
Parity Doubling in QCD Thermodynamics

Chihiro Sasaki Institute of Theoretical Physics University of Wroclaw

Spectra in a chirally restored world

□Lowest scalar meson \rightarrow O(4) vector with pion □Parity partners degenerate \rightarrow chiral partners □QCD ground-state particles: pions & nucleons

Lattice QCD tells us ...

Spatial correlations [DeTar-Kogut, 1987]

□Temporal correlations [FASTSUM Coll., 2015-17: mpi≈400 MeV, mk≈500 MeV, Wilson fermions, Tch=185 MeV]

Non-SCB mass of nucleons How to assign 2 indep. rotation to 2 nucleons?

$$\begin{split} \psi_{1L} &\to g_{l} \psi_{1L} , \quad \psi_{1R} \to g_{r} \psi_{1R} \sim \psi_{1L} : (1/2,0) \quad \psi_{1R} : (0,1/2) \\ \psi_{2L} \to g_{r} \psi_{2L} , \quad \psi_{2R} \to g_{l} \psi_{2R} \sim \psi_{2L} : (0,1/2) \quad \psi_{2R} : (1/2,0) \\ \mathcal{L}_{m} &= m_{0} \left(\bar{\psi}_{2} \gamma_{5} \psi_{1} - \bar{\psi}_{1} \gamma_{5} \psi_{2} \right) \Rightarrow m_{N_{\pm}} = \frac{1}{2} \left[\sqrt{c_{1} \sigma^{2} + 4m_{0}^{2}} \mp c_{2} \sigma \right] \\ & \left[\text{DeTar-Kunihiro, 1989} \right] \end{split}$$

□SU(3): mass relatoins for octet & decuplet

- Gell-Mann—Okubo mass formula
- Gell-Mann's equal spacing rule
- Comparison to FASTSUM's results → strong mpi dep., Ω - mass?
 [CS, 2017]

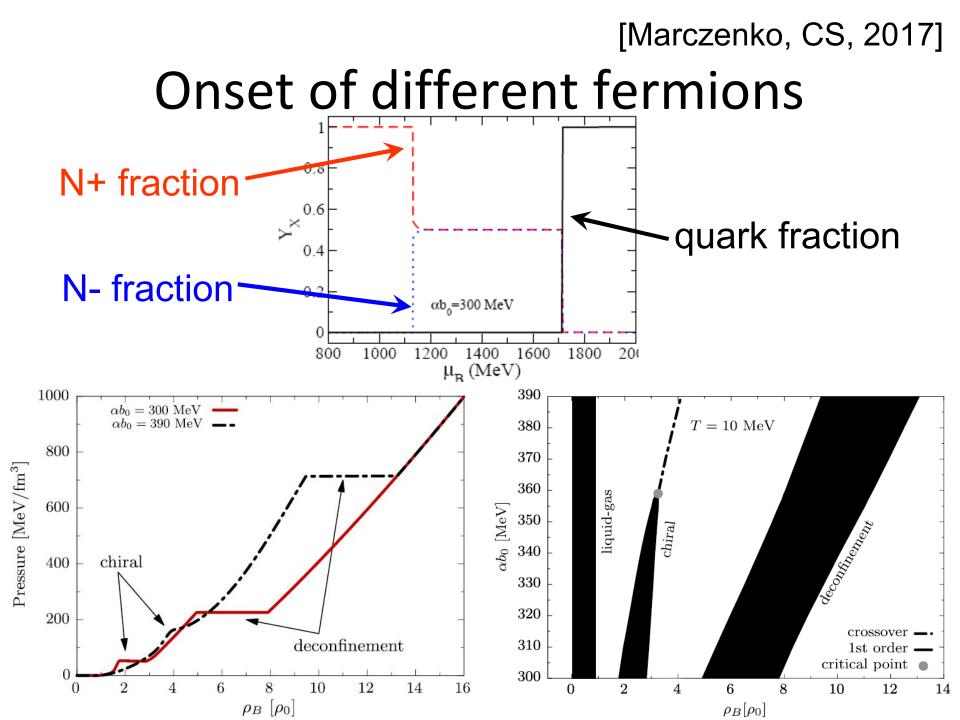
1. Parity doubling of nucleons

How to model dense QCD?

