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Neutrinos can undergo fast flavor conversions (FFCs) within extremely dense astrophysical environ-
ments, such as core-collapse supernovae (CCSNe) and neutron star mergers (NSMs). In this study, we
explore FFCs in a multienergy neutrino gas, revealing that when the FFC growth rate significantly exceeds
that of the vacuum Hamiltonian, all neutrinos (regardless of energy) share a common survival probability
dictated by the energy-integrated neutrino spectrum. We then employ physics-informed neural networks
(PINNs) to predict the asymptotic outcomes of FFCs within such a multienergy neutrino gas. These
predictions are based on the first two moments of neutrino angular distributions for each energy bin,
typically available in state-of-the-art CCSN and NSM simulations. Our PINNs achieve errors as low as
≲6% and ≲18% for predicting the number of neutrinos in the electron channel and the relative absolute
error in the neutrino moments, respectively.
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I. INTRODUCTION

Core-collapse supernovae (CCSNe) and neutron star
mergers (NSMs) represent some of the most extreme
astrophysical settings, where neutrino emission plays a
crucial role [1–7]. Within the dense and extreme conditions
of these environments, neutrinos undergo a complex flavor
conversion process triggered by their coherent forward
scatterings with the dense background neutrino gas [7–14].
One of the latest advancements in this field involves the

discovery of fast flavor conversions (FFCs), which can take
place on scales significantly shorter than those anticipated
in the vacuum [15–64]. A condition both necessary and
sufficient for the occurrence of FFCs is that the angular
distribution of the neutrino lepton number, defined as

GðvÞ ¼
ffiffiffi
2

p
GF

Z
∞

0

E2
νdEν

ð2πÞ3 ½ðfνeðpÞ − fνxðpÞÞ

− ðfν̄eðpÞ − fν̄xðpÞÞ�; ð1Þ

crosses zero at some v ¼ vðμ;ϕνÞ, with μ ¼ cos θν [34].
Here, GF represents the Fermi coupling constant, Eν, θν,
and ϕν are the neutrino energy, the zenith, and azimuthal
angles of the neutrino velocity, respectively. The fν’s are
the neutrino occupation numbers of different flavors, with
νx and ν̄x denoting the heavy-lepton flavor of neutrinos and
antineutrinos. In this study, as also commonly observed in
state-of-the-art CCSN and NSM simulations, we assume
that νx and ν̄x have similar angular distributions. The
expression in Eq. (2) then transforms into the conventional
definition of the neutrino electron lepton number, νELN.
The occurrence of FFCs on much shorter scales

compared to typical hydrodynamical simulations of
CCSNe and NSMs, makes their integration into the
simulations a formidable task. One prospective approach
includes performing short scale simulations of FFCs and
then extrapolating the insights gained to inform broader
hydrodynamic simulations [29,45,57,58,65–67]. Given
this, there has been a body of research on the assessment
of FFC outcomes in local dynamical simulations with
periodic boundary conditions [44,48,51–54,68–73],
where quasistationary flavor states have been observed
in the neutrino gas. In particular, it has been demonstrated
that such states can be accurately described by analytical
formulations [73].
Despite this, incorporating FFCs into CCSN and NSM

simulations is still challenging. The obstacle arises from the
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need for complete angular distributions of neutrinos, a
demanding task in computationally intensive simulations.
As an alternative, advanced simulations often simplify

neutrino transport using a limited set of angular distribution
moments [74–76]. In a multienergy neutrino gas, one can
define the radial moments (with a focus on axisymmetric
crossings) for each energy bin as

In;i ¼
E2
ν;iΔEν;i

ð2πÞ3
Z

1

−1
dμ μn

Z
2π

0

dϕν fνðpÞ; ð2Þ

with Eν;i and ΔEν;i being the mean energy and the width of
the i-th energy bin, where I0;i ¼ nν;i is the number of
neutrinos in that specific bin. Following these moments
allows for a computationally more manageable treatment of
the neutrino transport. In practice, simulations typically
offer only I0;i and I1;i. The challenge is then to determine
the ultimate values of I0;i and I1;i following FFCs. Note that
the energy-integrated I’s can be simply obtained by a
summation over Ii’s.
Recently, we showed that the asymptotic outcomes of

