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Defining Parton Distribution Functions (PDFs)

Since the discovery of quarks in DIS experiments at SLAC, PDFs always

occupied a key role in HEP

Large international effort aiming at their measurement

The target in the DIS experiments can be seen as a stream of partons

carrying a fraction x of the longitudinal momentum.

The momentum distribution functions of partons within the proton are

called Parton Distribution Functions (PDFs).

They represent probability densities to find a parton carrying a fraction x of

the nucleon momentum at squared energy scale Q2 = −q2.

the uncertainties in PDFs are the dominant, theoretical uncertainties in

Higgs couplings and the mass of the W boson.

Savvas Zafeiropoulos Lattice studies of pseudo-PDFs 2/42



Defining Parton Distribution Functions (PDFs)

Since the discovery of quarks in DIS experiments at SLAC, PDFs always

occupied a key role in HEP

Large international effort aiming at their measurement

The target in the DIS experiments can be seen as a stream of partons

carrying a fraction x of the longitudinal momentum.

The momentum distribution functions of partons within the proton are

called Parton Distribution Functions (PDFs).

They represent probability densities to find a parton carrying a fraction x of

the nucleon momentum at squared energy scale Q2 = −q2.

the uncertainties in PDFs are the dominant, theoretical uncertainties in

Higgs couplings and the mass of the W boson.

Savvas Zafeiropoulos Lattice studies of pseudo-PDFs 2/42



Defining Parton Distribution Functions (PDFs)

Since the discovery of quarks in DIS experiments at SLAC, PDFs always

occupied a key role in HEP

Large international effort aiming at their measurement

The target in the DIS experiments can be seen as a stream of partons

carrying a fraction x of the longitudinal momentum.

The momentum distribution functions of partons within the proton are

called Parton Distribution Functions (PDFs).

They represent probability densities to find a parton carrying a fraction x of

the nucleon momentum at squared energy scale Q2 = −q2.

the uncertainties in PDFs are the dominant, theoretical uncertainties in

Higgs couplings and the mass of the W boson.

Savvas Zafeiropoulos Lattice studies of pseudo-PDFs 2/42



Defining Parton Distribution Functions (PDFs)

Since the discovery of quarks in DIS experiments at SLAC, PDFs always

occupied a key role in HEP

Large international effort aiming at their measurement

The target in the DIS experiments can be seen as a stream of partons

carrying a fraction x of the longitudinal momentum.

The momentum distribution functions of partons within the proton are

called Parton Distribution Functions (PDFs).

They represent probability densities to find a parton carrying a fraction x of

the nucleon momentum at squared energy scale Q2 = −q2.

the uncertainties in PDFs are the dominant, theoretical uncertainties in

Higgs couplings and the mass of the W boson.

Savvas Zafeiropoulos Lattice studies of pseudo-PDFs 2/42



Defining Parton Distribution Functions (PDFs)

Since the discovery of quarks in DIS experiments at SLAC, PDFs always

occupied a key role in HEP

Large international effort aiming at their measurement

The target in the DIS experiments can be seen as a stream of partons

carrying a fraction x of the longitudinal momentum.

The momentum distribution functions of partons within the proton are

called Parton Distribution Functions (PDFs).

They represent probability densities to find a parton carrying a fraction x of

the nucleon momentum at squared energy scale Q2 = −q2.

the uncertainties in PDFs are the dominant, theoretical uncertainties in

Higgs couplings and the mass of the W boson.

Savvas Zafeiropoulos Lattice studies of pseudo-PDFs 2/42



Defining Parton Distribution Functions (PDFs)

Since the discovery of quarks in DIS experiments at SLAC, PDFs always

occupied a key role in HEP

Large international effort aiming at their measurement

The target in the DIS experiments can be seen as a stream of partons

carrying a fraction x of the longitudinal momentum.

The momentum distribution functions of partons within the proton are

called Parton Distribution Functions (PDFs).

They represent probability densities to find a parton carrying a fraction x of

the nucleon momentum at squared energy scale Q2 = −q2.

the uncertainties in PDFs are the dominant, theoretical uncertainties in

Higgs couplings and the mass of the W boson.

Savvas Zafeiropoulos Lattice studies of pseudo-PDFs 2/42



Uncertainties in PDFs

With the recent impressive development of NNLO higher-order calculations

that have provided the Higgs gluon fusion cross section at N3LO, with scale

uncertainties down to 2%

PDF uncertainties are now dominant for a number of crucial LHC processes

Quoting Anastasiou et al “Finally, the computation of the hadronic

cross-section relies crucially on the knowledge of the strong coupling

constant and the parton densities. After our calculation, the uncertainty

coming from these quantities has become dominant. Further progress in the

determination of parton densities must be anticipated in the next few years

due to the inclusion of LHC data in the global fits and the impressive

advances in NNLO computations, improving the theoretical accuracy of

many standard candle processes.”

Phys.Rev.Lett. 114 (2015) 212001
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From DIS to PDFs via factorization

The measurement of PDFs is made possible due to factorization theorems

Intuitively, factorization theorems (Collins, Soper and Sterman (1989)) tell us that the same

universal non-perturbative objects (the PDFs), representing long distance

physics, can be combined with many short-distance calculations in QCD to

give the cross-sections of various processes.

I σ = f ⊗H, where f are the PDFs, H is the hard perturbative part and

⊗ is convolution.

I PDFs truly characterize the hadronic target

I PDFs are essentially non-perturbative
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Lattice?

gluon quark

a

The natural ab-initio method to

study QCD non-perturbatively is on

the lattice. But ...

PDFs are defined as an expectation

value of a bilocal operator evaluated

along a light-like line.

Clearly, we can not evaluate this on

a Euclidean set-up.

Savvas Zafeiropoulos Lattice studies of pseudo-PDFs 5/42



Lattice?

gluon quark

a

The natural ab-initio method to

study QCD non-perturbatively is on

the lattice. But ...

PDFs are defined as an expectation

value of a bilocal operator evaluated

along a light-like line.

Clearly, we can not evaluate this on

a Euclidean set-up.

Savvas Zafeiropoulos Lattice studies of pseudo-PDFs 5/42



Lattice?

gluon quark

a

The natural ab-initio method to

study QCD non-perturbatively is on

the lattice. But ...

PDFs are defined as an expectation

value of a bilocal operator evaluated

along a light-like line.

Clearly, we can not evaluate this on

a Euclidean set-up.

Savvas Zafeiropoulos Lattice studies of pseudo-PDFs 5/42



Lattice traditionally

Mellin moments of PDFs via matrix elements (ME) of twist−2 operators.

