Hadronization and freeze-out from lattice QCD

CLAUDIA RATTI UNIVERSITY OF HOUSTON

QCD matter under extreme conditions

To address this topic, we need fundamental theory and experiment

Theory: Quantum Chromodynamics

QCD is the fundamental theory of strong interactions
 It describes interactions among quarks and gluons

$$L_{QCD} = \sum_{i=1}^{n_f} \overline{\psi}_i \gamma_{\mu} \left(i\partial^{\mu} - gA_a^{\mu} \frac{\lambda_a}{2} \right) \psi_i - m_i \overline{\psi}_i \psi_i - \frac{1}{4} \sum_a F_a^{\mu\nu} F_a^{\mu\nu}$$

$$F_a^{\mu\nu} = \partial^{\mu} A_a^{\nu} - \partial^{\nu} A_a^{\mu} + i f_{abc} A_b^{\mu} A_c^{\mu}$$

Experiment: heavy-ion collisions

- ▶ Quark-Gluon Plasma (QGP) discovery at RHIC and LHC:
- ▶ SURPRISE!!! QGP is a PERFECT FLUID
- Changes our idea of QGP

(no weak coupling)

Microscopic origin still unknown

• Is there a critical point in the QCD phase diagram?

- What are the degrees of freedom in the vicinity of the phase transition?
- Where is the transition line at high density?
- What are the phases of QCD at high density?
- Are we creating a thermal medium in experiments?

Open Questions

Second Beam Energy Scan (BESII) at RHIC

- Planned for 2019-2020
- 24 weeks of runs each year
- Beam Energies have been chosen to keep the μ_B step $\sim 50 \text{ MeV}$
- Chemical potentials of interest: μ_B/T ~1.5...4

Baryon Chemical Potential μ_B

√s (GeV)	19.6	14.5	11.5	9.1	7•7	6.2	5.2	4.5		
μ _B (MeV)	205	260	315	370	420	487	541	589		
# Events	400M	300M	230M	160M	100M	100M	100M	100M		
	Collider						Fixed Target 4/33			

Comparison of the facilities											
Compilation by D. Cebra											
Facilty	RHIC BESII	SPS	NICA	SIS-100	J-PARC HI						
				SIS-300							
Exp.:	STAR	NA61	MPD	CBM	JHITS						
	+FXT		+ BM@N								
Start:	2019-20	2009	2020	2022	2025						
F	2018		2017								
Energy:	7.7–19.6	4.9-17.3	2.7 - 11	2.7-8.2	2.0-6.2						
√s _{NN} (GeV)	2.5-7.7	400.117	2.0-3.5								
Rate:	100 HZ	100 HZ	<10 kHz	<10 MHZ	100 MHZ						
At 8 GeV	2000 Hz	CD0 OD									
Physics:	CP&OD	CP&OD	OD&DHM	OD&DHM	OD&DHM						
ColliderFixed targetColliderFixed targetFixed targetFixed targetLighter ionFixed targetFixed targetFixed targetcollisionsColliderFixed targetFixed target											
CP=Critical Point OD= Onset of Deconfinement DHM=Dense Hadronic Matter											

How can lattice QCD support the experiments?

• Equation of state

• Needed for hydrodynamic description of the QGP

• QCD phase diagram

• Transition line at finite density

• Constraints on the location of the critical point

• Fluctuations of conserved charges

- Can be simulated on the lattice and measured in experiments
- Can give information on the evolution of heavy-ion collisions
- Can give information on the critical point

Taylor expansion of EoS

• Taylor expansion of the pressure:

$$\frac{p(T,\mu_B)}{T^4} = \frac{p(T,0)}{T^4} + \sum_{n=1}^{\infty} \left. \frac{1}{(2n)!} \frac{\mathrm{d}^{2n}(p/T^4)}{d(\frac{\mu_B}{T})^{2n}} \right|_{\mu_B=0} \left(\frac{\mu_B}{T}\right)^{2n} = \sum_{n=0}^{\infty} c_{2n}(T) \left(\frac{\mu_B}{T}\right)^{2n}$$