□Lattice simulations invalid → model analyses
□Good model must possess

Correct properties of nuclear ground state

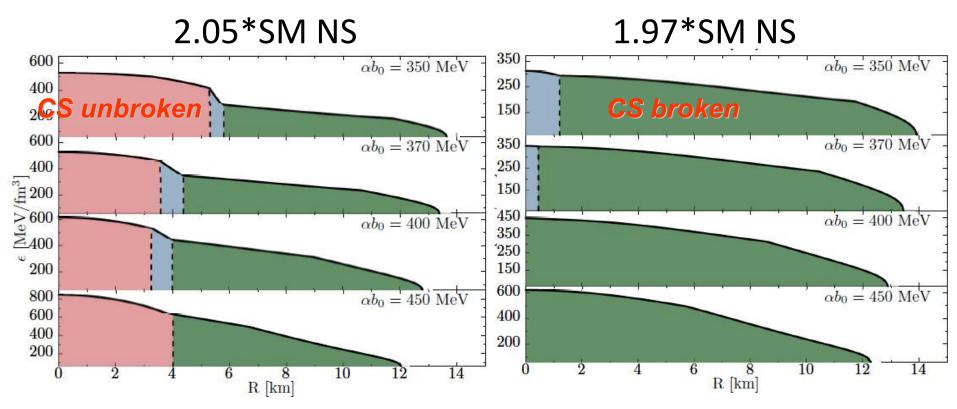
✓ Saturation density, binding energy, compressibility

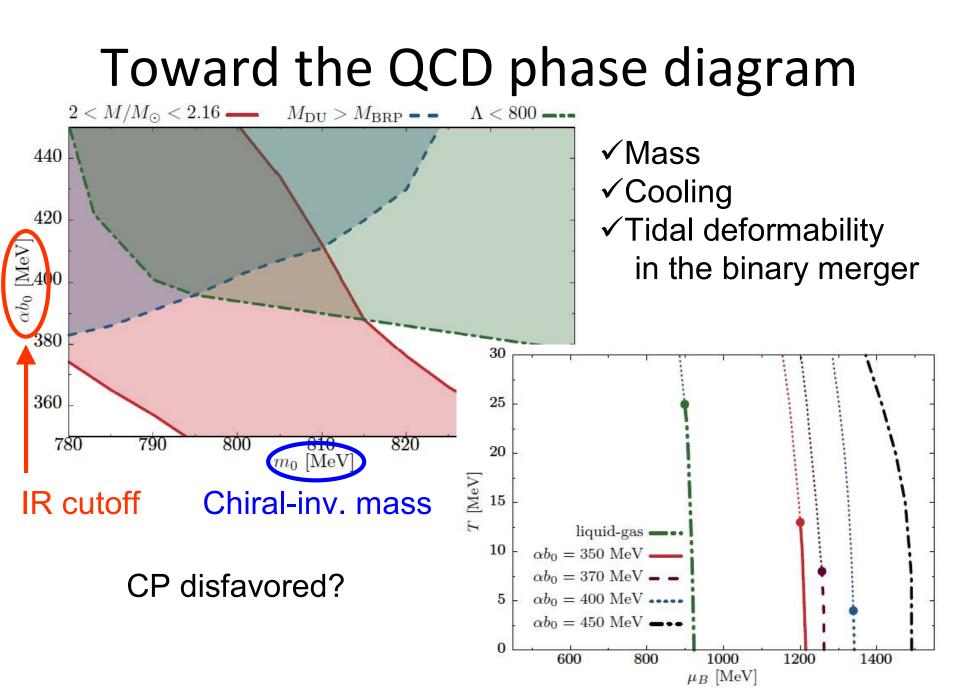

- ✓ Rather big chiral-inv. mass m0 ≈500-800 MeV favored
 [Zschiesche et al. (07), Gallas et al. (11)]
- Correct degrees of freedom

✓ Nucleons at low density/quarks at high density

 \rightarrow How to realize the 2nd property?