Light cone PDF

f (0)(ξ)= 1
4π

∞∫
−∞

dω−e−iξP
+ω−〈P |T ψ̄(0, ω−, 0⊥)W (ω−, 0)γ+ λa

2 ψ(0)|P 〉C

where W (ω−, 0) = P exp
[
−ig0

∫ ω−

0
dy−A+

α (0, y−, 0>)Tα

]

Moment are defined as

a
(n)
0 =

∫ 1

0

dξξn−1
[
f (0)(ξ) + (−1)nf̄ (0)(ξ)

]
=

∫ 1

−1

dξξn−1f(ξ)

related to local ME 〈P |Oµ1,...,µn
0 |P 〉 = 2a

(n)
0 (Pµ1 ...Pµn − traces) where

Oµ1,...,µn
0 = in−1ψ̄(0)γ{µ1Dµ2 ...Dµn}λ

a

2
ψ(0)− traces
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Lattice traditionally

Would not be an issue if every moment were accessible because a probability

distribution is completely determined once all its moments are known.

These studies are limited to the first few (three) moments due to

I Bad signal to noise ratio

I Power-divergent mixing on the lattice (discretized space-time does not

possess the full rotational symmetry of the continuum).
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Global PDF fits

Realize a QCD analysis of hard-scattering measurements employing a

variety of hadronic observables

Parton densities parametrized @ an initial energy scale evolved up to the

scale of data via DGLAP eqs.

Build theoretical predictions for the observables.

Best fit parameters determined by the minimization of an appropriate figure

of merit (eg. χ2).

Many free parameters

Advanced techniques (eg. use of neural networks).
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Determination of PDFs from Experiment
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Figure 2.4: The PDF4LHC15 NLO PDFs at a low scale µ2 = Q2 = 4 GeV2 (left plot) and at µ2 = Q2 =
102 GeV2 (right plot) as a function of x. We show the uv and dv valence combinations, the ū, d̄, s and c sea
quark PDFs, and the gluon (note that the latter is divided by a factor 10).

are respectively related to the baryon octet �-decay constants, whose measured values are [28]

gA = a3 =

Z 1

0

dx�T3(x, µ2) = h1i�u+ � h1i�d+ = 1.2723 ± 0.0023 , (2.53)

a8 =

Z 1

0

dx�T8(x, µ2) = h1i�u+ + h1i�d+ � 2 h1i�s+ = 0.585 ± 0.025 . (2.54)

Fairly significant violations of SU(3) symmetry are advocated in the literature (see e.g. Ref. [205] for a
review). In this case, an uncertainty on the octet axial charge, which could be as large as 30% of the
experimental value of a8 in Eq. (2.54), see Ref. [206].

Experimental data. The bulk of the experimental information on polarized PDFs comes from
neutral-current (photon exchange) inclusive and semi-inclusive deep-inelastic scattering (DIS and SIDIS)
with charged lepton beams and nuclear targets. As photon scattering does not distinguish quarks and
antiquarks, inclusive DIS data constrain only the total quark combinations �q+, while SIDIS data
with identified pions or kaons in the final state constrain individual quark and antiquark flavors. In
principle, both DIS and SIDIS are also sensitive to the gluon distribution �g, as it directly enters the
factorized expressions of the corresponding structure functions beyond LO, and indirectly via DGLAP
evolution. In practice, the constraining power of DIS and SIDIS data on �g is rather weak because the
Q2 range covered by the data is limited, especially if one restricts to the kinematic region not a↵ected
by power-suppressed corrections and very precise data from JLab are therefore excluded.

Note that, in the case of SIDIS, a reliable knowledge of fragmentation functions (FFs) is required
in the factorized expressions of the corresponding observables. Since FFs are nonperturbative objects

27

Fits to experimental data

Determination of Parton distribution functions from Experiment

Global fits to experimental data Parton distributions and lattice QCD calculations: a community white paper arXiv:

1711.07916
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Figure 2.6: Same as Fig. 2.4, but for the polarized NNPDFpol1.1 NLO PDFs [16].
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Figure 2.7: (Left) The polarized gluon momentum distribution x�g from the DSSV14 (with 90% C.L. uncer-
tainty band) and NNPDFpol1.1 PDF sets at Q2 = 10 GeV2. The NNPDF3.1 positivity bound is also shown.
(Right) 90% C.L. areas in the plane spanned by the truncated moments of �g computed for 0.05  x  1 and
0.001  x  0.05 at Q2 = 10GeV2 [27].

• The 2012 STAR data sets on W production [232], included in NNPDFpol1.1, provide evidence of
a positive �ū distribution and a negative �d̄ distribution, with |�d̄| > |�ū| [16]. The size of the
flavor symmetry breaking for polarized sea quarks is quantified by the asymmetry �ū��d̄, which,
in the NNPDFpol1.1 analysis, turn out to be roughly as large as its unpolarized counterpart (in
absolute value) [11], though much more uncertain [234]. Even within this uncertainty, polarized

30

Fits to experimental data

Determination of Parton distribution functions from Experiment

Global fits to experimental data Parton distributions and lattice QCD calculations: a community white paper arXiv:

1711.07916
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Determination of PDFs from Experiment
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Figure 2.3: Comparison between the CT14, MMHT2014 and NNPDF3.1 NNLO PDF sets at Q = 100 GeV,
normalized to the central value of the latter. From top to bottom and from left to right we show the u, d̄ and
s quark PDFs as well as the gluon. The error bands indicate the 1-� PDF uncertainties associated with each
set. These PDF comparison plots have been produced using the APFEL-Web online plotting interface [199].

2.3.3 Polarized PDFs

Theoretical features. The dependence on the momentum fraction x, fixed by nonperturbative QCD
dynamics, should satisfy some theoretical constraints. First, PDFs must lead to positive cross-sections.
At leading order (LO), this implies that polarized PDFs are bounded by their unpolarized counterparts6,
|�f(x, µ2)|  f(x, µ2) [202]. Second, PDFs must be integrable: this corresponds to the assumption
that the nucleon matrix element of the axial current for each flavor is finite. Third, SU(2) and SU(3)
flavor symmetry, if assumed to be exact, imply that the zeroth moments of the nonsinglet C-even PDF
combinations, �T3 = �u+��d+ and �T8 = �u+ +�d+� 2�s+ (where �q+ = �q +�q̄, q = u, d, s),
are respectively related to the baryon octet �-decay constants, whose measured values are [28]

gA = a3 =

Z 1

0

dx�T3(x, µ2) = h1i�u+ � h1i�d+ = 1.2723 ± 0.0023 , (2.53)

a8 =

Z 1

0

dx�T8(x, µ2) = h1i�u+ + h1i�d+ � 2 h1i�s+ = 0.585 ± 0.025 . (2.54)

Fairly significant violations of SU(3) symmetry are advocated in the literature (see e.g. Ref. [203] for a
review). In this case, an uncertainty on the octet axial charge, which could be as large as 30% of the
experimental value of a8 in Eq. (2.54), see Ref. [204].

