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Why and how does statistical hadron production influence
fluctuation observables?

Answer: It depends, on:

How you do particle production.

How you do the rescattering.

Which correlations and fluctuations you look at.

In that sense..
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Two examples

I: Fluctuations from a phase transition, Cooper-Frye and the curse of
small numbers

Assume we have a macroscopic model for (critical/long-range)
fluctuations. fluid-dynamics

How does the necessity to have a finite number of hadrons change
the multiplicity distribution?

II: How hadronic rescattering changes the multiplicity in a fixed
acceptance window

Assuming we produce hadrons according to some multiplicity
distribution on some C-F-hypersurface.

Given a fixed rapidity window how much is the final observed
multiplicity related with the initial one?
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Ingredient one: Solving Fluid-Dynamics

The equations for ideal relativistic fluid-dynamics are solved numerically on
a cartesian-grid of cell size ∆x = 0.2 fm:

∂µT
µν = 0 and ∂µN

µ = 0

Tµν is the relativistic energy momentum tensor and Nµ the baryon
four-current. In ideal fluid-dynamics these can be written as:

Tµν = (ε+ p)uµuν − pgµν and N µ = nuµ

To close this system of equations one needs the equation of state, of the
form p = p(ε, n), as an additional input.

Remember: Since the cell volume is very small, Vc = ∆x3 = 8 · 10−3 fm3,
the number of hadrons per cell is also << 1.
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Ingredient two: particles from densities

Hydro only propagates densities, not specific particle types.

Experiments measure particles.

Take into account the effects of resonance decays.

Take into account the effect of conservation laws.

For fluctuation or correlation measurements acceptance and efficiency
are important.

The end of hydro is not the end of the collision.
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How to make particles from densities

Typically done by use of the Cooper-Frye equation

E
dN

d3p
=

∫
σ
f(x, p)pµdσµ (1)

Just calculating the integral will conserve all relevant quantum
numbers but lead to non-integer particle numbers.
To do resonance decays, final state rescattering and compare with
data on an event-by-event basis one usually does a Monte-Carlo
sampling of this equation.
One may even conserve some or all conserved quantities.
See Hannas’ or Pasis’ talks for more details. Here I will discuss more
generic features!

Important

Since the cell volumes are usually small, the particle number in a cell is
also Np << 1 and so one assumes it is Poisson distributed!
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Why fluctuations at the phase transition?

Nucleation vs. spinodal decomposition : Phase separation

Nucleation: Thermal fluctuations serve as seeds for bubble formation.
(e.g. ice in water). SLOW!

Spinodal decomposition: System is quenched below separation
temperature. Instabilities occur (e.g. hot oil + water). FAST!
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Non-Equilibrium Phase Transition

”Spinodal decomposition is essentially a mechanism for the rapid unmixing
of a mixture of liquids or solids from one thermodynamic phase, to form
two coexisting phases.”

I takes place for example when one quenches a mixture of two substances
rapidly below the demixing temperature. Then, the two substances
separate locally, giving rise to the complicated structures which can be
seen on the leftmost picture.
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How to implement in hydro - the EoS.

Implementing an unstable phase is actually straight forward.

I

Either use a model which has
already two phases. E.g. PQM or
similar:

 Unstable

 

 

Pr
es

su
re

 [M
eV

/fm
3 ]

Density [ 0]

II

Use an EoS constructed from a
hadronic nucleon-pion model plus a
bag model via a construction.

 Unstable

 

 

 Density [ 0]

HQ EoS     T = 100 MeV

Alternatively a Maxwell-construction is possible as a baseline.
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Non-Equilibrium Phase Transition

Equilibrium Phase Transition
(Maxwell construction)

As the system dilutes, the phases
are always well separated

Phase II

 

 

D
en

si
ty

Length 

Non-Equilibrium Phase Transition

Phase separation is a dynamical
process.
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The Gradient Term

A proper description of spinodal decomposition requires that finite-range
effects be incorporated.
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Phase II

 No Surface Tension
 With Surface Tension
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Phase I

We rewrite the local pressure as

p(r) = p0(ε(r), ρ(r))− a2 εs
ρ2s
ρ(r)∇2ρ(r)

The gradient term will cause a diffuse
interface to develop when matter of two
coexisting phases are brought into
physical contact.
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Show Animation

Initialize Random noise in the unstable region and let it evolve.
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Initial State And Setup

We apply the UrQMD transport model for the initial, non-equilibrium, part
of the collision.