[Benic et al. 2015] Quark-nucleon hybrid model


How to suppress quarks at low density? IR/UV cutoff "b" in Fermi dist. functions From const. "b" to a VEV of a scalar field b Chiral & deconf. p.t. in a single framework $\int_{0}^{(b)} dp f_N(p;T,\mu) \to \int_{0}^{0} dp f_N(p;T,\mu) = 0$ $\int_{\langle b \rangle}^{\infty} dp \, f_Q(p;T,\mu) \to \int_0^{\infty} dp \, f_Q(p;T,\mu)$



[Marczenko, Blaschke, Redlich, CS, 2018] Neutron stars

 $\Box \beta$ -equilibrium and charge neutrality

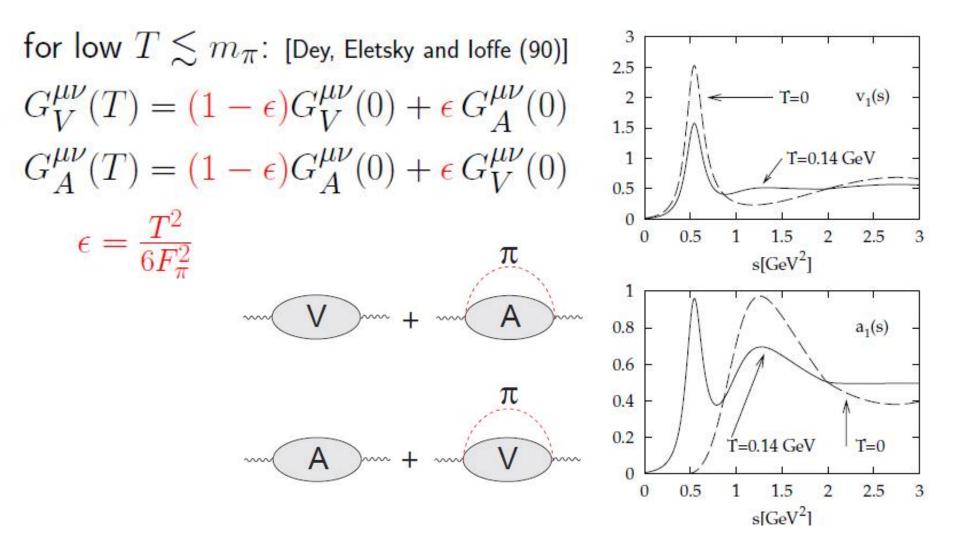
□Constraints on the mass and compactness of a star → hadronic scenario w/o deconf.quarks