Experimental data. The bulk of the experimental information on polarized PDFs comes from
neutral-current (photon exchange) inclusive and semi-inclusive deep-inelastic scattering (DIS and SIDIS)

6Beyond LO, more complicated relations hold [202]; however they have little e↵ect on PDFs.

26

   

Parton distributions and lattice QCD calculations: a community white paper  

arXiv:1711.07916

Determination of Parton distribution functions from Experiment

Global fits to experimental data Parton distributions and lattice QCD calculations: a community white paper arXiv:

1711.07916
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Light-like is a NO-GO

Hadronic Tensor Methods

“Light-like” separated Hadronic Tensor K. F. Liu et al Phys.Rev.Lett. 72 (1994), A. J. Chambers et al

Phys.Rev.Lett. 118 (2017)

Ioffe Time Pseudo Distribution Methods

quasi-PDFs (X. Ji Phys.Rev.Lett. 110, (2013))

pseudo-PDFs (A. Radyushkin Phys.Lett. B767 (2017))

Similarly to a global QCD analysis of high energy scattering data, PDFs can

also be extracted from analyzing data generated by lattice-QCD calculation

of good lattice cross-sections Y.-Q. Ma and J.-W. Qiu Phys. Rev. Lett. 120 (2018)
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Formalism

Computing PDFs in LQCD we start from the equal time hadronic matrix

element with the quark and anti-quark fields separated by a finite distance.

For non-singlet parton densities the matrix element

Mα(z, p) ≡ 〈p|ψ̄(0) γα Ê(0, z;A)τ3ψ(z)|p〉

where Ê(0, z;A) is the 0→ z straight-line gauge link in the fundamental

representation, τ3 is the flavor Pauli matrix, and γa is a gamma matrix. We

can decompose the matrix element due to Lorentz invariance as

Mα(z, p) =2pαMp(−(zp),−z2) + zαMz(−(zp),−z2)
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Formalism

From the Mp(−(zp),−z2) part the twist-2 contribution to PDFs can be

obtained in the limit z2 → 0.

By taking z = (0, 0, 0, z3), α in the temporal direction i.e. α = 0, and the

hadron momentum p = (p0, 0, 0, p) the zα-part drops out.

The Lorentz invariant quantity ν = −(zp), is the ”Ioffe time” (B. L. Ioffe, Phys. Lett.

30B, 123 (1969)) and

〈p|ψ̄(0) γ0 Ê(0, z;A)τ3ψ(z)|p〉 = 2p0Mp(ν, z
2
3)
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Formalism

The quasi-PDF Q(x, p2) is related to Mp(ν, z
2
3) by

Q(x, p2) =
1

2π

∫ ∞

−∞
dν e−ixνMp(ν, [ν/p]

2)

Quasi PDF mixes invariant scales until pz is effectively large enough

While the pseudo-PDF has fixed invariant scale dependence

P (x, z2
0) =

1

2π

∫ ∞

−∞
dν e−ixνMp(ν, z

2
0)

ν

z23

p3 →∞

−z2
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Lattice QCD requirements

Largest momentum on the lattice aPmax = π/2 ∝ O(1)

a = 0.1fm → Pmax = 10Λ where Λ = 300 MeV

a = 0.05fm → Pmax = 20Λ

Large momentum is required to suppress high twist effects (quasi-PDFs) and

to provide a wide coverage of the Ioffe time ν

Pmax = 3 GeV easily achievable with moderate values of the lattice spacing

but still demanding due to statistical noise

Pmax = 6 GeV exponentially harder requiring very fine values of the lattice

spacing
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Signal to Noise

N̄
π

π

π

〈|CN (t)|2〉 ∼ e−3mπt

N

〈CN (t)〉 ∼ e−mN t

N N

Statistical accuracy drops exponentially with increasing momentum P

StN(O) =
〈O〉√
var(O)

∝ e−[EN (P )−3/2mπ ]t

G. Parisi (1984) P. Lepage (1989)
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Formalism

Ioffe time PDFs M(ν, z2
3) defined at a scale µ2 = 4e−2γE/z2

3 (at leading log

level) are the Fourier transform of regular PDFs f(x, µ2). (I.I. Balitsky and V.M. Braun, Nucl.

Phys. B311, 541 (1988), V. Braun, et. al Phys. Rev. D 51, 6036 (1995))

M(ν, z2
3) =

∫ 1

−1

dx f(x, 1/z2
3)eixν

Scale dependence of the Ioffe time PDF derived from the DGLAP evolution

of the regular PDFs.

Ioffe time PDFs evolution equation

d

d ln z2
3

M(ν, z2
3) = −αs

2π
CF

∫ 1

0

duB(u)M(uν, z2
3)

with B(u) =
[

1+u2

1−u

]
+

, CF = 4/3, and B(u) is the LO evolution kernel for

the non-singlet quark PDF (V. Braun, et. al Phys. Rev. D 51, 6036 (1995))
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Obtaining the Ioffe time PDF

z3 → 0⇒Mp(ν, z
2
3) =M(ν, z2

3) +O(z2
3)

But.... large O(z2
3) corrections prohibit the extraction.

Conservation of the vector current implies Mp(0, z
2
3) = 1 +O(z2

3) ,

but in a ratio z2
3 corrections (related to the transverse structure of the

hadron) might cancel (A. Radyushkin Phys.Lett. B767 (2017))

M(ν, z2
3) ≡ Mp(ν, z

2
3)

Mp(0, z2
3)

Much smaller O(z2
3) corrections and therefore this ratio could be used to

extract the Ioffe time PDFs

All UV singularities are exactly cancelled and when computed in lattice

QCD it can be extrapolated to the continuum limit at fixed ν and z2.
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Numerical implementation

First case study in an unphysical setup

Quenched approximation

323 × 64 lattices with a = 0.093fm.

mπ = 601MeV and mN = 1411MeV

Now employing dynamical ensembles (preliminary)

a(fm) Mπ(MeV) β L3 × T
0.127(2) 440 6.1 243 × 64

0.127(2) 440 6.1 323 × 96

0.094(1) 400 6.3 323 × 64

0.094(1) 280 6.3 323 × 64

0.094(1) 172 6.3 643 × 128

Table: Parameters for the lattices generated by the JLab/W&M collaboration using 2+1 flavors of clover Wilson
fermions and a tree-level tadpole-improved Symanzik gauge action. The lattice spacings, a, are estimated using the
Wilson flow scale w0. Stout smearing implemented in the fermion action makes the tadpole corrected tree-level clover
coefficient cSW used, to be very close to the value determined non-pertubatively with the Schrödinger functional method
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Results for the Re and Im parts of M(ν, z2
3)
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ν

Im M(ν, z2
3)

Curves represent Re and Im Fourier transforms of qv(x)= 315
32

√
x(1− x)3.