- Two ways of extracting the Taylor expansion coefficients:
 - Direct simulation
 - Simulations at imaginary μ_B
- Two physics choices:
 - $\mu_B \neq 0, \mu_S = \mu_Q = 0$
 - μ_{s} and μ_{Q} are functions of T and μ_{B} to match the experimental constraints:

$$< n_{\rm S} >= 0$$
 $< n_{\rm Q} >= 0.4 < n_{\rm B} >$

Strategy: simulate lower-order fluctuations and use them in a combined, correlated fit

Strategy: simulate lower-order fluctuations and use them in a combined, correlated fit

$$\begin{split} \chi_1^B(\hat{\mu}_B) &= 2c_2\hat{\mu}_B + 4c_4\hat{\mu}_B^3 + 6c_6\hat{\mu}_B^5 + \frac{4!}{7!}c_4\epsilon_1\hat{\mu}_B^7 + \frac{4!}{9!}c_4\epsilon_2\hat{\mu}_B^9 \\ \chi_2^B(\hat{\mu}_B) &= 2c_2 + 12c_4\hat{\mu}_B^2 + 30c_6\hat{\mu}_B^4 + \frac{4!}{6!}c_4\epsilon_1\hat{\mu}_B^6 + \frac{4!}{8!}c_4\epsilon_2\hat{\mu}_B^8 \\ \chi_3^B(\hat{\mu}_B) &= 24c_4\hat{\mu}_B + 120c_6\hat{\mu}_B^3 + \frac{4!}{5!}c_4\epsilon_1\hat{\mu}_B^5 + \frac{4!}{7!}c_4\epsilon_2\hat{\mu}_B^7 \\ \chi_4^B(\hat{\mu}_B) &= 24c_4 + 360c_6\hat{\mu}_B^2 + c_4\epsilon_1\hat{\mu}_B^4 + \frac{4!}{6!}c_4\epsilon_2\hat{\mu}_B^6. \end{split}$$
 See also M. D'Elia et al., PRD (2017)

Red curves are obtained by shifting χ_1^B/μ_B to finite μ_B : consistent with no-critical point

Pressure coefficients **Direct simulation:** O(10⁵) configurations (hotQCD: PRD (2017) and update 06/2018) **Strangeness neutrality** 0.0025 0.00015 $n_{\rm S}=0, n_{\rm O}/n_{\rm B}=0.4$ n_S=0, n_O/n_B=0.4 free quark gas HRG -0.1 n_S=0, n_O/n_B=0.4 HRG cont. est. 0.0001 0.002 cont. est. N₇=12 🔶 0.08 N_τ= 8 💾 HRG — 5x10⁻⁵ 8 🔚 6 📥 cont. extrap. 0.0015 6 📥 _م 0.06 N_τ=16 ⊮ m_e/m_l=20 (open) Ч പ് 12 🔶 27 (filled) 0.001 8 0.04 -5x10⁻⁵ free quark gas 6 📥 0.0005 0.02 -0.0001 m_s/m_l=20 (open) m_s/m_l=20 (open) 27 (filled) 27 (filled) 0 -0.00015 0 220 240 280 140 160 180 200 220 240 260 280 140 160 180 200 260 140 160 180 200 220 240 260 280 T[MeV] T[MeV] T[MeV] $\mu_{\rm S} = \mu_{\rm Q} = 0$ 0.35 cont. est. HRG 3 χ_2^B free quark gas 1 N₇=6 ↦ 0.3 8 💾 T_c=(156.5+/-1.5) MeV T_c=(156.5+/-1.5) MeV 2 m_s/m_l=20 (open) 0.8 0.25 cont. estimate 27 (filled) PDG-HRG N₇=6 ⊢ χ⁶/χ² 9.0^B_{X4}X2^B continuum extrap. 0.2 r_=(156.5 +/-1.5) 8 -N_τ=6 ⊷ 12 🔸 0.15 8 + 0 0.4 12 m_s/m_l=20 (open) 0.1 16 🛞 27 (filled) m_s/m_i=20 (open) -1 0.2 0.05 27 (filled) T [MeV] free quark gas -2 0 0 160 180 200 220 140 240 260 280 140 160 180 200 220 240 260 280 140 160 180 200 220 240 260 280 T [MeV] T [MeV]

11/33

Range of validity of equation of state

We now have the equation of state for µ_B/T≤2 or in terms of the RHIC energy scan:

 $\sqrt{s} = 200, \ 62.4, \ 39, \ 27, \ 19.6, \ 14.5 \text{GeV}$

QCD EoS with critical point P. Parotto, C.R. et al., 1805.05249 (2018)

