

Femtoscopic measurements from LHC to NICA

Adam Kisiel

Faculty of Physics Warsaw University of Technology

Supported by the Polish National Science Centre grants no. 2017/27/B/ST2/01947 and 2016/22/M/ST2/00176

LHC, RHIC, SPS, NICA, FAIR complementary

Detector evolution

- Collider geometry
- Good tracking in high track density
- Excellent PID at low $p_{\rm T}$
- Similar set of detectors at large range of collision energies

FD

Unique system at NICA and FAIR

I.C. Arsene at al., Phys. Rev. C75 (2007) 24902.

Heavy-ion collision evolution

Adam Kisiel (WUT)

Hirschegg 2019, 15 Jan 2019

5/38

Thermal emission from collective medium

- A particle emitted from a medium will have a collective velocity $\beta_{\rm f}$ and a thermal (random) one $\beta_{\rm t}$
- As observed p_T grows, the region from where pairs with small relative momentum can be emitted gets smaller and shifted to the outside of the source

Adam Kisiel (WUT)

Measuring space-time extent: femtoscopy

- Use two-particle correlation, coming from the interaction Ψ (quantum statistics (HBT), coulomb and/or strong)
- Measure C(q)
- Try to invert the Koonin-Pratt eq. to gain information about S from known Ψ and measured C

Reference frames for femtoscopy

$$m_{\rm T} = \sqrt{k_{\rm T}^2 + m_{\pi}^2}$$

Longitudinally Co-Moving System (LCMS):

 $p_{1,long} = -p_{2,long}$

- For charged pions measurement in 3 dimensions, giving 3 independent sizes in Longitudinally Co-Moving System
- The Bertsch-Pratt decomposition of *q*:
 - Long along the beam: sensitive to longitudinal dynamics and evolution time
 - Out along $k_{\rm T}$: sensitive to geometrical size, emission time and space-time correlation
 - Side perpendicular to Long and Out: sensitive to geometrical size
- For statistically challenged analyses, measurement in one dimension (giving only one size) in Pair Rest Frame

$m_{\rm T}$ dependence at RHIC

 A clear m_T dependence is observed, for all femtoscopic radii and for all particle types: but is it hydrodynamic like? And can we tell?

Adam Kisiel (WUT)

Hirschegg 2019, 15 Jan 2019

Emission duration

- Particles emitted "earlier" will travel some distance in the "out" direction (direction of velocity β)
- Radii have components from:
 - Geometrical size *x* (width of the space point distribution)
 - Emission duration *t* (width of the emission time distribution)
 - Space-time correlations

$$R_{out} = var\{x\} + \beta var\{t\} - \langle \beta t x \rangle$$
$$R_{side} = var\{x\}$$

• What will R_{out}/R_{side} be?

RHIC Hydro-HBT puzzle

First hydro calculations struggled to describe femtoscopic data: predicted too small R_{sider} too large R_{out} – too long emission duration

 R_{out}/R_{side} sensitive to emission duration, which is large for first order phase tr.

Adam Kisiel (WUT)

Hirschegg 2019, 15 Jan 2019

Revisiting hydrodynamics assumptions

- Data in the momentum sector (p_T spectra, elliptic flow) well described by hydrodynamics, why not in space-time?
- Usually initial conditions do not have initial flow at the start of hydrodynamics (~1 fm/c) they should.
- Femtoscopy data rules out first order
 phase transition at RHIC and LHC –
 smooth cross-over is needed
- Resonance propagation and decay as well as particle rescattering after freezeout need to be taken into account: similar in effects to viscosity

Expectations for the LHC

- Lessons from RHIC:
 - "Pre-thermal flow": strong flows already at $\tau_0=1~{\rm fm/c}$
 - EOS with no first-order phase transition
 - Careful treatment of resonances important

- Extrapolating to the LHC:
 - Longer evolution gives larger system \rightarrow all of the 3D radii grow
 - Stronger radial flow \rightarrow steeper $k_{\rm T}$ radii dependence
 - − Change of freeze-out shape → lower $R_{\text{out}}/R_{\text{side}}$ ratio

Adam Kisiel (WUT)

Hirschegg 2019, 15 Jan 2019

Model multiplicity and $m_{\rm T}$ dependence

For high multiplicity AA collisions where hydro is applicable:

- Strong flows result in clear m_T
 dependence (power-law)
- Dependence is most steep in *long*
- All radii scale
 linearly with cube
 root of final state
 multiplicity

AK, M.Gałażyn, P.Bożek; <u>Phys.Rev.C90 (2014) 6, 064914</u>

ALICE Data on radii vs. centrality and k_T

- Femtoscopic radii vs. $k_{\rm T}$ for 7 centrality classes in central rapidity region
- Radii universally grow with event multiplicity and fall with pair momentum
 - Both dependencies in agreement with calculations from collective models (hydrodynamics), both quantitatively and qualitatively
- When compared to results from RHIC all expected trends visible (larger size, steeper $k_{\rm T}$ dependence, $R_{\rm out}/R_{\rm side} \sim 1$)

