the particle
In the local rest frame of the particle, polarization vector 〈π?µ〉 can be obtained by using
the canonical boost [E. Leader, “Spin in Particle Physics,” Cambridge University Press (2001)]

Λµν (−vp) =



Ep
m − px

m −
py
m − pz

m

− px
m 1 + αpp2

x αppx py αppx pz

−
py
m αppy px 1 + αpp2

y αppy pz

− pz
m αppz px αppz py 1 + αpp2

z


where, vp = p/Ep and αp = 1/(m(Ep + m)).

〈π?µ〉 = −
1

8mK1
(
m̂T
)



0

( ( sinh(yp )px
mT cosh(yp )+m

) ((
K0
(
m̂T
)

+K2
(
m̂T
)) (

CκX py − CκY px
)

+ 2CωZ mT K1
(
m̂T
))

+(
K0
(
m̂T
)
+K2

(
m̂T
))

cosh(yp )px
(
CωX px +CωY py

)
mT cosh(yp )+m +2CκZ py K1

(
m̂T
)
−
(
K0
(
m̂T
)

+K2
(
m̂T
))

CωX mT
)

( ( sinh(yp )py
mT cosh(yp )+m

) ((
K0
(
m̂T
)

+K2
(
m̂T
)) (

CκX py − CκY px
)

+ 2CωZ mT K1
(
m̂T
))

+(
K0
(
m̂T
)
+K2

(
m̂T
))

cosh(yp )py
(
CωX px +CωY py

)
mT cosh(yp )+m −2CκZ px K1

(
m̂T
)
−
(
K0
(
m̂T
)

+K2
(
m̂T
))

CωY mT
)

(
−
(

m cosh(yp )+mT
mT cosh(yp )+m

) ((
K0
(
m̂T
)

+ K2
(
m̂T
)) (

CκX py − CκY px
)

+ 2CωZ mT K1
(
m̂T
))

−
m
(
K0
(
m̂T
)

+K2
(
m̂T
))

sinh(yp )
(
CωX px +CωY py

)
mT cosh(yp )+m

)



.

Here, m̂T =
mT
T .
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Results

Approxmimate expression for spin polarization

We consider particles with yp = 0.
Mass of the Lambda hyperon is much larger than temperature i.e., m̂T � 1.
In this case, we may use the approximation (K0 (m̂T ) + K2 (m̂T )) /K1 (m̂T ) ≈ 2.

〈π?µ〉 = −
1

4m



0

px (CωX px +CωY py )
mT +m + CκZ py − CωX mT

py (CωX px +CωY py )
mT +m − CκZ px − CωY mT

−
(
CκX py − CκY px

)
− CωZ mT


.

〈π?〉 = (〈π?1〉, 〈π?2〉, 〈π?3〉) ≡ (〈π?x 〉, 〈π?y 〉, 〈π?z 〉),
If we write coefficient functions C as,

Cκ = (CκX ,CκY ,CκZ ),

Cω = (CωX ,CωY ,CωZ ).

We can write,

〈π∗〉 = − 1
4m

[
EpCω − p × Cκ −

p · Cω
Ep + m

p
]

where, p = (px , py , 0)
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Results

Momentum dependence of polarization
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Figure: Components of the PRF mean polarization three-vector of Λ’s. The results obtained with the initial
conditions µ0 = 800 MeV, T0 = 155 MeV, Cκ,0 = (0.1, 0, 0.1), and Cω,0 = (0.1, 0.1, 0) for yp = 0.
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Results

Momentum dependence of polarization
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Figure: Longitudinal component of the PRF mean
polarization three-vector of Λ’s. The results obtained with
the initial conditions µ0 = 800 MeV, T0 = 155 MeV,
Cκ,0 = (0, 0, 0), and Cω,0 = (0, 0, 0.1) for yp = 0. The
transverse components are in this case zero.
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Figure: Longitudinal component of the PRF mean
polarization three-vector of Λ’s. The results obtained
with the initial conditions µ0 = 800 MeV,
T0 = 155 MeV, Cκ,0 = (0.1, 0, 0.1), and
Cω,0 = (0.1, 0.1, 0.1) for yp = 0. The transverse
components are in this case are same as shown in
previous slide.
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Results

Freeze-out time dependence of spin polarization

(Loading animate.avi) (Loading animate.avi)