When contracted nuclei have
passed through each other,

energy-, momentum- and baryon
densities are mapped onto the
computational grid.
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Evolution in Fluid-Dynamics

EoS with unstable phase:

EoS with Maxwell construction:
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Evolution in Fluid-Dynamics

EoS with unstable phase:

EoS with Maxwell construction:
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Notable difference observed.
Unstable phase leads to clustering of
baryonnumber!

Jan Steinheimer (FIAS) 17.01.2019 15 / 32



Moments of the Baryon Density

Let’s be more quantitative

Define Moments of the net baryon density distribution:

〈ρN 〉 ≡ 1

A

∫
ρ(r)Nρ(r) d3r
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Do we have characteristic features in every event?

We asked a CNN (Convolutional Neural Network) to separete events in
Spinodal and Maxwell
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Effect on the cumulants - numeric

Note: The Ki are the cumulants of the baryon number multiplicity
distribution. (STAR calls them Ci)

Comparison with numerical results

Take the hydro results with the
spinodal clumping.

Calculate the baryon number
fluctuations in a spatial volume
directly

Use the C-F equation and
sample baryons, conserving
baryon number globally.

K2/K1

0 1 2 3 4 5 6
0.00
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0.50

0.75

1.00

 Hydro only

Hydro + C-F:
 QB=1
 QB=1/5
 QB=1/20

Multinomial:
 QB=1
 QB=1/5
 QB=1/20

2 /M

zmax [fm]
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Effect on the cumulants - analytic - multinomial

What happens if one conserves the number of baryon globally?

Multinomial distribution:

P (N1, . . . ,MM ) =

(Btot/QB)!

N1! . . . NM !
pN1
1 . . . pNM

M δ∑M
i=1Ni,Btot/QB

(2)
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Effect on the cumulants - analytic - multinomial

What happens if one conserves the number of baryon globally?

The resulting cumulants:

KB,CF,multi
1 = 〈B〉 = KB

1

KB,CF,multi
2 = KB

2 +QB

(
KB

1 −
KB

1
2

+K2

Btot

)

KB,CF,multi
3 = KB

3 + 3QB

(
KB

2 −
2KB

1 K
B
2 +KB

3

Btot

)
+Q2

B

(
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1 − 3
KB
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Btot

+2
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1
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+ 3KB
1 K
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3
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(3)
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Effect on the cumulants - numerical results

Comparison with numerical results

Take the hydro results with the
spinodal clumping.

Calculate the baryon number
fluctuations in a spatial volume
directly

Use the C-F equation and
sample baryons, compare to the
analytic results.
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Effect on the cumulants - momentum space

Comparison of scaled variance and skewness in rapidity space

y

 Binomial
 Maxwell - TP20
 Spinodal - TP20
 Maxwell - TP1
 Spinodal - TP1

 Binomial
 Maxwell - TP20
 Spinodal - TP20
 Maxwell - TP1
 Spinodal - TP1

S
y

Preliminary: small difference in Skewness seems visible.
Analytic case not so trivial.
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IS it also in each event in momentum space?

We repeated the CNN analysis with 20 test-particles in momentum space.
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Slight change of topic: What happens after particlization?
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What to expect from hadronic rescattering

Elastic and pseudo-elastic rescattering

CHANGES: spectra

CHANGES: correlations and fluctuations

NO CHANGE: chemical composition

Inelastic rescattering

CHANGES: spectra

CHANGES: correlations and fluctuations

CHANGES: chemical composition

The idea of a hadronic phase was/is motivated by:

Particle spectra have a temperature much smaller than the ”chemical”
Temperature.