Freeze-out shape evolution

- Values of R_{out}/R_{side} below unity observed, decrease with centrality
- Reproduced by hydrodynamics
- Hydro interpretation: space-time correlation at freeze-out important – freeze-out changes from outside-in or flat at RHIC to inside-out at LHC

Investigating phase transition

- Simulation for the energies at STAR BES
 - First order phase transition expected at NICA
 - Sensitivity to the order of transition shown for femtoscopic radii
 - Importance of energy scan

m_{T} scaling for heavier particles

Emission delay in data

- ALICE kaon data in hydro-based parameterization: kaons emitted on average later than pions.
- It comes from rescattering via K* resonance (**not included** in blastwave or Therminator 2 or hydro)

method	T (GeV)	α_{π}	α_{K}	τ_{π} (fm/c)	$\tau_K (\mathrm{fm}/c)$
fit with BW Eq. (8)	0.120	-	-	9.6 ± 0.2	10.6 ± 0.1
fit with BW Eq. (8)	0.144	-	-	8.8 ± 0.2	9.5 ± 0.1
fit with Eq. (9)	0.144	5.0	2.2	9.3 ± 0.2	11.0 ± 0.1
fit with Eq. (9)	0.144	4.3 ± 2.3	1.6 ± 0.7	9.5 ± 0.2	11.6 ± 0.1

Table 4: Emission times for pions and kaons extracted using the Blast-wave formula Eq. (8) and the analytical formula Eq. (9).

V.M. Shapoval, P. Braun-Munzinger, Iu.A. Karpenko, Yu.M. Sinyukov; Nucl.Phys. A929 (2014) 1-8

Adam Kisiel (WUT)

Hirschegg 2019, 15 Jan 2019

Accessing emission delays

18 April 1996

PHYSICS LETTERS B

ELSEVIER

Physics Letters B 373 (1996) 30-34

How to measure which sort of particles was emitted earlier and which later

R. Lednický¹, V.L. Lyuboshitz², B. Erazmus, D. Nouais

Laboratoire SUBATECH, Université de Nantes/Ecole des Mines de Nantes/IN2P3/CNRS. 4 rue Alfred Kastler, La Chantrerie, 44070 Nantes Cedex 03, France

Received 24 November 1994; revised manuscript received 16 January 1996 Editor: R.H. Siemssen

Abstract

A method allowing to directly measure delays in the emission of particles of different types at time scales as short as 10^{-23} -10⁻²² s is suggested.

Space and time asymmetry

- The non-identical particle femtoscopy sensitive to the emission asymmetry between particle types, possible because they are not identical
- Measurement sensitive to the difference of the spatial and time asymmetries, not possible to distinguish between them

$$\mu_{out} = \langle r_{out}^* \rangle = \langle \gamma r_{out} - \beta \gamma \Delta t \rangle$$

- "Spatial" asymmetry r_{out} arises in flowing medium, difficult to produce otherwise
- "Time" asymmetry Δt may have various origins, some not connected to flow

Collectivity and emission asymmetry

- As particle mass (or p_T) grows, average emission point moves more "outwards" - origin of this "emission asymmetry" the same as m_T scaling
 - Average emission points for primordial particles with same velocity but different mass:

Pions $\langle x_{out}^{\pi} \rangle$ Kaons $\langle x_{out}^{K} \rangle$ Protons $\langle x_{out}^{p} \rangle$ 2.83 fm4.47 fm5.61 fmAsymmetry: $\langle r_{out}^{\pi K} \rangle \approx \langle x_{out}^{\pi} \rangle - \langle x_{out}^{K} \rangle$

- Heavier particles (resonances) are pushed even further out
- Significant difference between particles' average emission points at same velocity, different mass

AK, PRC 81 (2010) 064906

Pion-kaon in correlation from Coulomb

 $C_l^m(q) = \int C(\vec{q}) Y_l^m(\cos(\theta), \phi) d\phi d\cos(\theta)$

- The pion-kaon correlation dominated by Coulomb (effect is quite narrow and opposite for same-sign and opposite-sign pairs)
- Only the I=0,m=0 and I=1,m=1 real components sufficient for analysis
- I=0,m=0 component sensitive to overall system size
- I=1,m=1 component maximizes sensitivity to emission asymmetry
- Higher I finer details of correlation
 not analyze here

Sensitivity to emission asymmetries

- Increasing emission asymmetry mainly affects Re{C₁¹}
- No asymmetry gives flat Re{C₁¹}
- Fitting the two components allows to extract asymmetry

Simulations in Therminator2

- Introduce "ad-hoc" time delay to mimic rescattering
- Introduction of time delay has little influence on size. Width of time delay dist. also small effect
- Emission asymmetry directly sensitive to time delay introduced in the calculation, as expected
- Direct measurement of emission time delays possible also for heavy-ion environment with flow (but model dependent)

Linearity of response

- Difference between "default" calculation and one with time delay plotted vs. the introduced time delay
- Clear monotonic, linear, one-to-one correspondence observed, regardless of the system size. Very robust probe.