FFCs in a single-energy neutrino gas in the moments
scenario can be successfully predicted by using artificial
neural networks (NNs) [77]. In particular, we employed
physics-informed neural networks (PINNs), where the
learning and performance of the NN can be enhanced with
the utilization of the domain knowledge [78–80]. Our
findings demonstrated the efficacy of a single hidden layer
PINN, achieving a remarkable accuracy for the prediction
of the asymptotic values of I0 and I1 in a single-energy
neutrino gas.
In this paper, we extend our prior research by consid-

ering a multienergy neutrino gas, which is considered a
more realistic scenario. We demonstrate that when the FFC
growth rate surpasses that of the vacuum Hamiltonian
significantly, all neutrinos, irrespective of energy, share a
common survival probability as dictated by the energy-
integrated neutrino spectrum, consistent with the findings
of Ref. [31].
To predict the asymptotic outcome of FFCs, we employ a

PINN. This PINN utilizes critical information derived from
the initial (anti)neutrino zeroth and first moments, consid-
ering both the energy-integrated neutrino spectra and a
specific neutrino energy bin. Consequently, it produces the
corresponding moments specific to the asymptotic outcome
of FFCs for that energy bin. Our findings highlight the
effectiveness of a single hidden layer PINN, achieving
remarkable accuracy in predicting the asymptotic values of
I0 and I1 for each neutrino energy bin.
This paper is organized as follows. In Sec. II, we begin

by providing an overview of our simulations concerning
FFCs in a multienergy neutrino gas. We also elaborate on
the assumptions made in deriving the outcomes of FFCs.
Moving to Sec. III, we describe the architecture of our NNs,
elaborating on the necessary feature engineering and the

implementation of a tailored loss function. Furthermore, we
present and discuss our results in this section. Finally, our
findings are summarized, and conclusions are presented
in Sec. IV.

II. FFCs IN A MULTIENERGY NEUTRINO GAS

In this section, we present the results of our simulations
of FFCs in a multienergy neutrino gas. Essentially,
when the growth rate of FFCs, κ, significantly surpasses
the vacuum frequency, ω, i.e., κ ≫ ω, one anticipates
that neutrino energy becomes inconsequential to their
flavor evolution. Here, ω≡ δm2=ð4EνÞwith δm2 being the
squared neutrino mass difference. This suggests that in
such circumstances, all neutrinos should experience iden-
tical survival probabilities dictated solely by the energy-
integrated neutrino spectrum, effectively making the
energy irrelevant.
The condition κ ≫ ω could be expected to be met in a

dense neutrino gas provided that λ≫ω,1 where λ¼ ffiffiffi
2

p
GFnνe

with nνe being here the initial νe number density of the
neutrino gas. A crucial exception arises when the neutrino
gas lepton asymmetry ratio defined as

α ¼ nν̄e=nνe ; ð3Þ

is extremely close to unity, which already implies that flavor
equipartition should occur on short scales in the neutrino
gas, even in the absence of FFCs (see the discussion
in Ref. [82]).
In the following, we first demonstrate that when λ ≫ ω,

all neutrinos (with different energies) experience identical
survival probabilities. Subsequently, we discuss an ana-
lytical representation of the survival probabilities, which
will be useful for our PINN calculations.

A. Results of the simulations

We consider a multienergy and multiangle neutrino gas
in a 1D box, extending the framework outlined in
Ref. [52]. Our model assumes translation symmetry along
the x and y axes, axial symmetry around the z axis, and
employs periodic boundary conditions in the z direction.
We also take two flavor approximation, exclude the
consideration of neutrino-matter forward scattering, and
assume that the system consists of (anti)neutrinos of
electron flavor whose energy and angular distribution is
spatially homogeneous in the beginning for simplicity.
Under these assumptions, the evolution of the normalized
neutrino and antineutrino density matrices, ϱðt; z;ω; μÞ

1Note that this is not true if one considers an oversimplified
model (that constraints the activation of inhomogeneous unstable
modes), or if the νELN crossing is too narrow/shallow. In such
situations, the growth rate of FFCs could be significantly sup-
pressed so that κ ≫ ω does not hold anymore [81].
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and ϱ̄ðt; z;ω; μÞ is governed by the following equations of
motion:

ð∂tþμ∂zÞϱðt;z;ω;μÞ¼−i½Hðt;z;ω;μÞ;ϱðt;z;ω;μÞ�;
ð∂tþμ∂zÞϱ̄ðt;z;ω;μÞ¼−i½H̄ðt;z;ω;μÞ; ϱ̄ðt;z;ω;μÞ�; ð4Þ

where μ here represents the neutrino velocity in the z
direction. The Hamiltonian Hðt; z;ω; μÞ and H̄ðt; z;ω; μÞ
are given by Hðt; z;ω; μÞ ¼ HvacðωÞ þHννðt; z; μÞ and
H̄ðt; z;ω; μÞ ¼ HvacðωÞ −H�

ννðt; z; μÞ, where

Hvac ¼ ω

�− cos 2θeff sin 2θeff
sin 2θeff cos 2θeff

�
; ð5Þ

with θeff the effective vacuum mixing angle, and

Hννðt; z; μÞ ¼ λ

Z
1

−1
dμ0

Z
∞

0

dω0ð1 − μμ0Þ

× ½fνðω0; μ0Þϱðt; z;ω0; μ0Þ
− αfν̄ðω0; μ0Þϱ̄�ðt; z;ω0; μ0Þ�: ð6Þ

Here, the neutrino distribution functions are similar to
those introduced in Eq. (2), except that they are integrated
over ϕν and now normalized by

R
dμdωfνðν̄Þðω; μÞ ¼ 1.

