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Hagedorn bag-like model with a 

crossover transition meets lattice QCD 



G. Martens et al. Phys. Rev. D 70 / 73 (2006)



Colorless Heavy Objects

Cluster   (HERWIG)

Strings  (Lund)

Hagedorn states

allow for

decay & recombination !

B. Webber, Nucl.Phys.B 238 (1984) 492

R. Hagedorn, Nuovo Cim. Suppl. 3 (1965) 147

B. Andersson et al., Phys.Rept. 97(1983) 31



Color Singlet cluster and their distribution

B.R. Webber, Nucl. Phys. B 238 (1984)

- The blobs (right) represent colour singlet clusters as basis for hadronization

- Distribution of colour singlet cluster mass (left) in e+-e- annihilation 
at c.m.   energies of Q=35 GeV and Q=53 GeV

- this colour singlet clusters might be identified as Hagedorn States 



History

- 1965 R. Hagedorn postulated the “Statistical Bootstrap 
Model” before QCD 

- fireballs and their constituents are the same

- nesting fireballs into each other leads to self-
consistency condition (bootstrap equation)

- Euler : How many ways to subdivide an integer into 
different integer ?  solved in the 60ties

- solution is exponentially rising common known as 
Hagedorn spectrum

- slope of Hagedorn Spectrum determined by  
Hagedorn temperature





Application of Hagedorn states

- at SPS energies chem. equil. time is 1-3 fm/c 

(CG, Leupold, 2000)

- at RHIC energies chem. equil. time is 10 fm/c

with same approach

- fast chem. equil. mechanism through Hagedorn states

- dyn. evolution through set of coupled rate equations
leads to 5 fm/c for BB pairs 

J. Noronha-Hostler et al. PRL 100 (2008)
J. Noronha-Hostler et al. J. Phys. G 37 (2010)
J. Noronha-Hostler et al. Phys. Rev. C 81 (2010)

_

_



Hadron Resonance Gas with Hagedorn States  

and comparison to lattice QCD close to

• Hagedorn spectrum:

• RBC collaboration:

J. Noronha-Hostler, J. Noronha, CG, PRL 103 (2009), PRC 86 (2012)  



(Phase) transition in the gas of bags

• Both phases described by single partition function

• A gas of extended objects → excluded volume

• Exponential spectrum of bags
[Gorenstein, Petrov, Zinovjev, PLB ’81; Gorenstein, Greiner, Yang, JPG ’98; 
Zakout, CG, Schaffner-Bielich, NPA ‘07]

[Ferroni, Koch, PRC 79, 034905 (2009)]

Crossover transition in bag-like model qualitatively compatible with LQCD



The order and shape of QGP phase transition

I.Zakout, CG and J. Schaffner-Bielich, NPA 781 (2007) 150,

PRC78 (2008)
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Crossover transition in bag-like models
L. Ferroni and V. Koch, PRC79 (2009) 034905
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Model formulation

Thermodynamic system of known hadrons and quark-gluon bags   

Mass-volume density:

PDG hadrons

Quark-gluon bags [J. Kapusta, PRC ’81; Gorenstein+, ZPC ‘84]

Non-overlapping particles → isobaric (pressure) ensemble
[Gorenstein, Petrov, Zinovjev, PLB ’81]

The system pressure is 𝑝 = 𝑇𝑠∗ with 𝑠∗ being the rightmost singularity of  𝑍



Mechanism for transition to QGP

The isobaric partition function,  𝑍 𝑇, 𝑠, 𝜆 = [𝑠 − 𝑓 𝑇, 𝑠, 𝜆 ]−1, has

• pole singularity 𝑠𝐻 = 𝑓 𝑇, 𝑠𝐻 , 𝜆

• singularity 𝑠𝐵 in the function 𝑓 𝑇, 𝑠, 𝜆 due to the exponential spectrum

“hadronic” phase

MIT bag model EoS for QGP
[Chodos+, PRD ‘74; Baacke, APPB ‘77]

T

1st order PT

2st order PT

crossover

𝑠𝐻(𝑇𝐶) = 𝑠𝐵(𝑇𝐶)

“collision” of singularities

𝑠𝐻 𝑇 > 𝑠𝐵(𝑇) at all T



Crossover transition

Type of transition is determined by exponents 𝛾 and 𝛿 of bag spectrum

Crossover seen in lattice, realized in model for 𝛾 + 𝛿 ≥ −3 and 𝛿 ≥ −7/4
[Begun, Gorenstein, W. Greiner, JPG ’09]

Transcendental equation for pressure:

Solved numerically

Calculation setup:



Thermodynamic functions

Pressure 𝑝/𝑇4 Energy density 𝜀/𝑇4

• Crossover transition towards bag model EoS

• Dependence on 𝛿 is mild

• Approach to the Stefan-Boltzmann limit is too fast

• Peak in energy density, not seen on the lattice

Lattice data from 1309.5258 (Wuppertal-Budapest)



Nature of the transition

Filling fraction = 
<𝑉ℎ𝑎𝑑>

𝑉
Mean hadron mass < m >

• Bags occupy almost whole space at large temperatures

• Strongest changes take place in the vicinity of 𝑇𝐻

• Heavy bags contribute dominantly at high temperatures



Nature of the transition

Hadron number density 𝑛

• < 𝑣 > → ∞ for 𝛿 < −7/4 and < 𝑣 > → 𝑉0 for 𝛿 > −7/4

• At 𝛿 < −7/4 and 𝑇 → ∞ whole space occupied by arbitrary large 
bags with QGP

Mean hadron volume < 𝑣 >



Conserved charges susceptibilities

Available from lattice QCD, not considered in this type of model before

Qualitatively compatible with lattice QCD



Bag model with massive quarks

Main source of quantitative disagreement comes from inaccuracy of the 
standard MIT bag model with massless quarks for describing QGP