Comparison to data

- ALICE has shown first pion-kaon results from LHC at QM2018
- System size well reproduced (similarly to identical pion and kaon femtoscopy)
- Emission asymmetry in "default" case larger than in data
- Asymmetry with 2.1 fm/c kaon delay consistent with data: internal consistency with identical kaon femtoscopy

Ashutosh K. Pandey (ALICE); QM2018

(Anti-)Baryon production in HIC

- Similar no. of baryons and antibaryons produced at RHIC and LHC, at low-p_T, PID needed (STAR, ALICE)
- HIC are matter-antimatter pair factories (p, Λ, Ξ, Ω, ...)

Adam Kisiel (WUT)

Hirschegg 2019, 15 Jan 2019

Baryon femtoscopy

• Femtoscopy: use two-particle correlation function C and known interaction Ψ to extract information on the source emission function S

 $C(\vec{q}) = \int S(\vec{r}) |\Psi(\vec{q},\vec{r})|^2 d^4 r$ (Koonin-Pratt equation)

• The procedure can be reversed: study Ψ with known S

L&L model: analytic CF for strong int.

$$C(k^*) = 1 + \sum_{S} \rho_{S} \left[\frac{1}{2} \left| \frac{f^{S}(k^*)}{r_0} \right|^2 \left(1 - \frac{d_0^{S}}{2\sqrt{\pi}r_0} \right) + \frac{2\Re f^{S}(k^*)}{\sqrt{\pi}r_0} F_1(Qr_0) - \frac{\Im f^{S}(k^*)}{r_0} F_2(Qr_0) \right]$$

- A sharp peak (depression) at low k*, for positive (negative) value of Re(f₀) (width up to 100 MeV/c)
- A broad depression at larger k* for non-zero values of Im(f₀) (baryon annihilation) (width – several hundred MeV/c)

R. Lednicky and V. L. Lyuboshits, Sov. J. Nucl. Phys. 35, 770 (1982). Adam Kisiel (WUT) Hirschegg 2019, 15 Jan 2019

Correlations for K⁰_s-K^{ch}

• Correlation function from strong interaction well described by theoretical formula, dominated by $a_0(980)$ resonance, sensitive to the exact values of resonance parameters

Radii for K⁰_s-K^{ch} correlations

- Radii for K⁰_S-K^{ch} expected same as in K⁰_S-K⁰_S and K^{ch}-K^{ch}
- ALICE data favors Achasov a₀ resonance parameters

Measuring **BB** in ALICE

- Recent ALICE measurement of baryon-(anti-)baryon correlations
 - 6 centralities, 2 collision energies, 3 baryon-antibaryon systems (+3 baryon-baryon as well, not shown here)
- Employed dedicated PID procedures of ALICE
 - Protons measured directly in TPC, also used TOF for PID
 - Lambdas measured via V0 decay topology with TPC, PID enhanced by TOF as well
- Complete set of $p\overline{p}$, $p\overline{\Lambda}$, $\Lambda\overline{\Lambda}$ correlation functions
 - In fitting used spin-averaged (f_0 , d_0), separate sets for $p\overline{\Lambda}$, $\overline{\Lambda \Lambda}$ and a separate set for all higher-mass residual pairs

Residual correlation web

Adam Kisiel (WUT)

Baryon-Antibaryon in ALICE

- All combinations of baryonantibaryon correlation functions with pairs containing protons and lambdas
- Fit fully including the web of residual correlations
- Combined fit to 6 centralities x
 2 collision energies x 3 systems
- Interaction parameters free in the fit (3 sets)
- Sizes constrained to m_T scaling predictions

Measurement of strong BB interaction

- Estimation of the scattering length and effective range
- Assumption of d₀=0 not necessary
- Non-zero negative value of the real part of f_0
- Non-zero value of imaginary part of f₀ (annihilation), comparable for all pair types

Comparison to other measurements

- ALICE measurement competitive in accuracy to world data on baryon-antibaryon interaction
- Real part of f₀ for baryon-antibaryon comparable value but opposite sign to baryon-baryon

Summary

- Femtoscopy a significant part of the physics message from STAR and ALICE – similar possibilities for MPD
- Sensitivity to first order phase transition of identical pion femtoscopy – used in STAR and ALICE, can be cross-checked in MPD
- Non-identical particle correlations sensitive to emission time ordering and the existence and duration of hadronic rescattering phase
- Unique possibility to study baryon and antibaryon interaction

 especially interesting in the maximum baryonic potential
 environment at MPD