For the specific simulation discussed below, we take a
1D box of size L ¼ 1200λ−1 with α ¼ 0.9. The neutrino
distribution function is parametrized by

fνðω; μÞ ∝ ω−ðχνþ2Þ exp
�
−
ðμ − 1Þ2
2σ2ν

−
ð1þ χνÞδm2

4ωhEνi
�
; ð7Þ

with σν¼0.6, σν̄ ¼ 0.5, χν¼3.2, χν̄¼ 4.5, hEνi ¼ 10 MeV,
and hEν̄i ¼ 12 MeV. For the vacuum mixing parameters,
we set ω=λ ¼ 10−4 for Eν ¼ 1 MeV with θeff ¼ 10−5. In
order to introduce small inhomogeneity to the system,
we follow Ref. [52] to assign perturbations to ϱ and ϱ̄ at
t ¼ 0 by

ϱeeðz; μÞ ¼ ϱ̄eeðz; μÞ ¼
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2ðzÞ

q �
=2;

ϱxxðz; μÞ ¼ ϱ̄xxðz; μÞ ¼
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2ðzÞ

q �
=2;

ϱexðz; μÞ ¼ ϱ̄exðz; μÞ ¼ ϵðzÞ=2; ð8Þ

where ϵðzÞ is a real number randomly generated between 0
and 0.01. We discretize the simulation domain with 6000,
50, and 20 uniform grids in −600 ≤ z ≤ 600 λ−1,
−1 ≤ μ ≤ 1, and 0 ≤ 4ω=δm2 ≤ 0.5 MeV−1, and use the
finite difference scheme of COSEν [83] to conduct the
simulation until t ¼ 2000λ−1 when the system has settled
into the asymptotic state.
Figure 1 shows the survival probability of electron

neutrinos as a function of μ, averaged over z and

ω (black dashed curve) at the end of the simulation,
computed as

hPsurðμÞif ¼
Z

dzdωfνðμ;ωÞϱee
.Z

dzdωfνðμ;ωÞ; ð9Þ

as well as the spanned range of the spatially averaged
survival probabilities (shaded gray area) by all different ω
values calculated by

hPsurðμ;ωÞif ¼
Z

dzfνðμ;ωÞϱee
.Z

dzfνðμ;ωÞ: ð10Þ

This comparison clearly shows that hPsurðμ;ωÞif is
nearly independent of ω as the gray-shaded area basically
overlaps with the black dashed line. Also shown in the plot
is the analytical prescription for hPsurðμ;ωÞif (blue dotted
curve) following Ref. [73] for the two-flavor scenario
described in Eq. (16).
While ω=λ≲ 10−4 is a reasonable assumption regarding

the SN neutrino decoupling region, we conducted addi-
tional calculations with ω=λ ¼ 10−3. Although the spanned
range of spatially averaged survival probabilities turned
out to be more noticeable and the analytical formula
was less precise in that case (compared to the former
case), we noticed that assuming an energy-independent
survival probability remains a justified assumption also
for ω=λ≳ 10−3.

B. Survival probability function

To effectively train and evaluate our PINN, we require
the survival probabilities derived from energy-integrated

FIG. 1. Comparison of the spanned range of spatially averaged
survival probabilities for neutrinos with different ω [gray shaded
area; see Eq. (10)], with the survival probability averaged over
space and ω [black dashed curve; see Eq. (9)], at the final time of
the simulation for a system with ω ≪ λ. Also shown is the
analytical prescription for hPsurðμ;ωÞif (blue dotted curve)
described in Eq. (16). Note that the gray-shaded area basically
overlaps with the black dashed line, implying that the survival
probabilities are nearly independent of the neutrino energy.
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neutrino distributions. Our approach involves utilizing two
parametric distributions for the initial neutrino angular
distributions, as previously explored in our work [77]:
the maximum entropy distribution and the Gaussian dis-
tributions [52,84–88], defined as

fmax-ent
ν ðμÞ ¼ A expðaμÞ;