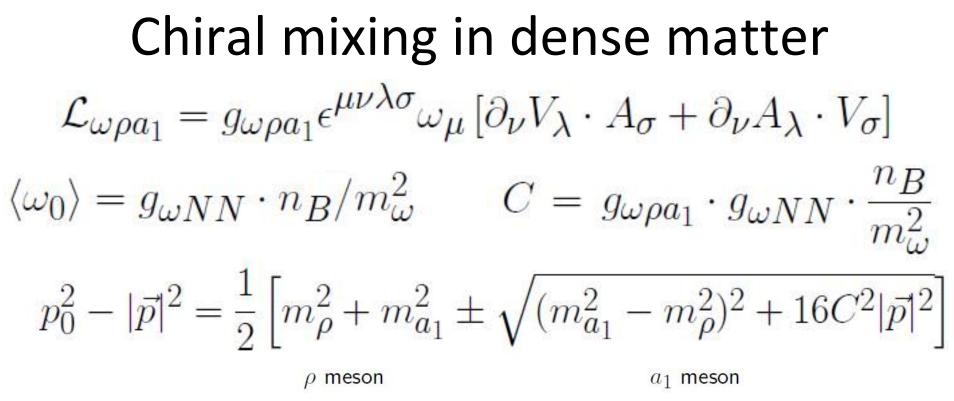
2. Parity doubling of mesons

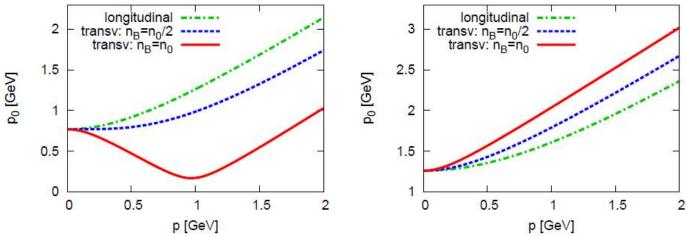
[Bando et al. (1985)] Hidden local symmetry Extension of non-linear chiral Lagrangian Vector mesons as dynamical gauge bosons $U = \xi^2 = e^{2i\pi/F_\pi} \quad \Rightarrow \quad U = \xi_L^{\dagger} \xi_R \,, \quad \xi_{L,R} = e^{i\sigma/F_\sigma} e^{\pm i\pi/F_\pi}$ $U \to g_L U g_R^{\dagger} \qquad \xi_{L,R} \to h \cdot \xi_{L,R} \cdot g_{L,R}^{\dagger}$ $h \in [SU(N_f)_V]_{\text{local}}, \quad g_{L,R} \in [SU(N_f)_{L,R}]_{\text{global}}$ $SU(N_f)_L^{\text{chiral}}$ $SU(N_f)_V^{\text{HLS}}$ $SU(N_f)_R^{\text{chiral}}$ $\xi_{R}(\sigma,\pi)$

[Bando et al. (1985)]

Vector meson dominance

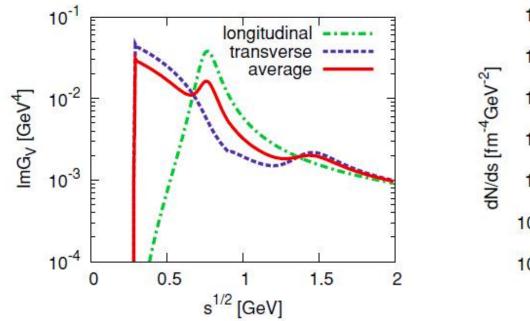

- **3** parameters at tree: $F\pi$, $a=(F\rho/F\pi)^2$, g
- Phenomenology with a=2
 - Universality of ρ coupling $g_{\rho\pi\pi} = g$
 - KSRF relation $m_{
 ho}^2 = 2g_{
 ho\pi\pi}^2 F_{\pi}^2$
 - ho meson dominance of pion EM FF $g_{\gamma\pi\pi} = 0$

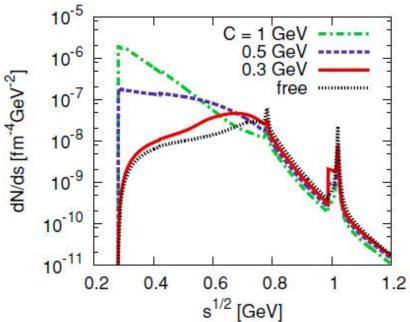

GHLS at 1 loop [Harada and CS (2006)]


- 1st and 2nd Weinberg SR, intact at 1 loop $F_{\pi}^{2} + F_{A_{1}}^{2} = F_{\rho}^{2}, \quad F_{A_{1}}^{2}M_{A_{1}}^{2} = F_{\rho}^{2}M_{\rho}^{2}$
- Fate of VMD: valid when Ma1/M $\rho \rightarrow 1$

Chiral mixing in a medium

Chiral mixing in hot matter





Chiral mixing in dense matter

 $\frac{-D_A}{D_V D_A - 4C^2 \bar{p}^2}$

Chiral mixing in a medium

V-A mixing at finite T [Harada, CS and Weise ('08)]

- Dey-Eletsky-Ioffe theorem: $\varepsilon = T^2/6Fpi^2 \rightarrow 1/2$ (?)
- Higher T: $\pi \rho$ a1-int. reduced \rightarrow V-A mixing gone

 $\Box V-A mixing at finite \mu$ [Harada and CS ('09)]

- ω ρ a1 at tree from WZW [Kaiser and Meissner ('90)]
- V-A mixing → modified disp.relations → Not BW!
 AdS/QCD [Domokos et al. ('07)] → strong C = 1 GeV at P □
 Chiral Walecka → weak C = 0.1 GeV at P □
- Role of high-lying states vs. large Nc

 $C_{hQCD} \sim C_{\omega\rho a_1} + \sum_n C_{\omega^n \rho a_1} \rightarrow \text{vector condensation at } \rho_{\circ}?!$