• Currently, first principle EoS is given from Lattice QCD as Taylor expansion around $\mu_B = 0$

$$P_{QCD} = T^4 \sum_{n} c^n(T) \left(\frac{\mu_B}{T}\right)^n , \qquad c^n(T) = \frac{\partial(P/T^4)}{\partial(\mu_B/T)}\Big|_{\mu_B=0}$$

QCD is in the 3D Ising static universality class

Idea: use 3D Ising EoS mapped onto QCD to estimate critical contribution to cⁿ(T):

$$c^n(T) = c^n_{\rm reg}(T) + c^n_{\rm crit}(T)$$

Expand over the whole phase diagram

$$P(T, \mu_B \neq 0) = T^4 \sum c_{\text{reg}}^n(T) \left(\frac{\mu_B}{T}\right)^n + P_{\text{crit}}(T, \mu_B)$$

QCD EoS with critical point

We need 6 parameters to map Ising model's phase diagram onto the QCD one:

$$(r,h) \longmapsto (T,\mu_B): \qquad T = T_C + r \sin \alpha_1 \Delta \mu_{BC} + h \sin \alpha_2 \Delta T_C$$
$$\mu_B = \mu_{BC} - r \cos \alpha_1 \Delta \mu_{BC} - h \cos \alpha_2 \Delta T_C$$

Extract the "regular" contribution as the difference between the lattice and Ising ones

 $T^4 c_n^{\text{LAT}}(T) = T^4 c_n^{\text{Non-Ising}}(T) + T_C^4 c_n^{\text{Ising}}(T)$

- Thermodynamic consistency constrains the parameter space
- EoS will be used as input in hydro simulations
- Comparison with experimental data will constrain the parameter space too, including the critical point location

16/33

QCD phase diagram

CURVATURE

RADIUS OF CONVERGENCE OF TAYLOR SERIES

Radius of convergence of Taylor series

For a genuine phase transition, we expect the ∞-volume limit of the Lee-Yang zero to be real
 A. Pasztor, C. R. et al., 1807.09862

19/33

Fluctuations of conserved charges

COMPARISON TO EXPERIMENT: CHEMICAL FREEZE-OUT PARAMETERS

ADS/CFT-BASED APPROACH: SEARCH FOR THE CRITICAL POINT

•Chemical freeze-out: inelastic reactions cease: the chemical composition of the system is fixed (particle yields and fluctuations)

• Kinetic freeze-out: elastic reactions cease: spectra and correlations are frozen (free streaming of hadrons)

Hadrons reach the detector

Fluctuations on the lattice

----- (()) ------

- Fluctuations of conserved charges are the cumulants of their event-byevent distribution
- Definition: $\chi^{BSQ}_{lmn} = \frac{\partial^{l+m+n}p/T^4}{\partial(\mu_B/T)^l\partial(\mu_S/T)^m\partial(\mu_Q/T)^n}$.
- They can be calculated on the lattice and compared to experiment
- variance: $\sigma^2 = \chi_2$ Skewness: $S = \chi_3/(\chi_2)^{3/2}$ Kurtosis: $\kappa = \chi_4/(\chi_2)^2$ $S\sigma = \chi_3/\chi_2$ $\kappa\sigma^2 = \chi_4/\chi_2$
 - $M/\sigma^2 = \chi_1/\chi_2 \qquad \qquad S\sigma^3/M = \chi_3/\chi_1$

Things to keep in mind

- Effects due to volume variation because of finite centrality bin width
 - Experimentally corrected by centrality-bin-width correction method V. Skokov et al., PRC (2013), P. Braun-Munzinger et al., NPA (2017),
- Finite reconstruction efficiency V. Begun and M. Mackowiak-Pawlowska (2017)
 - Experimentally corrected based on binomial distribution
- Spallation protons
 - Experimentally removed with proper cuts in p_{T}
- Canonical vs Gran Canonical ensemble
 - Experimental cuts in the kinematics and acceptance
- Baryon number conservation
 - Experimental data need to be corrected for this effect
- Proton multiplicity distributions vs baryon number fluctuations

 M. Asakawa and M. Kitazawa, PRC(2012), M. Nahrgang et al., 1402.1238
 Recipes for treating proton fluctuations
- Final-state interactions in the hadronic phase
 - Consistency between different charges = fundamental test