fGaussν ðμÞ ¼ A exp

�
−
ð1 − μÞ2

ξ

�
; ð11Þ

respectively, where

fνðμÞ ¼
Z

∞

0

Z
2π

0

E2
νdEνdϕν

ð2πÞ3 fνðpÞ: ð12Þ

Note that here A, a and ξ are arbitrary parameters, which
determine the overall neutrino number and the shape of the
distributions. Allowing for two distinct forms of angular
distributions takes into consideration potential deviations in
the shape of neutrino angular distributions in realistic
simulations, which can occur, e.g., due to the use of
different closure relations.
In our analytical treatment of the survival probability, we

follow closely our recent works in Refs. [73,77]. We
assume that GðμÞð¼ R

2π
0 dϕνGðvÞÞ has only one zero

crossing. In the three-flavor scenario, the survival proba-
bility can then be defined as

PsurðμÞ ¼
	 1

3
for μ<;

S3ðμÞ for μ>;
ð13Þ

with

S3ðμÞ ¼ 1 −
2

3
hðjμ − μcj=ζÞ; ð14Þ

where hðxÞ ¼ ðx2 þ 1Þ−1=2 and ζ can be found such that the
survival probability function is continuous. Here, μ<ðμ>Þ
are defined as the μ range over which the following integral
is smaller (larger):

Γþ ¼





Z

1

−1
dμGðμÞΘ½GðμÞ�





;
Γ− ¼






Z

1

−1
dμGðμÞΘ½−GðμÞ�





; ð15Þ

where Θ is the Heaviside theta function. In the case of
the two-flavor scenario, the survival probability can be
obtained using

PsurðμÞ ¼
	 1

2
for μ<;

S2ðμÞ for μ>;
ð16Þ

with

S2ðμÞ ¼ 1 −
1

2
hðjμ − μcj=ζÞ: ð17Þ

We refer an interested reader to Ref. [73] for more details.
Using the neutrino angular distributions in Eq. (11) and

the survival probability function defined in Eq. (13), one
can obtain the asymptotic outcomes of FFCs given the
initial distributions.

III. APPLICATIONS OF NEURAL NETWORKS

To effectively train our PINN, we require information
on two fronts: the energy-integrated moments of the
neutrino gas and the moments within a specific energy
bin. The former implicitly contains the necessary infor-
mation for the survival probability (dictated only by the
energy-integrated quantities), while the latter supplies the
bin-specific information to which the survival probability
must be applied.
To prepare our datasets, we begin with the initial energy-

integrated angular distributions of neutrinos, which can
follow either a maximum entropy or a Gaussian distribu-
tion. With these distributions for νe and ν̄e, we derive
analytical survival probabilities. Next, we apply these
analytical distributions to the neutrino angular distributions
within a particular energy bin (again either maximum
entropy or a Gaussian). This process helps us determine
the eventual outcomes of FFCs for that specific bin. By
performing integration over the neutrino angular distribu-
tions, we can then obtain the initial and final values of I0 ’s
and I1’s for that specific energy bin.
Before discussing our findings, it is crucial to emphasize

that to ensure high performance in our NN models on the
test set; it is essential to divide the dataset into three distinct
sets: a training set for foundational learning, development
set for optimizing hyper-parameters, and a test set for
evaluating the model’s generalization to novel data.

A. The architecture of NNs

For a given multienergy neutrino gas, one is provided
with the initial values of energy integrated I0’s and I1’s of
νe, ν̄e (also of νx, which is irrelevant here since it has no
effect on the survival probability). In addition, for each
specific energy bin, one has I0’s and I1’s of νe, ν̄e, and νx.
In this context, we make the assumption that the initial
distributions of ν̄x and νx are identical (though their final
ones following FFCs could be different), a simplification
that aligns with the majority of state-of-the-art CCSN and
NSM simulations.
Though in total ten I’s are available (which could be, in

principle, the inputs of NNs), we here introduce a layer of
feature engineering to enhance the performance of our
NNs, namely we define the new features,

α; Fνe ; Fν̄e ; nνe;i; nν̄e;i; nνx;i; Fνe;i; Fν̄e;i; Fνx;i; ð18Þ
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with Fν ¼ ðI1=I0Þν. Here, the quantities without/with sub-
script i indicate the quantities belonging to the energy-
integrated spectrum/specific energy bin. Note that the
neutrino number densities in the particular energy bin must
be smaller than the corresponding energy-integrated values.
The selection of these features offers explicit insights

into the configuration of neutrino angular distributions,
which plays a crucial role in understanding the asymptotic
outcome of FFCs. Furthermore, it is worth highlighting that
all quantities in this context are normalized by the initial
energy-integrated νe number density, allowing the conven-
ient choice of setting it to ninitialνe ¼ 1. This simplification
reduces the number of inputs to our NNs, and notably, there
is no input parameter related to nνe .
As we also discussed in our previous work [77], there is