ω vs. ρ mesons

[CS et al. (2011-2013)] HLS with nucleons

Nucleon parity doublers [DeTar and Kunihiro ('89)] $m_{N_+} = \mp g_2 F_{\pi} + \sqrt{(g_1 F_{\pi})^2 + m_0^2},$ \Box ChPT with HLS \rightarrow heavy baryon reduction $p^{\mu} = m_0 v^{\mu} + k^{\mu} \qquad {\binom{B_+}{B}} = \exp[im_0 v \cdot x] {\binom{N_+}{N}}$ $\mathcal{L}_N = i\bar{B}v^{\mu}D_{\mu}B - \Delta m_+\bar{B}_+B_+ - \Delta m_-\bar{B}_-B_ + g_V \bar{B} v^\mu \hat{\alpha}_{\parallel \mu} B + g_A \bar{B} \Big(2S^\mu \rho_3 \tanh \delta$ $\cosh\delta = \frac{m_{N_+} + m_{N_-}}{2m_-}$ $+ v^{\mu} \rho_1 \frac{1}{\cosh \delta} \hat{\alpha}_{\perp \mu} B,$ $\Delta m_{\pm} = m_{N_{\pm}} - m_0$

[CS et al. (2011-2013)] *W* vs. *P* mesons

 $\Box \rho$ as iso-triplet vs. ω as iso-singlet

 \Box Consider HLS Lag. with $SU(2)_V \times U(1)_V$

- Nucleon axial coupling $g_{AN_+N_+} = -g_{AN_-N_-} = g_A \tanh \delta$
- Nucleon vector coupling

 $g_{\rho N_+N_+} = g_{\rho N_-N_-} = (g_{V\rho} - 1)g_{\rho} \quad g_{\omega N_+N_+} = g_{\omega N_-N_-} = (g_{V\omega} - 1)g_{\omega}$ $\Box 1 \text{-loop RGE} \rightarrow \text{IR FP} \quad a = 1 \quad \& \quad g_A = g_{V\rho} = 1$ whereas $g_{V\omega}$ doesn't run. $\rightarrow \rho$ decouples but ω doesn't. [Beane and van Kolck (1994)]

Onset of a light scalar

- 1. Scale invariance in non-linear Lag.
- 2. From non-linear to linear basis
- 3. No singularity in the theory
- Putting vector mesons [CS et al. (2011)]
 - Meson sector: *a* unconstrained
 - Nucleon sector: $g_A = g_{V
 ho} = 1$
 - $g_{V\omega}$ unconstrained

□ Running/walking → medium dependence

dilaton limit chiral restoration

$$T$$
 or ρ
 $NLSM \longrightarrow LSM \longrightarrow m_s > m_{pi}$
 $m_s > m_{pi}$ $m_s = m_{pi}$

Consequences?

Neutron star EoS

✓ 2 solar-mass, radius 10-12 km [Dong et al., ('13)]
 ✓ Tidal deformability, its density dep. [Ma et al., ('18)]
 ❑ Nucleon EM form factors

- Decreasing $\rho NN \rightarrow VMD$ violated? Contact int.?
- Holography → VMD [Sakai, Sugimoto; Hong et al.]

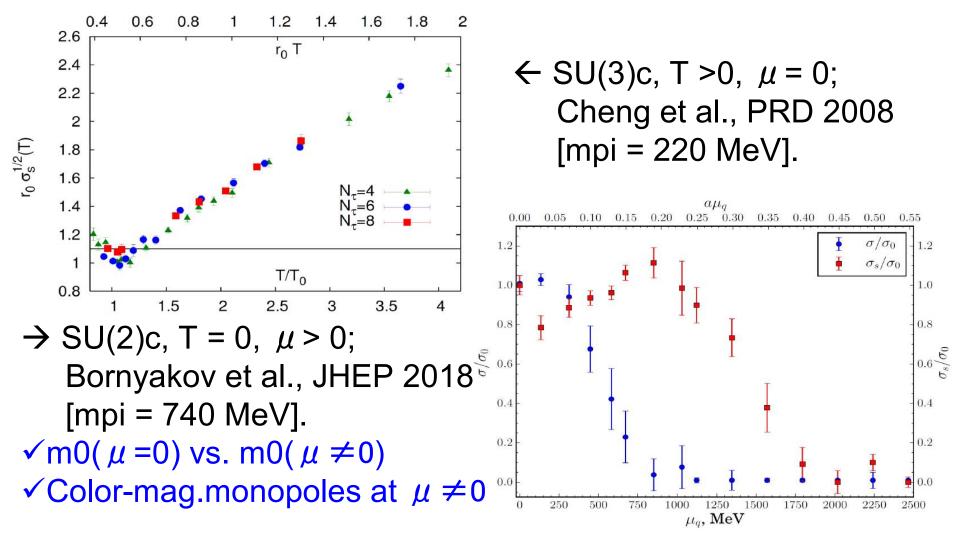
Large Nc
$$\bigvee^{\infty}$$
 $\stackrel{?}{=}$ \bigvee^{1} $\stackrel{}{\longrightarrow}$ $\stackrel{Nc = 3}{In progress}$
Caution! No KSRF II
 $\frac{m_{\rho}^2}{g_{\rho\pi\pi}^2 F_{\pi}^2} \Big|_{SS} \approx 3.0$