A.Bzdak, V.Koch, PRC (2012)

V. Koch, S. Jeon, PRL (2000)

J.Steinheimer et al., PRL (2013)

P. Braun-Munzinger et al., NPA (2017)

Consistency between freeze-out of B and Q

Independent fit of of R₁₂^Q and R₁₂^B: consistency between freeze-out chemical potentials
 160

WB: PRL (2014) STAR collaboration, PRL (2014)

Freeze-out line from first principles

• Use T- and μ_B -dependence of R_{12}^{Q} and R_{12}^{B} for a combined fit:

25/33

Freeze-out of kaons in the HRG model

- □ Calculate χ_1/χ_2 for kaons in the HRG model, including resonance decays and acceptance cuts
- Calculate it along the isentropes
- Fit χ_1/χ_2 and extract T_{fo}
- **Obtain** μ_{Bfo} from the isentropes

R. Bellwied, C. R. et al., 1805.00088

26/33

 \Box χ_1/χ_2 for kaons needs a higher freeze-out temperature than net-p/net-Q

- \Box χ_1/χ_2 for kaons needs a higher freeze-out temperature than net-p/net-Q
- The f.o. parameters agree with the STAR fit of yields (including strange particles)
 STAR Collaboration, PRC (2017)

28/33

Higher order fluctuations

Off-diagonal correlators

30/

- Simulation of the lower order correlators at imaginary µ_B
- Fit to extract higher order terms
- Results exist also for BS, QS and BQS correlators

Forthcoming experimental data at RHIC

Off-diagonal correlators

31

- Simulation of the lower order correlators at imaginary µ_B
- Fit to extract higher order terms
- Results exist also for BS, QS and BQS correlators

Forthcoming experimental data at RHIC

Off-diagonal correlators

32/33

- Simulation of the lower order correlators at imaginary µ_B
- Fit to extract higher order terms
- Results exist also for BS, QS and BQS correlators

Forthcoming experimental data at RHIC

Conclusions

• Need for quantitative results at finite-density to support the experimental programs

- Equation of state
- Phase transition line
- Fluctuations of conserved charges
- Current lattice results for thermodynamics up to $\mu_B/T \le 2$
- Extensions to higher densities by means of lattice-based models
- No indication of Critical Point from lattice QCD in the explored μ_{B} range

Backup slides

Fluctuations of conserved charges?

If we look at the entire system, none of the conserved charges will fluctuate

*By studying a sufficiently small subsystem, the fluctuations of conserved quantities become meaningful

❑ ∆Ytotal: range for total charge multiplicity distribution

- \Box Δ Yaccept: interval for the accepted charged particles
- \Box Δ Ykick: rapidity shift that charges receive during and after hadronization

QCD matter under extreme conditions

To address these questions we need fundamental theory and experiment

Theory: Quantum Chromodynamics

- QCD is the fundamental theory of strong interactions
- It describes interactions among quarks and gluons

$$L_{QCD} = \sum_{i=1}^{n_f} \overline{\psi}_i \gamma_{\mu} \left(i\partial^{\mu} - gA_a^{\mu} \frac{\lambda_a}{2} \right) \psi_i - m_i \overline{\psi}_i \psi_i - \frac{1}{4} \sum_a F_a^{\mu\nu} F_a^{\mu\nu}$$

Experiment: heavy-ion collisions

- Quark-gluon plasma (QGP) discovery at RHIC and the LHC
- QGP is a strongly interacting (almost) perfect fluid

Cumulants of multiplicity distribution

- Deviation of N_Q from its mean in a single event: $\delta N_Q = N_Q \langle N_Q \rangle$
- The cumulants of the event-by-event distribution of NQ are:

 $\chi_2 = <(\delta NQ)^2 > \chi_3 = <(\delta NQ)^3 > \chi_4 = <(\delta NQ)^4 > -3 < (\delta NQ)^2 >^2$

• The cumulants are related to the central moments of the distribution by:

- b₂ departs from zero at T~160 MeV
- Deviation from ideal HRG

(see talk by J. Glesaaen on Friday)

First pointed out in Bazavov et al., PRL(2014)

Canonical suppression

above 11.5 GeV CE suppression accounts for measured deviations from GCE

Analytical continuation – illustration of systematics

Analytical continuation on $N_t = 12$ raw data