Resonance yields are not consistent with thermal fits

I will NOT talk about annihilation.
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The UrQMD model

Use UrQMD for the hadronic phase. Of course the result will depend on
the model ingredients. We just include, and constrain it, as much as we
can.

What is UrQMD

Microscopic model based on
geometric interpretation of cross
sections.

2→ n particle scattering
according to measured cross
sections

Resonance decays plus string
excitations at

√
s > 3 GeV.

Newest version: Strangeness
exchange K +N ↔ π + Y and
Y + Y ↔ Ξ +N
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A general view on reaction rates at RHIC
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 M+B -> B*
 M+M -> M*
 B+B -> X
 M+B elastic
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Reaction rates |y| < 0.5
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Effects on particle fluctuations I

Even more than changing particle
yields the interactions will change
correlations and fluctuations.

How well are fluctuations
remembered?

rIF(t) =

∑
n

(In(t)− I(t))(Fn − F )√∑
n

(In(t)− I(t))2
∑
n

(Fn − F )2

(4)

rIF(t) = 1: Full information

rIF(t) = 0: All information is lost.

Different charges in STAR
experimental acceptance.
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Effects on particle fluctuations II
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sNN = 7.7 GeV, |y|<0.5 

Rescattering corresponds to a
Gaussian smearing of the
multiplicity distribution

Width of the Gaussian ca be as
broad as the entire distribution.
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Hadronic rescattering

Important!

Just because the proton number in every event changes doesn’t mean
that the mean changes drastically.

If the cumulants at C-F are dominated by the means then rescattering
does not change the cumulants!

Only if the cumulants at C-F are dominated by correlations then
rescattering should change the cumulants!

At the same time: Measuring cumulants which are dominated by the
mean does not mean there haven’t been any correlations.

If all correlations are washed out be the rescattering then Chemical fit
≈ Cumulant fit (+ conservation laws).
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Discussion
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Backup

Backup
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Effects of Viscosity

In actual systems there is some degree of physical dissipation which gives
rise to both viscosity and heat conduction.

To leading order, the viscosity reduces the growth rate by

≈ 1
2 [43η + ζ]k2/h (5)

where η and ζ are the shear and bulk viscosity coefficients, respectively.

A heat conductivity generally increases the growth rate because the speed
of sound will be closer to the iso-thermal vT instead of the isentropic,
increasing the size of the unstable region (and also decreasing the squared
speed of sound).
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Changing the Surface Tension

Parameter Dependencies

We change the value of the surface tension by varying a from 0.01 to 0.05.
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Quantitative results depend on choice of a.
Cluster formation is stronger for small values of a, as expected.
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Changing the Initial Fluctuations

Parameter Dependencies

We change the value of the initial fluctuation width
from σini = 0.5 to 1.0 fm.
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Strongest clustering observed for intermediate width!
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Changing the Initial State

Model Dependencies?

For the initial state we can apply a version of the UrQMD model that
includes nuclear interactions. a

aQ. -f. Li, Z. -x. Li, S. Soff, M. Bleicher and H. Stoecker, J. Phys. G 32, 407
(2006)

The densities achieved in the
UrQMD+Potentials calculations are
considerably smaller than in those
without (close to the geometrical
overlap values).
This is mainly due to the repulsive
interaction.
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Growth Rates in Numerical Fluid-Dynamics

Calculation in a box with periodic boundaries

The amplitude of a density undulation should grow exponentially within
the unstable region

A(t) = At=0(e
γkt + e−γkt)

20 40 60 80 100 120 140 160 180
2

4

6

8

10

12

14

16

18

20
20 40 60 80 100 120 140 160 180

2

4

6

8

10

12

14

16

18

20

 

 

 

Numerical viscosity cuts off
large wave number growth

The gradient term modifies the
growth rates:

γ2k = |vs|2k2 − a2(εs/h)(ρ/ρs)
2k4

Depending on a certain wave
numbers are favored
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