Figure: Propertime evolution of transverse components of the PRF mean polarization three-vector of Λ’s. The
results obtained with the initial conditions µ0 = 800 MeV, T0 = 155 MeV, Cκ,0 = (0.1, 0, 0.1), and
Cω,0 = (0.1, 0.1, 0) for yp = 0.
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Results

Evolution of Spin polarization

(Loading animate.avi)

Figure: Propertime evolution of longitudinal component of the PRF mean polarization three-vector of Λ’s. The
results obtained with the initial conditions µ0 = 800 MeV, T0 = 155 MeV, Cκ,0 = (0.1, 0, 0.1), and
Cω,0 = (0.1, 0.1, 0) for yp = 0.
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Summary

Summary

We have discussed hydrodynamics with spin based on the GLW formulation of
energy-momentum and spin tensor.

Using the simple transversely homogeneous longitudinal expansion we show that
hydrodynamic framework with spin can be used to determine the spin polarization
observed in heavy ion collisions.

Numerical results obtained by us can not be compared with the experimental
results [This is because we have a simple 1+0 dimensional expansion].

Outlook: Study of the polarization to a more realistic scenario i.e. for 3+1 dimensional
expansion (Work in progress).

Note: With full 3+1 dimensional simulation of hydrodynamics with spin we hope to
resolve the sign problem (sign of quadrupole structure of spin polarization).
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Summary

THANK YOU
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Polarization using the thermal vorticity model
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Global and local thermodynamic equilibrium for particles with spin from
quantum mechanics

The density operator [D. Zubarev, Nonequilibrium Statistical Thermodynamics (Springer, 1974); F.

Becattini, Phys. Rev. Lett. 108, 244502 (2012)],

ρ̂(t) = exp

[
−
∫

d3Σµ(x)

(
T̂µν(x)bν(x)− 1

2
Ĵµ,αβ(x)ωαβ(x)− N̂µ(x)ξ(x)

)]
.

Here d3Σµ is an element of a space-like, three-dimensional hypersurface Σµ. We can
take it as, d3Σµ = (dV , 0, 0, 0).
The operators T̂µν(x), Ĵµ,αβ(x) and N̂µ(x) are the energy-momentum, angular
momentum and charge operators respectively.
In global thermodynamic equilibrium the operator ρ̂(t) should be independent of time.

∂µ

(
T̂µν(x)bν(x)− 1

2
Ĵµ,αβ(x)ωαβ(x)− N̂µ(x)ξ(x)

)
= T̂µν(x) (∂µbν(x))− 1

2
Ĵµ,αβ(x) (∂µωαβ(x))− N̂µ(x)∂µξ(x) = 0.

From above equation we can conclude that ωαβ = ω0
αβ , ξ = ξ0, But

For asymmetric energy momentum tensor, bν = b0
ν .

For symmetric energy momentum tensor, bν = b0
ν + δω0

νρxρ.
Avdhesh Kumar (IFJ PAN) January 18, 2018 26 / 26



Global equilibrium; particle with spin

Total angular momentum

Ĵµ,αβ(x) = L̂µ,αβ(x) + Ŝµ,αβ(x).

Using above equation, we can write two cases discussed above can be expressed by a
single form of the density operator

ρ̂EQ = exp

[
−
∫

d3Σµ(x)

(
T̂µν(x)βν(x)− 1

2
Ŝµ,αβ(x)ω0

αβ − N̂µ(x)ξ0
)]

.

For asymmetric energy-momentum tensor βµ(x) = b0
µ + ω0

µγxγ .
βµ(x) is a Killing vector, ωµγ = ω0

µγ = $µν .
global equilibrium —
For symmetric energy-momentum tensor βµ(x) = b0

µ + (δω0
µγ + ω0

µγ)xγ .
βµ(x) is again a Killing vector, ωµγ = ω0

µγ 6= $µν(= δω0
µγ + ω0

µγ).
extended global equilibrium —

Avdhesh Kumar (IFJ PAN) January 18, 2018 26 / 26



Local thermodynamic equilibrium; particle with spin

We define the statistical operator for local equilibrium by the same form as

ρ̂eq = exp

[
−
∫

d3Σµ(x)

(
T̂µν(x)βν(x)− 1

2
Ŝµ,αβ(x)ωαβ(x)− N̂µ(x)ξ(x)

)]
.

We allow for arbitrary form of βµ(x) [not a killing vector] and ξ = ξ(x) and two cases for
ωµν .
ωµν = $µν .
local equilibrium —
ωµν 6= $µν .
extended local equilibrium —
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