Heavy-bag model: bag model EoS with non-interacting massive
quarks and gluons and the bag constant

Quasiparticle models suggest sizable thermal masses of quarks and 
gluons in high-temperature QGP [Peshier et al., PLB ’94; PRC ’00; PRC ‘02]

[Ivanov et al., PRC 72, 025804 (2005)]

Massive quarks and gluons instead of massless ones:



Bag model with massive quarks

Introduction of constituent masses leads to much better description of QGP

Parameters for the crossover model:



Hagedorn model: Thermodynamic functions

Pressure 𝑝/𝑇4 Energy density 𝜀/𝑇4

• Semi-quantitative description of lattice data

• Peak in energy density gone!



Hagedorn model: Thermodynamic functions

Trace anomaly (𝜀 − 3𝑝)/𝑇4 Speed of sound 𝑐𝑠
2 = 𝑑𝑝/𝑑𝜀



Hagedorn model: Susceptibilities

𝜒2
𝐵 𝜒2

𝑄
𝜒2

𝑆

𝜒11
𝐵𝑄

𝜒11
𝑄𝑆 −𝜒11

𝐵𝑆

Lattice data from 1112.4416 (Wuppertal-Budapest), 1203.0784 (HotQCD) 



Hagedorn model: Baryon-strangeness ratio

Useful diagnostic of QCD matter
[V. Koch, Majumder, Randrup, PRL 95, 182301 (2005)]

Well consistent with lattice QCD



Hagedorn model: Higher-order susceptibilities

Higher-order susceptibilities are particularly sensitive probes of the 
parton-hadron transition and possible remnants of criticality at 𝜇𝐵 = 0

net baryon 𝜒4
𝐵/𝜒2

𝐵 net strangeness 𝜒4
𝑆/𝜒2

𝑆

• Drop of 𝜒4
𝐵/𝜒2

𝐵 caused by repulsive interactions which ensure crossover 
transition to QGP

• Peak in 𝜒4
𝑆/𝜒2

𝑆 is an interplay of the presence of multi-strange hyperons 
and repulsive interactions

Lattice data from 1305.6297 & 1805.04445 (Wuppertal-Budapest), 1708.04897 (HotQCD) 



Hagedorn model: Higher-order susceptibilities

net baryon 𝜒6
𝐵/𝜒2

𝐵 net baryon 𝜒8
𝐵

• Strong non-monotonic dependence of higher-order baryon 
number susceptibilities 𝜒6

𝐵/𝜒2
𝐵 and 𝜒8

𝐵 well reproduced by the 
crossover model

• No critical point signal in lattice data?

Lattice data from 1805.04445 (Wuppertal-Budapest), 1708.04897 (HotQCD) 



Fourier coefficients at imaginary 𝜇𝐵

Additional model test provided by imaginary 𝜇𝐵 lattice data, where 
Fourier coefficients of the net baryon density were computed 

[Vovchenko, Pasztor, Fodor, Katz, Stoecker, 1708.02852]



Summary, Conclusions, Outlook

- HRG combined Hagedorn baglet model:                                     
Single partition function for low to high energy 
densities, be it a real phase transition or crossover

- Inclusion of exponentially increasing Hagedorn states 
as well as excluded volume corrections are in line 
with various high order susceptibilities of lattice QCD  

- No sign of critical phenomena

- … adjusting parameters for                                                    
hypothetical critical point at                                               
finite baryochemical potential                                                     
to make predictions for                                                         
cumulants



Chiral condensate

Picture: bag interior is chirally restored, vacuum is chirally broken

Proxy observable:        
<𝜓 𝜓>𝑇≠0

<𝜓 𝜓>𝑇=0
≅ 1 −

<𝑉ℎ𝑎𝑑>

𝑉
= 1 − 𝑓. 𝑓.

Lattice data from 1005.3508 (Wuppertal-Budapest), see also 1111.1710 (HotQCD) 

LQCD:



Susceptibility ratios

lattice: Bellwied et al., PRL 111(2013) 202302 lattice: Borsanyi et al., PRL 111(2013) 062005



Transport Coefficients of Hadronic 

Matter near 
J. Noronha-Hostler, J. Noronha, CG, 

PRL103:172302 (2009)

While both η (due to the 
small MFP of HS) and s 
increase with increasing T, 
the entropy increases quicker 
close to Tc, which decreases 
η/s.

of a hadron gas 
including HS matches well 
with the lattice at 

HRG

HS



Basics: Build up and decay of Hagedorn states

M.Beitel, K: Gallmeister, CG, PRC 90 (2014) 045203



Hagedorn Bootstrap

Assumption: only 2-body (detailed balance!)

Input: known hadrons (UrQMD/GiBUU/PDG)

Bootstrap equation

cf.: S. Frautschi, PRD 3 (1971) 2821

C. Hamer, S. Frautschi, PRD 4 (1971) 2125

J. Yellin, NPB 52 (1973) 583

non-linear integral equation, Volterra type



Divergence

exponential Hagedorn increase vs. thermal Boltzmann decrease



Divergence



Divergence Boundary

Hades,

Au(1.23AGeV)Au

preliminary



Application of Hagedorn States

Decay cascade

Box calculations

fast equilibration (~5fm)

Full dynamical calculation

Au(1.23 AGeV)Au

large densities

HADES, ratio phi/K-

Hagedorn decays yield thermal(-like) spectra!