Considering CP even and odd combinations

I even: q−(x) = f(x) + f(−x) = q(x)− q̄(x) = qv(x)

I odd: q+(x) = f(x) = f(−x) = q(x) + q̄(x) = qv(x) + 2q̄(x)
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Results for the Im part of M(ν, z2
3)
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⌫

Curves represent the Im Fourier transforms of qv(x) = q(x)− q̄(x) and

q+(x) = q(x) + q̄(x) = qv(x) + 2q̄(x) respectively.

The agreement with the data is strongly improved if we use a non-vanishing

antiquark contribution, namely q̄(x) = ū(x) + d̄(x) = 0.07[20x(1− x)3].
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Results for the Re and Im parts of M(ν, z2
3)
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⌫

Data as function of the Ioffe time. A residual z3-dependence can be seen.

This is more visible when, for a particular ν we have several data points

corresponding to different values of z3.

Different values of z2
3 for the same ν correspond to the Ioffe time

distribution at different scales.
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Residual z3-dependence

Is the residual scatter in the data points consistent with evolution? By

solving the evolution equation at LO, the Ioffe time PDF at z′3 is related to

the one at z3 by

M(ν, z′
2
3)=M(ν, z2

3) − 2

3

αs
π

ln(z′3
2
/z2

3)

∫ 1

0

duB(u)M (uν, z2
3)

Only applicable at small z3

Check its effect using data at values of z3 ≤ 4a corresponding to energy

scales larger than 500 MeV.

We fix the point z′3 at the value z0 = 2a corresponding, at leading

logarithm level, to the MS-scheme scale µ0 = 1 GeV and evolve the rest of

the points to that scale.
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Before and after evolution
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ν

The ratio M(ν, z2
3) for for z3/a = 1, 2, 3, and 4. LHS: Data before evolution.

RHS: Data after evolution. The reduction in scatter indicates that evolution
collapses all data to the same universal curve.
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The ratio M(ν, z2
3) for for z3/a = 1, 2, 3, and 4. LHS: Data before evolution.

RHS: Data after evolution. The reduction in scatter indicates that evolution
collapses all data to the same universal curve.
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Comparison to global fits
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µ2=1GeV2

µ2=4GeV2

CJ µ2=4GeV2

MMHT µ2=4GeV2

NNPDF µ2=4GeV2

uv(x) − dv(x)

x
LHS: Data points for Re M (ν, z23) with z3 ≤ 10a evolved to z3 = 2a. By fitting
these evolved points with a cosine FT of qv(x) = N(a, b)xa(1− x)b we obtain
a = 0.36(6) and b = 3.95(22) (statistical errors). RHS: Curve for uv(x)− dv(x)
built from the evolved data shown in the left panel and treated as corresponding to
the µ2 = 1 GeV2 scale; then evolved to the reference point µ2 = 4 GeV2 of the
global fits.
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Sanity checks vs other lattice results

One can try to extract the lowest PDF moments from our data and

compare with the lattice literature QCD-SF collaboration Phys.Rev. D53 (1996) 2317-2325

With the Wilson coefficients computed we can now obtain the MS

moments up to O(α2
s, z

2) directly from the reduced function M(ν, z2) as

an+1(µ) = (−i)n 1
cn(z2µ2)

∂nM(ν,z2)
∂νn

∣∣∣
ν=0

+O(z2, α2
s)

〈x〉µ=2 GeV

us

0.24 0.25 0.26 0.27 0.28

QCD-SF

〈x2〉µ=2 GeV

us

6 6.5 7 7.5 8 8.5 9

·10−2

QCD-SF
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Reconstruction

Parton distribution functions (PDF) or distribution amplitudes (DA) may be

defined in lattice QCD by inverting the quasi-Fourier transform of a certain

class of hadronic position space matrix elements.

One particular example are the Ioffe-time PDFs MR, which are related to

the physical PDF via the integral relation

MR(ν, µ2) ≡
∫ 1

0

dx cos(νx) qv(x, µ
2) .

Here it is assumed that the lattice computed matrix element is converted to

the MS Ioffe-time PDF at a scale µ2, using a perturbative kernel as

discussed in Radyushkin (Phys.Rev. D98 (2018) no.1, 014019 ), Zhang et al Phys.Rev. D97 (2018) no.7, 074508

The task at hand is then to reconstruct the PDF qv(x, µ
2) given a limited

set of simulated data for MR(ν, µ2).
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Reconstruction

There exist two challenges to this endeavor, the first being that the integral

in question does not extend over the full Brillouin zone, the second that in

practice only a small number of points along ν can be computed.

As we will discuss in more detail below, taken together these issues render

the extraction highly ill-posed and we explore different regularization

strategies on how to nevertheless reliably estimate the PDF from the data

at hand.

Phenomenological investigations of PDFs have shown that their functional

form may be reasonably well approximated by the following simple Ansatz

p(x) =
Γ(a+ b+ 2)

Γ(a+ 1)Γ(b+ 1)
xa(1− x)b .
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Naive Reconstruction

Discretize the integral, employing the trapezoid integration rule

∆x = 1
Nx

, xk = k∆x = k
Nx

MR(ν) = 1
2 cos(νx0) qv(x0)+

Nx−1∑

k=1

δx cos(νxk) qv(xk)+
1

2
cos(νxNx) qv(xNx)

We can determine the unknown values of the function qv(xk) by solving a

simple linear system of equations.

Defining mk = MR(νk) where νk are the values of the Ioffe time for which

data is available and q be the vector with components the unknown values

of qv(xk) i.e. qk = qv(xk). Our problem is cast in a matrix equation

m = C · q,
The conditioning of the problem is easily elucidated by considering the

eigenvalues of the matrix C.
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Naive Reconstruction
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ν=[0,40π]

Eigenvalues λk of the kernel matrix for various discretization intervals.
Only for the case corresponding to a genuine discrete Fourier transform
ν = [0, 40π] all eigenvalues remain of order unity. The realistic case of
ν = [0, 20] already shows a significant degradation of the spectrum.
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Naive Reconstruction
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Results for the direct inversion for different discretization intervals
(left ν = [0, 40π], center ν = [0, 100], right ν = [0, 20]). Note the different
size of the relative errors needed, to obtain a well behaved result (left
∆MR/MR = 10−2, center ∆MR/MR = 10−5, right ∆MR/MR = 10−6).
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Advanced PDF Reconstructions

A versatile approach is Bayesian inference Y. Burnier and A. Rothkopf Phys.Rev.Lett. 111 (2013)

It acknowledges the fact that the inverse problem is ill-defined and a unique

answer may only provided, once further information about the system has

been made available.