Summary

Parity doubling of baryons

• 2SM NS: chiral symmetric confined core

Parity doubling of vector mesons

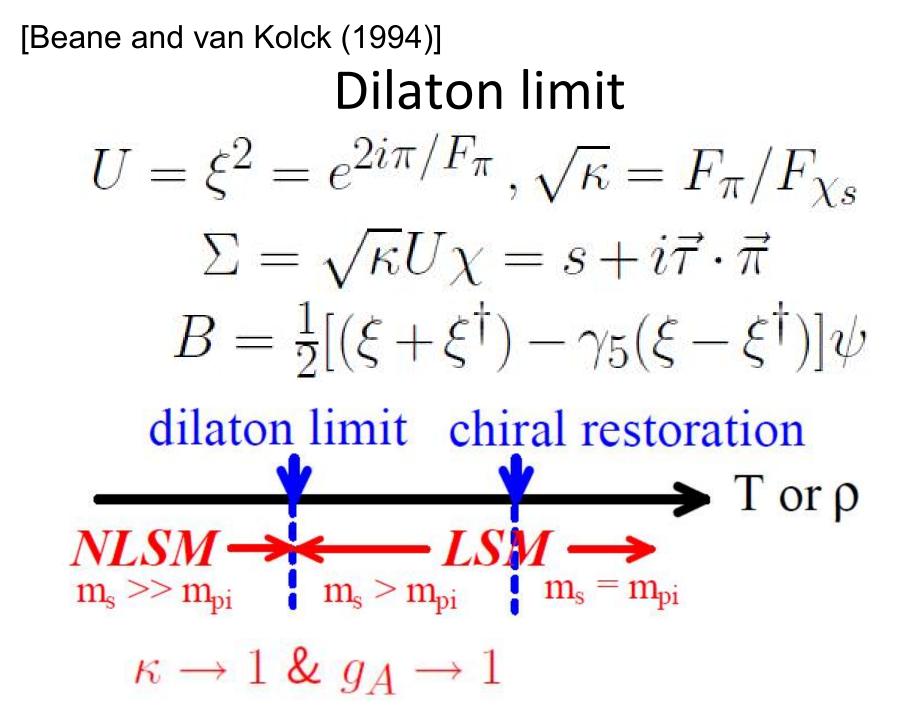

 Chiral mixing: temp.-induced vs. density-induced (decrease) (increase)

□ Role of the scalar, iso-vector/scalar mesons

- Onset of the light scalar meson near CS rest.
- ρ NN reduced, ω NN \approx const.
- Higher-lying states: explicit or integrated out

Backup

Fate of confinement: hot vs. dense \Box Non-pert. color-mag. sector \rightarrow perturbative!



Generalized GT relations

$$g_{A} \equiv \begin{pmatrix} g_{AN_{+}N_{+}} & g_{AN_{+}N_{-}} \\ g_{AN_{+}N_{-}} & g_{AN_{-}N_{-}} \end{pmatrix} = \begin{pmatrix} \tanh \delta & -\frac{1}{\cosh \delta} \\ -\frac{1}{\cosh \delta} & -\tanh \delta \end{pmatrix}$$

$$g_{\pi N_+N_+} = g_{AN_+N_+} \frac{m_+}{\sigma_0}, \quad g_{\pi N_-N_-} = g_{AN_-N_-} \frac{m_-}{\sigma_0},$$

$$g_{\pi N_+N_-} = g_{AN_+N_-} \frac{m_+ - m_-}{2\sigma_0}.$$