still the possibility of improving our NNs through more
advanced feature engineering. By considering the neutrino
survival probability’s shape, as expressed in Eq. (13), one
observes that a significant amount of information about the
shape of the survival probability can be derived by learning
the position of μc. Another crucial piece of information,
given μc, is determining the side where equipartition hap-
pens. The behavior of the survival probability on the opposite
side is regulated by conservation laws. This side’s determi-
nation is described by the quantity ERL, a binary value that
equals 1 if equipartition happens for μc ≤ μ and 0 otherwise.
As in Ref. [77] and as illustrated in Fig. 2, we explore

two distinct architectures in our NN framework. In the
foundational architecture, we integrate only α; Fνe ; Fν̄e ;
nνe;i; nν̄e;i; nνx;i; Fνe;i; Fν̄e;i, and Fνx;i into our NN. On the
other hand, our alternative NN includes also information
coming from μc and ERL. Our feed forward NN has a single
hidden layer containing 150 neurons, as justified in Fig. 4
and the text around it.
Regarding the output layer, our NNs return I0;i and I1;i

for νe and ν̄e, employing a total of four neurons. Deriving
Ii’s for νx and ν̄x is achieved by applying principles of
neutrino and antineutrino number density, as well as
momentum conservation. Put simply, our NN ensures
neutrino conservation laws.
Apart from the inputs, we also consider modifying the

loss function of our NN’s. In particular, we introduce an
additional loss term in the optimization of the NN model
with the extra features, defined as

Lextra ¼
1

Nsample
ΣkðΔNνeþν̄e;kÞ2; ð19Þ

which tends to penalize any deviation in the number of
neutrinos in the electron channel, i.e.,Nνeþν̄e ¼ nνe;i þ nν̄e;i,
a critical parameter of utmost significance in CCSNe and
NSMs. Here, Δ, Nsample, and Σk denote the difference
between the true and predicted values, the number of
samples in the training set, and the summation over the
training samples, respectively.

The specific inclusion of the domain knowledge
allows one to consider this particular NN architecture as
a PINN [78–80]. The PINN should be compared with our
basic NN, referred to as NN with no extra features, for
which the loss term only includes the ordinary mean
squared errors of the output parameters.

B. The NN’s performance

In this section, we present and discuss the performance
of our NNs in predicting the asymptotic outcome of
FFCs in a multienergy three-flavor neutrino gas. For
training/testing our NNs, we generate a dataset comprising
a well-balanced combination of maximum entropy and
Gaussian initial neutrino angular distributions. The ultimate
outcome of FFCs is determined through a three-flavor
survival probability, as detailed in Eq. (13). We also set
α∈ ð0; 2.5Þ, Fνx;ðiÞ ∈ ð0; 1Þ, Fν̄e;ðiÞ ∈ ð0.4Fνx;ðiÞ; Fνx;ðiÞÞ, and
Fνe;ðiÞ ∈ ð0.4Fν̄e;ðiÞ; Fν̄e;ðiÞÞ, which is consistent with the
expected hierarchy Fνe ≲ Fν̄e ≲ Fνx. Regarding nν;i’s, we
take them from a half-normal distribution with zero mean
and a standard deviation of 0.1nν, with nν being the energy-
integrated neutrino number density. This choice can

FIG. 2. Schematic architecture of our NNs. The green zone
shows the implementation of the extra features, μc, and ERL,
which are obtained through an extra layer of regression, using
linear and logistic regressions, respectively. Here, μc is the
crossing direction, and ERL is a binary, which is 1 if the
equilibrium occurs for μc ≤ μ, and 0 otherwise. The blue zone
represents energy-integrated inputs, while the orange zone dis-
plays inputs for specific energy bins. Note that the neutrino
number densities in the particular energy bin must be smaller than
the corresponding energy-integrated values. In our basic NN,
referred to as the NN with no extra features, the NN only takes the
inputs highlighted in Eq. (18). However and in our PINN, we
provide our NN with the extra features μc and ERL.
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enhance the performance of our NNs in the energy bins
with fewer neutrinos. Also, note that since our NNs process
only a single energy bin at a time, the hierarchy of flux
factors among different neutrino energies is irrelevant here.
In Fig. 3, we illustrate the performance of our PINN and

the basic NNwithout extra features. The relative error in the
electron neutrino number density within our PINN, quan-
tified by jΔðnνe;i þ nν̄e;iÞj=ðnνe;i þ nν̄e;iÞ, achieves a mini-
mum of 6%. Additionally, the mean absolute relative error
in the output variables, computed as the mean of jΔIij=Ii,
attains values ∼16%. In contrast, when considering the
basic NN, these errors increase to ∼12% and ∼22%,