Formulated in terms of probabilities, one finds in the form of Bayes theorem

that

P [q|M, I] =
P [M|q, I]P [q|I]

P [M|I]
.

It states that the so called posterior probability P [q|M, I] for a test function

q to be the correct x-space PDF, given our simulated Ioffe-time PDF M and

additional prior information may be expressed in terms of three quantities.
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Bayesian Reconstruction
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x-space PDF’s reconstructed using the BR method from Nν = 10 Ioffe-time
data points on the interval ν = [0, 20] The plots in the left column denote
the results for mock data based on a phenomenological PDF
(NNPDF31 nnlo as 0118), while the right column arises from a scenario
where q(0) is finite.
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x-space PDF’s reconstructed using a quadratic prior Bayesian (QDR) method
from Nν = 10 Ioffe-time data points on the interval ν = [0, 20]. The plots in
the left column denote the results for mock data based on a
phenomenological PDF (NNPDF31 nnlo as 0118), while the right column
arises from a scenario where q(0) is finite.
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Bayesian Reconstruction
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x-space PDF’s reconstructed using the generalized Bayesian reconstruction
(BRg) method from Nν = 10 Ioffe-time data points on the interval
ν = [0, 20]. The plots in the left column denote the results for mock data
based on a phenomenological PDF (NNPDF31 nnlo as 0118), while the right
column arises from a scenario where q(0) is finite.
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Bayesian Reconstruction
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x-space PDF’s reconstructed in a best case scenario (ν = [0, 100], Nν = 100)) using
(left) the BR method (center) the quadratic prior and (right) the generalized BR
method. The input data again is the one from a (top) Nν = 100 discretized
Ioffe-time realistic PDF , while the bottom row arises from a scenario where q(0) is
finite.
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Maximum Entropy Method Reconstruction

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

q ν
(x

)

x

mock PDF A

νmax=20 Nν=10 MEM w/ best fit m
statistical

uncertainty
m dependence

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.2  0.4  0.6  0.8  1
q ν

(x
)

x

mock PDF B

νmax=20 Nν=10 MEM w/ best fit m
statistical

uncertainty
m dependence

Savvas Zafeiropoulos Lattice studies of pseudo-PDFs 32/42



Backus-Gilbert Reconstruction

The Backus-Gilbert (BG) method instead of imposing a smoothing

condition on the resulting PDF q(x) it imposes a minimization condition on

the variance of the resulting function. G. Backus and F. Gilbert. Geophysical Journal of the Royal

Astronomical Society, 16:169205, (1968)

Let us define a rescaled kernel and rescaled PDF h(x)

Kj(x) ≡ cos(νjx)p(x) and , h(x) ≡ qv(x)

p(x)

where p(x) corresponds to an appropriately chosen function that makes the

problem easier to solve.

We wish to incorporate into p(x) most of the non-trivial structure of q(x)

apriorily, such that h(x) is a slowly varying function of x and contains only

the deviation of q(x) from p(x).
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Backus-Gilbert Reconstruction

Starting from the preconditioned expression with a rescaled PDF h(x) that

is only a slowly varying function of x our inverse problem becomes

dj ≡MR(νj) =

∫ 1

0

dxKj(x)h(x) .

BG introduces a function ∆(x− x̄) =
∑
j qj(x̄)Kj(x), where qj(x̄) are

unknown functions to be determined.

It then estimates the unknown function as a linear combination of the data

ĥ(x̄) =
∑

j

qj(x̄)dj , or q̂v(x̄) =
∑

j

qj(x̄)djp(x̄)

If ∆(x− x̄) were to be a δ−function then ĥ(x̄) = h(x̄). If ∆(x− x̄)

approximates a δ-function with a width σ, then the smaller σ is the better

the approximation of ĥ(x) to h(x).
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Backus-Gilbert Reconstruction

In other words if ĥσ(x) is the approximation resulting from ∆(x) with a

width σ then limσ→0 ĥσ(x) = h(x) .

With this in mind BG minimizes the width σ given by

σ =

∫ 1

0

dx(x− x̄)2∆(x− x̄)2 .

Furthermore, if ∆(x) approximates a δ-function then one has to impose the

constraint
∫ 1

0
dx∆(x− x̄) = 1. Using a Lagrange multiplier λ one can

minimize the width and impose the constraint by minimizing

χ[q] =

∫ 1

0

dx(x−x̄)2
∑

j,k

qj(x̄)Kj(x)Kk(x)qk(x̄)+λ

∫ 1

0

dx
∑

j

Kj(x)qj(x̄) .

But let’s see all this in practise ...
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Backus-Gilbert reconstruction
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Backus-Gilbert Reconstruction
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Left: The NNPDF31 nnlo as 0118 Ioffe time PDF data points used in this
example, together with the dashed curve from which the data are chosen.
Right: The reconstructed Backus-Gilbert reconstructed PDF (red) together
with the original PDF from the NNPDF31 nnlo as 0118 dataset (blue) with
b = 2 and νmax = 20.
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Backus-Gilbert Reconstruction
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Right: The reconstructed Backus-Gilbert reconstructed PDF (red) together
with the original PDF from the NNPDF31 nnlo as 0118 dataset (blue) with
b = 2 and νmax = 30.
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Backus-Gilbert Reconstruction
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HMC Reconstruction (Preliminary)
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Neural Network Reconstruction

VERY PRELIMINARY RESULTS!!!
Scenario A

 Data points (red not visible)
Reconstructed points (blue)

Errorband of the original data set

Reconstruted PDF (red)
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Left: Original data points (red) not visible. Red band representing errors on
the original data points. Reconstructed data points (blue). Right: Original
PDF (blue). Reconstructed PDF (red).
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Neural Network Reconstruction
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Conclusions and outlook

We presented a new approach for obtaining PDFs from lattice QCD

calculations

Using an appropriate ratio of ME we were able to get rid of UV divergences

ensuring a well defined continuum limit

One can scan in Ioffe time ν which is the Fourier dual to the momentum

fraction x by using the hadron momentum

Large hadron momentum is required to access the large ν-regime or

equivalently small-x physics

To approach the light cone we need to send z2
3 → 0 keeping ν fixed

The pseudo-PDF ratio lead to suppression of scaling violations in z2
3

The observed z2 dependence is compatible with DGLAP evolution
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Conclusions and outlook

Remember, that PDFs are needed as theoretical inputs to all hadron

scattering experiments and in some cases are the largest theory uncertainty.

In the absence of extensive experimental data, first principles calculations of

PDFs will significantly improve PDF uncertainties . The interplay between

lattice QCD and global fits H.-W. Lin et al., Prog. Part. Nucl. Phys. 100 (2018) 107 , where it was

demonstrated that the impact of lattice calculations of both the lowest

Mellin moments and the x-dependence of PDFs could significantly reduce

uncertainties in global PDF fits. For example, lattice determinations of the

d̄(x,Q2) PDF at moderate values of x with uncertainties of 5− 10% could

reduce the corresponding PDF uncertainties by up to 30−50%.

In the search of New Physics we need a precise knowledge of the PDFs

from the lattice because the current method of global fits assumes the

results of scattering experiments are just convolutions of known parton

scattering and of unknown PDFs. If there is New Physics affecting that

event it would be absorbed into the PDF.

Lattice QCD is now in a position to deliver in the near future ab-initio

results for the PDFs without theoretical obstructions
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Conclusions-Outlook

We studied the problem of PDF reconstructions out of Ioffe time data: an

extremely ill-defined problem due to restricted range and number of ν data.

We showed how methods of advanced reconstruction that have been

successfully applied to different inverse problems in LQCD can also become

handy for this task.

We stressed the necessity of additional info in order to be able to provide a

unique answer.

Soon we will be finalizing our results with 2 + 1 dynamical flavors of Wilson

clover fermions which will include a more detailed study of all involved

systematics (disretization effects, finite-volume effects, lighter pions, excited

state contamination etc)

These methods would be key ingredients of future studies.

Many thanks for your attention!!!

Savvas Zafeiropoulos Lattice studies of pseudo-PDFs 42/42



Preliminary results with unquenched lattices

V = 243 × 64, with mπ = 440MeV and a = 0.127fm
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Unquenched results - matched to MS

V = 323 × 64, with mπ = 440MeV and a = 0.127fm

Savvas Zafeiropoulos Lattice studies of pseudo-PDFs 3/27



Preliminary results with unquenched lattices

A comparison between two different volumes. Two Current matrix elements
can have very large finite volume corrections (Briceño et al Phys.Rev. D98 (2018) 014511, Bali et al.

(2018) 1807.03073 )
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Comparison to global fits

0 2 4 6 8 10 12
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Re�M(ν, z2
0)

ν 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
µ2=1GeV2

µ2=4GeV2

CJ µ2=4GeV2

MMHT µ2=4GeV2

NNPDF µ2=4GeV2

uv(x) − dv(x)

x
LHS: Data points for Re M (ν, z23) with z3 ≤ 10a evolved to z3 = 2a. By fitting
these evolved points with a cosine FT of qv(x) = N(a, b)xa(1− x)b we obtain
a = 0.36(6) and b = 3.95(22) (statistical errors). RHS: Curve for uv(x)− dv(x)
built from the evolved data shown in the left panel and treated as corresponding to
the µ2 = 1 GeV2 scale; then evolved to the reference point µ2 = 4 GeV2 of the
global fits. 1-loop matching to MS still to be done on our data
A. Radyushkin 1710.08813, Zhang et al 1801.03023, Izubuchi et al 1801.03917
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More on evolution

� � � � � �� �� ������

����

����

����

����

����

z3/a

Re M(⌫, z2
3)

LO evolution cannot be extended to very low scales.

It is known that evolution stops below a certain scale (by observing our

data we infer that this is the case for z3 ≥ 6a.)

Adopt an evolution that leaves the PDF unchanged for length scales above

z3 = 6a and use the leading perturbative evolution formula to evolve to

smaller z3 scales.
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Numerical implementation

Following C. Bouchard et.al Phys. Rev. D 96, no. 1, 014504 (2017) , we compute a regular nucleon two

point function

Cp(t) = 〈Np(t)N p(0)〉 ,

C
O0(z)
p (t) =

∑
τ 〈Np(t)O0(z, τ)N p(0)〉

with O0(z, t) = ψ(0, t)γ0τ3Ê(0, z;A)ψ(z, t)

Proton momentum and displacement of the quark fields along the ẑ axis

Meff(z3p, z
2
3 ; t) =

C
O0(z)
p (t+ 1)

Cp(t+ 1)
− C

O0(z)
p (t)

Cp(t)

Extract the desired ME J at large Euclidean time separation as
J (z3p,z

2
3)

2p0 = limt→∞Meff(z3p, z
2
3 ; t) , where p0 is the energy of the nucleon.
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Results for the nucleon dispersion relation

pa

Ea

Energies and momenta are in lattice units. The solid line is the continuum
dispersion relation (not a fit) while the errorband is an indication of the
statistical error of the lattice nucleon energies
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Results

t/a t/a

Typical fits used to extract the reduced matrix element (here p = 2π/L · 2 and
z = 4 (LHS) and p = 2π/L · 3 and z = 8 (RHS)). The average χ2 per degree of
freedom was O(1). All fits are performed with the full covariance matrix and the
error bars are determined with the jackknife method.
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Renormalization

In a series of articles Dotsenko Nucl.Phys. B169 (1980) 527, Ishikawa et al. Phys. Rev. D 96, 094019 (2017), Chen et al.

Nucl.Phys. B915 (2017) and A. V. Radyushkin Phys.Lett. B781 (2018) 433-442 the one loop renormalizability of

Mα(z, p, a) has been discussed

by analyzing the pertinent diagrams one can see that there is a linear

divergence from the link self-energy contribution and a logarithmic

divergence associated to the anomalous dimension 2γend due to two

end-points of the link.

z t1z t2z 0• •• • z tz 0

z1
k

• • •

•

z tz 0

z1
k

• • •

•
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Renormalization

M has been shown to renormalize multiplicatively as

MR(ν, z2, µ) = Z−1
j Z−1

j̄
e−δm|z|MB(ν, z2, a), where δm = CF

αs
2π

π
a , is an

effective mass counterterm removing power divergences in the Wilson line

and Z−1
j , Z−1

j̄
are renormalization constants (RCs) associated with the

endpoints of the Wilson line independent of z, p.

The entire renormalization is independent of the external momentum

Forming the ratio, the RCs cancel and thus the reduced Ioffe time

distribution has a great potential to reduce systematic effects related to

renormalization.The UV divergences generated by the link-related and

quark-self-energy diagrams cancel in the ratio.
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Numerical implementation

Renormalization of the ME?

For z3 = 0 M(z3p, z
2
3)→ the local iso-vector current, should be = 1 (but

...) lattice artifacts...