respectively, showing higher discrepancies. The noticeable
performance improvement within our PINN can be pri-
marily attributed to the inclusion of extra features, which
provide extra information on the shape of the survival
probability distribution.
Comparing the findings illustrated in Fig. 3 with those

discussed in Ref. [77], a discerning reader will observe a
substantial discrepancy in the impact of employing PINN.
Specifically, the application of PINN results in a signifi-
cantly more pronounced enhancement in performance in
the former case. While the utilization of PINN can almost
reduce the error by a factor of 2 in the multienergy neutrino
gas, its application to a single-energy neutrino gas only
yields a modest ≲1% improvement in the error.
This discrepancy can be attributed to the substantial

difference in the amount of input information between the
two cases. In the former scenario, the volume of input
information is notably larger, leading to a higher degree of
degeneracy in the input data. The introduction ofPINN in this
context is remarkably effective in mitigating this degeneracy
and, consequently, substantially reducing the error.
The computations conducted here have utilized a feed

forward neural network featuring a single hidden layer
having nh ¼ 150 neurons. The reasoning behind selecting
this specific number of neurons is depicted in Fig. 4, which
shows errors for different NN architectures. The optimal
performance on the validation set is observedwhen nh ≳ 50.
In Fig. 5, we analyze our PINN’s performance con-

cerning the training set size. The red curve indicates
the absolute relative error in the PINN’s output, while the
blue curve shows the relative error in Nνeþν̄e . As the
training dataset expands to include several thousand data
points, the errors rapidly decrease to approximately ∼6%
and ∼18%, respectively, and additionally, the disparity
between the validation and training set errors diminishes.
These findings align with results observed in single-
energy scenario calculations [77]. This underscores the
crucial minimum number of data points required for
reliable calculations using NNs.
There remains a crucial aspect regarding the assessment

of the absolute relative error that needs discussion. In our
prior study concerning FFCs within a single-energy neu-
trino gas [77], we primarily regarded the absolute error as
the relevant metric. However, when addressing the com-
plexities of a multienergy neutrino gas, the absolute error
falls short. The problem arises because, despite normalizing
all quantities by nνe, the values of I’s within a specific
energy bin are expected to constitute a minor fraction of
one. Hence, achieving a low absolute error does not
inherently guarantee accurate prediction due to the rela-
tively small magnitudes involved.
Hence and for the multienergy neutrino gas, we have

adopted the absolute relative error as the informative
metric. Nonetheless, this choice comes with a notable
drawback: extremely small I’s yield disproportionately
large absolute relative errors. While these cases may not

FIG. 3. Performance evaluation of the PINN and the basic NN
with no extra features. We present the relative absolute error in the
output parameters, along with the relative error in the total
number of neutrinos within the electron channel, Nνeþν̄e . It is
evident that the PINN can well outperform the basic NN with no
extra features. Here, an epoch refers to a single pass through the
entire training dataset during the training phase.
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include the most intriguing aspects of the parameter space,
their associated errors tend to dominate over the rest of the
parameter space. To resolve this issue, in our performance
evaluation on the test set, we have chosen to exclude data
points where jIij ≤ 5 × 10−3 (while retaining them in the
training set). In Sec. III C, we come back to this problem
and devise a solution to this challenge.

C. Reconstruction of neutrino energy spectra

In the preceding part, we engineered our NNs to process
the energy-integrated I’s and their values within an
specific bin, Ii’s. To elaborate, our methodology works

on an energy bin-based approach, focusing solely on
predicting the final outcomes within individual energy
bins. This approach eliminates unnecessary complexity
associated with attempting to reconstruct the entire neu-
trino energy spectra following FFCs at once.
In this part, we explore the performance of our PINN’s to

reconstruct the complete neutrino energy spectra following
FFCs. While this application of our NNs might appear
straightforward initially, it presents significant challenges.
Specifically, when our PINNs are employed to analyze the
tail of the energy spectrum, where the count of neutrinos is
notably low, we encounter a considerable obstacle. The
relative error in these instancesmight surpass the total values
of nνðν̄Þ, potentially leading to a scenario where the con-
servation laws cannot be satisfied, as discussed in the
following. In the high-energy tail of the spectra, where
neutrino number densities can reach very low values, the
predicted value of nνeðν̄eÞ may even surpass the total (anti)
neutrino number density. This is attributed to the expected
large relative errors associated with the output of neural
networks when dealing with such small values, as discussed
before. Consequently, while the conservation law for neu-
trino number remains mathematically valid in principle, it
loses its practical significance. This is because adhering to
the conservation laws would now imply a negative number
density for nνxðν̄xÞ, which is not physically meaningful.