Introduce an RC Zp = 1

J (z3p,z23)|
z3=0

Zp has to be independent from p. But lattice artifacts or potential fitting

systematics ...

renormalize the ME for each momentum with its own Zp → maximal

statistical correlations to reduce statistical errors, and cancellation of lattice

artifacts in the ratio
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Numerical implementation

in practise use the double ratio

M(ν, z2
3) = lim

t→∞
Meff(z3p, z

2
3 ; t)

Meff(z3p, z2
3 ; t)|z3=0

×
Meff(z3p, z

2
3 ; t)

∣∣
p=0,z3=0

Meff(z3p, z2
3 ; t)|p=0

,

infinite t limit is obtained with a fit to a constant for a suitable choice of a

fitting range.
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Matching to MS

In 1801.02427 it was shown by Radyushkin that at 1-loop evolution and

matching to MS can be done simultaneously.

This establishes a direct relation between the Ioffe time distribution

function (ITDF) and pseudo-ITDF.

Scales are needed as such that we are in a regime dominated by

perturbative effects

I(ν, µ2) =M(ν, z2
3) +

αs
π
CF

∫ 1

0

dwM(wν, z2
3)

×
{
B(w) ln

[
(1− w)z3µ

eγE+1/2

2

]

+ [(w + 1) ln(1− w)− (1− w)]+

}
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Comparison to global fits after converting to the MS

scheme
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Bayesian Reconstruction

P [q|M, I] =
P [M|q, I]P [q|I]

P [M|I]
.

The likelihood probability P [M|q, I] denotes how probable it is to find the

data M if q were the correct PDF.

Finding the most probable q by maximizing the likelihood is nothing but a

χ2 fit to the M data, which as we saw from the direct inversion is by itself

ill-defined.

The prior probability P [q|I], which quantifies, how compatible our test

function q is with respect to any prior information we have (e.g. appearance

of non-analytic behavior of q(x) at the boundaries of the x interval).

P [M|I], the so called evidence is a q independent normalization.
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Bayesian Reconstruction

For sampled data, due to the central limit theorem, the likelihood

probability may be written as the quadratic distance functional

P [M|q, I] = exp[−L] with L = 1
2

∑
k,l(Mk −Mq

k)C−1
kl (Ml −Mq

l ).

Mq
k are the Ioffe-time data arising from inserting the test function q into

the cosine Fourier trafo and Ckl denotes the covariance matrix of the Nm

measurements of simulation data Mh
k .

We then specify an appropriate prior probability P [q|I] = exp[αS[I]].

Prior information enters in two ways here. On the one hand we deploy a

particular functional form of the regularization functional

SBR[q,m] =
∑

n

∆xn

(
1− qn

mn
+ log

( qn
mn

))

which may be obtained by requiring positive definiteness of the resulting q,

smoothness of q.
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Bayesian Reconstruction

The functional S depends on the function m, the default model.

By construction constitutes its unique extremum.

In the Bayesian logic m is the correct result for q in the absence of any data.

We select m by a best fit of the Ioffe-PDF data and we will vary it to get a

handle on systematics.
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Bayesian Reconstruction

What happens in the case of non-guaranteed positive definiteness?

We need to change the regulator!

Often the quadratic regulator is used

SQDR[q,m] =
∑

n

∆xn

(
qn −mn

)2

It is a comparatively strong regulator and usually imprints the form of the

default model significantly onto the end result.

Trying to keep the influence of the default model to a minimum, we extend

the BR prior to non-positive functions.

SBRg[q,m] =
∑

n

∆xn

(
− |qn −mn|

hn
+ log

( |qn −mn|
hn

− 1
))

keeping the advantageous properties of the original BR prior at the price of

having to introduce another default model related function h.
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Bayesian Reconstruction

once L, S and m have been provided, the most probable PDF q, given

simulation data and prior information is obtained by numerically finding the

extremum of the posterior

δP [q|M, I]

δq

∣∣∣∣
q=qBayes

= 0.

It has been proven that if the regulator is strictly concave, as is the case for

all the regulators discussed above, there only exists a single unique

extremum in the space of functions q on a discrete ν interval.

With positive definiteness is imposed on the end result, the space of

admissible solutions is significantly reduced. Regulators admitting also q

functions with negative contributions have to distinguish between a

multitude of oscillatory functions, which if integrated over, resemble a

monotonous function to high precision. We will observe the emergence of

ringing artefacts for the quadratic and generalized BR prior.
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Bayesian Reconstruction

The functional S depends on the function m, the default model.

By construction constitutes its unique extremum.

In the Bayesian logic m is the correct result for q in the absence of any data.

We select m by a best fit of the Ioffe-PDF data and we will vary it to get a

handle on systematics.

In the definition of P [q|I] we introduced a further parameter α, a so called

hyperparameter

Weighs the influence of simulation data and prior information. It has to be

taken care of self-consistently.

In the Maximum Entropy Method α is selected, such that the evidence has

an extremum. In the BR method we deploy here, we marginalize the

parameter α apriori, i.e. we integrate the posterior w.r.t the

hyperparameter, assuming complete ignorance of its values P [α] = 1.

Savvas Zafeiropoulos Lattice studies of pseudo-PDFs 21/27



Bayesian Reconstruction

The functional S depends on the function m, the default model.

By construction constitutes its unique extremum.

In the Bayesian logic m is the correct result for q in the absence of any data.

We select m by a best fit of the Ioffe-PDF data and we will vary it to get a

handle on systematics.

In the definition of P [q|I] we introduced a further parameter α, a so called

hyperparameter

Weighs the influence of simulation data and prior information. It has to be

taken care of self-consistently.

In the Maximum Entropy Method α is selected, such that the evidence has

an extremum. In the BR method we deploy here, we marginalize the

parameter α apriori, i.e. we integrate the posterior w.r.t the

hyperparameter, assuming complete ignorance of its values P [α] = 1.

Savvas Zafeiropoulos Lattice studies of pseudo-PDFs 21/27



Bayesian Reconstruction

The functional S depends on the function m, the default model.

By construction constitutes its unique extremum.

In the Bayesian logic m is the correct result for q in the absence of any data.

We select m by a best fit of the Ioffe-PDF data and we will vary it to get a

handle on systematics.

In the definition of P [q|I] we introduced a further parameter α, a so called

hyperparameter

Weighs the influence of simulation data and prior information. It has to be

taken care of self-consistently.

In the Maximum Entropy Method α is selected, such that the evidence has

an extremum. In the BR method we deploy here, we marginalize the

parameter α apriori, i.e. we integrate the posterior w.r.t the

hyperparameter, assuming complete ignorance of its values P [α] = 1.

Savvas Zafeiropoulos Lattice studies of pseudo-PDFs 21/27



Bayesian Reconstruction

The functional S depends on the function m, the default model.

By construction constitutes its unique extremum.

In the Bayesian logic m is the correct result for q in the absence of any data.

We select m by a best fit of the Ioffe-PDF data and we will vary it to get a

handle on systematics.

In the definition of P [q|I] we introduced a further parameter α, a so called

hyperparameter

Weighs the influence of simulation data and prior information. It has to be

taken care of self-consistently.

In the Maximum Entropy Method α is selected, such that the evidence has

an extremum. In the BR method we deploy here, we marginalize the

parameter α apriori, i.e. we integrate the posterior w.r.t the

hyperparameter, assuming complete ignorance of its values P [α] = 1.

Savvas Zafeiropoulos Lattice studies of pseudo-PDFs 21/27



Bayesian Reconstruction

The functional S depends on the function m, the default model.

By construction constitutes its unique extremum.

In the Bayesian logic m is the correct result for q in the absence of any data.

We select m by a best fit of the Ioffe-PDF data and we will vary it to get a

handle on systematics.

In the definition of P [q|I] we introduced a further parameter α, a so called

hyperparameter

Weighs the influence of simulation data and prior information. It has to be

taken care of self-consistently.

In the Maximum Entropy Method α is selected, such that the evidence has

an extremum. In the BR method we deploy here, we marginalize the

parameter α apriori, i.e. we integrate the posterior w.r.t the

hyperparameter, assuming complete ignorance of its values P [α] = 1.

Savvas Zafeiropoulos Lattice studies of pseudo-PDFs 21/27



Bayesian Reconstruction

The functional S depends on the function m, the default model.

By construction constitutes its unique extremum.

In the Bayesian logic m is the correct result for q in the absence of any data.

We select m by a best fit of the Ioffe-PDF data and we will vary it to get a

handle on systematics.

In the definition of P [q|I] we introduced a further parameter α, a so called

hyperparameter

Weighs the influence of simulation data and prior information. It has to be

taken care of self-consistently.

In the Maximum Entropy Method α is selected, such that the evidence has

an extremum. In the BR method we deploy here, we marginalize the

parameter α apriori, i.e. we integrate the posterior w.r.t the

hyperparameter, assuming complete ignorance of its values P [α] = 1.

Savvas Zafeiropoulos Lattice studies of pseudo-PDFs 21/27



Bayesian Reconstruction

The functional S depends on the function m, the default model.

By construction constitutes its unique extremum.

In the Bayesian logic m is the correct result for q in the absence of any data.

We select m by a best fit of the Ioffe-PDF data and we will vary it to get a

handle on systematics.

In the definition of P [q|I] we introduced a further parameter α, a so called

hyperparameter

Weighs the influence of simulation data and prior information. It has to be

taken care of self-consistently.

In the Maximum Entropy Method α is selected, such that the evidence has

an extremum. In the BR method we deploy here, we marginalize the

parameter α apriori, i.e. we integrate the posterior w.r.t the

hyperparameter, assuming complete ignorance of its values P [α] = 1.

Savvas Zafeiropoulos Lattice studies of pseudo-PDFs 21/27



Bayesian Reconstruction

P [q|M, I] =
P [M|q, I]P [q|I]

P [M|I]
.

The likelihood probability P [M|q, I] denotes how probable it is to find the

data M if q were the correct PDF.

Finding the most probable q by maximizing the likelihood is nothing but a

χ2 fit to the M data, which as we saw from the direct inversion is by itself

ill-defined.

The prior probability P [q|I], which quantifies, how compatible our test

function q is with respect to any prior information we have (e.g. appearance

of non-analytic behavior of q(x) at the boundaries of the x interval).

P [M|I], the so called evidence is a q independent normalization.
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Bayesian Reconstruction

For sampled data, due to the central limit theorem, the likelihood

probability may be written as the quadratic distance functional

P [M|q, I] = exp[−L] with L = 1
2

∑
k,l(Mk −Mq

k)C−1
kl (Ml −Mq

l ).

Mq
k are the Ioffe-time data arising from inserting the test function q into

the cosine Fourier trafo and Ckl denotes the covariance matrix of the Nm

measurements of simulation data Mh
k .

We then specify an appropriate prior probability P [q|I] = exp[αS[I]].

Prior information enters in two ways here. On the one hand we deploy a

particular functional form of the regularization functional

SBR[q,m] =
∑

n

∆xn

(
1− qn

mn
+ log

( qn
mn

))

which may be obtained by requiring positive definiteness of the resulting q,

smoothness of q.
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Bayesian Reconstruction

The functional S depends on the function m, the default model.

By construction constitutes its unique extremum.

In the Bayesian logic m is the correct result for q in the absence of any data.

We select m by a best fit of the Ioffe-PDF data and we will vary it to get a

handle on systematics.
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Bayesian Reconstruction

What happens in the case of non-guaranteed positive definiteness?

We need to change the regulator!

Often the quadratic regulator is used

SQDR[q,m] =
∑

n

∆xn

(
qn −mn

)2

It is a comparatively strong regulator and usually imprints the form of the

default model significantly onto the end result.

Trying to keep the influence of the default model to a minimum, we extend

the BR prior to non-positive functions.

SBRg[q,m] =
∑

n

∆xn

(
− |qn −mn|

hn
+ log

( |qn −mn|
hn

− 1
))

keeping the advantageous properties of the original BR prior at the price of

having to introduce another default model related function h.
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Bayesian Reconstruction

once L, S and m have been provided, the most probable PDF q, given

simulation data and prior information is obtained by numerically finding the

extremum of the posterior

δP [q|M, I]

δq

∣∣∣∣
q=qBayes

= 0.

It has been proven that if the regulator is strictly concave, as is the case for

all the regulators discussed above, there only exists a single unique

extremum in the space of functions q on a discrete ν interval.

With positive definiteness is imposed on the end result, the space of

admissible solutions is significantly reduced. Regulators admitting also q

functions with negative contributions have to distinguish between a

multitude of oscillatory functions, which if integrated over, resemble a

monotonous function to high precision. We will observe the emergence of

ringing artefacts for the quadratic and generalized BR prior.
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Neural Network Reconstruction

The ensemble average of data is obtained in two steps

I Starting from random [w, b], minimize χ2 to find [w, b].

I Repeat 10 times to find 10 different Neural Nets (replicas).

For each Neural Net, the minimizer is re-run for each jackknife sample to

obtain a jackknife estimate q(x) for each replica.

The central value of q(x) is estimated as the average over jackknife samples

and replicas.

The error is estimated by combining the fluctuations over the jackknife

sample and replicas.
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Neural Network Reconstruction
Neural Net

tanh(x)
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