FIG. 5. Absolute relative error in the output of our PINN (red
curve) vs the relative error in the number of neutrinos in electron
channel, i.e., Nνeþν̄e (blue curve). The inclusion of a few thousand
data points in the training set leads to the disappearance of error
variations between the validation and training sets. Note that we
do not display the absolute relative error in the training set. This is
due to the presence of small I0s in the training set (which are
removed from the test set), causing a significantly larger relative
error. Hence, any direct comparisons between the absolute
relative errors in the training and test sets would be unfair.

FIG. 4. Performance evaluation of our PINN and the basic NN
with no extra features (on the validation set) as a function of the
number of neurons in the hidden layer. It is evident that the NNs
have achieved their best performance on the validation set once
nh ≳ 150. The labels and NN models are the same as those in
Fig. 3.
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To address this challenge, we devised a solution by
simultaneously adjusting the number of νe (ν̄e) and νx (ν̄x)
while ensuring the conservation of total neutrino numbers.
Our approach indeed involves the utilization of two PINNs.
The first PINN is designed to compute I0;i’s and I1;i’s for νe
and ν̄e, following the standard architecture we discussed in
previous part. Meanwhile, the second PINN shares a
similar structure but deals with νx and ν̄x, calculating their
respective I0;i’s and I1;i’s. In practice, this implies that the
outputs of such a PINN are

Iνx0;i; I
νx
1;i; I

ν̄x
0;i; I

ν̄x
1;i; ð20Þ

while the input features are not different in the two PINNs.
Importantly, in this PINN, the I’s of νe and ν̄e are then
derived through neutrino conservation laws. In essence, the
difference between these two PINNs lies in the information
they provide—while the first PINN provides νe I’s, the
second one focuses on νx, with the retrieval of νe quantities
governed by conservation principles.
Given these two PINNs, the final neutrino number

densities for each energy bin can be calculated as

nfinνβðν̄βÞ;i ¼
Nini

νðν̄Þ;i
Npred

νðν̄Þ;i
npredνβðν̄βÞ;i; ð21Þ

where npredνβðν̄βÞ;i represents the corresponding PINN predicted

value for the neutrino species β. Here, Npred
νðν̄Þ;i denotes the

predicted total (anti)neutrino number density, and Nini
νðν̄Þ;i is

its initial value. It is important to note that the prediction for
each neutrino species is conducted by the relevant PINN
model discussed earlier; i.e., the former PINN is employed
for the electron species, while the latter is used for heavy-
lepton flavors. Note that the errors in the predictions of nν
can now be automatically adjusted to ensure respecting the
conservation laws, preventing negative number densities.
Furthermore, a fair treatment is now applied to electron and
heavy-lepton flavors, preventing one from becoming unrea-
sonably small when the error in the prediction of the other
is unreasonably large.
In Fig. 6, we present the performance evaluation of our

PINNs in reconstructing the neutrino energy spectra. The
upper panels show the initial neutrino distributions, which

FIG. 6. Performance evaluation of our PINNs in reconstructing neutrino energy spectra. The upper panels exhibit the initial spectra
characteristics, including the neutrino initial energy spectra, angular distributions of the energy-integrated neutrino spectra as a function
of μ, and the corresponding FFC survival probability. Here, we have assumed Fνe ¼ 0.5, Fν̄e ¼ 0.7, and Fν̄e ¼ 0.8. The lower panels
illustrate the post-FFCs final neutrino spectra for νe, ν̄e, and νx (ν̄x), respectively. The results are shown for both the PINN approach and
an exact method, assuming having access to the full neutrino angular distributions. As one can see, the prediction errors for antineutrinos
are much smaller than those concerning neutrinos.
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are prepared as follows. We describe the energy-differential
number flux of a specific neutrino species, νβ, as [7]

F νβðEνÞ ∝
Lνβ

hEνβi
fνβðEνÞ ð22Þ

with

fνβðEνÞ ¼
1

TνβΓð1þ ηνβÞ
�
Eν

Tνβ

�
ηνβ

expð−Eν=TνβÞ; ð23Þ

being the normalized νβ spectrum, where Eν is the neutrino
energy. Here, ηνβ and hEνβi are the pinching parameter and
the neutrino average energy which describe the normalized
spectrum and Tνβ ¼ hEνβi=ð1þ ηνβÞ. In addition, Lνβ is the
neutrino luminosity. To be specific, we use the following
values which could be expected during the SN accretion
phase [7]:

Lνe∶ Lν̄e∶Lνx ¼ 1∶1∶0.33;

hEνei∶hEν̄ei∶hEνxi ¼ 9∶12∶16.5;

ηνe∶ην̄e∶ηνx ¼ 3.2∶4.5∶2.3: ð24Þ

Note that for the average energies and luminosity’s only the
ratios matter. Moreover, we assumed these values for the
energy-integrated flux factors: Fνe ¼ 0.5, Fν̄e ¼ 0.7, and
Fν̄e ¼ 0.8. We here take 14 energy bins and for each energy
bin, we then adopted an assumption describing the relation-
ship as Fν;i ¼ Fνð70 − Eν;iÞ2=602. Here, we have assumed
that the spectra approach zero for Eν;i ≳ 60 MeV. Note that
we anticipate a decrease in the flux factor as neutrino
energy increases. This reduction is expected to be non-
linear, attributed to the nonlinear scaling of the neutrino
scattering cross-section with matter in the SN environment.
While our assumption about the energy-dependent nature
of the flux factor is speculative, it aligns with the expected
conditions mentioned above.
In the lower panels of Fig. 6, we present the final

neutrino energy spectra following FFCs. It is evident that a
notable difference in the spectra reconstruction error
emerges between neutrinos and antineutrinos. This dispar-
ity can be indeed quantified by an absolute spectral relative
error, defined as

δν ¼ Σi
nν;i
nν

jΔnν;ij
nν;i

; ð25Þ

where the prediction error for nν;i is weighted by the
relative distribution across energy bins. For the results
presented in the lower panels of Fig. 6, we observed
δνe ¼ 0.20, δν̄e ¼ 0.06, δνx ¼ 0.23, and δν̄x ¼ 0.05.
Despite the clear difference between neutrinos and

antineutrinos in this particular example, we have noticed

that this observation depends notably on the specific
example, and it can fluctuate across different calculations
and models. This variability highlights the need for more
sophisticated neural network architectures, such as
Bayesian neural networks. These specialized networks
offer the capability to provide uncertainty estimates for
predicted quantities, addressing the intricacies and fluctua-
tions observed in these calculations.

IV. DISCUSSION AND OUTLOOK

We have employed a single hidden layer physics-
informed neural network (PINN) to predict the asymptotic
outcome of FFCs within a three-flavor multienergy neu-
trino gas. Our approach focuses on utilizing the first two
moments of neutrino angular distributions, making our
PINNs highly relevant to state-of-the-art CCSN and NSM
simulations. We have demonstrated that our PINNs can
achieve remarkable accuracy, with errors reaching≲6% for
the number of neutrinos in the electron channel, and ≲18%
for the relative absolute error in the neutrino moments.
By conducting simulations of FFCs in a 1D box with

periodic boundary conditions, we first demonstrated that in
scenarios where the FFC growth rate notably exceeds that
of the vacuum Hamiltonian, a uniform survival probability
is experienced by all neutrinos, regardless of their energy.
This common survival probability is solely determined by
the energy-integrated neutrino spectrum.
In our PINNs, we incorporated novel features to effec-

tively capture the shape of the expected neutrino survival
probability distributions. Our improvements involve incor-
porating the position of the zero crossing in the distribution
of νELN, μc, and also information about the side of μc,
where the expected equipartition occurs. Our research
demonstrates that this advanced feature engineering sig-
nificantly improves the performance of our PINN.
Moreover, we demonstrated that the variance between

the training and validation sets decreases significantly with
a minimum of a few thousand data points. This underscores
the necessity for datasets of (at least) this size when
developing more realistic models based on simulation data
in future studies.
We also highlighted a significant challenge in applying

NNs to predict the whole neutrino energy spectrum. This
challenge arises from the fact that predicting the tail of the
spectrum may lead to an error of such magnitude that it
violates the preservation of neutrino conservation laws. To
address this issue, we propose the development of two
separate models: one dedicated to predicting electron (anti)
neutrino quantities and another for heavy-lepton flavor of
(anti)neutrino quantities, respectively. By scaling the num-
bers in accordance with conservation laws, we could
overcome this challenge. Our demonstrated approach
showed that PINNs can accurately enough reconstruct
the entire neutrino spectrum, particularly in a typical
neutrino spectra scenario during the SN accretion phase.
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In summary, our research highlights the effectiveness
of PINNs in predicting the asymptotic outcomes of FFCs
within a multienergy neutrino gas. Nevertheless, there are
crucial avenues for further exploration. An important
consideration is extending our study to encompass more
realistic neutrino gases characterized by nonaxisymmet-
ric distributions, where νx and ν̄x can also exhibit
dissimilar patterns. Such refinements will improve the
feasibility of incorporating FFCs into CCSN and NSM
simulations, thereby advancing our capacity to model
and predict accurately these extreme astrophysical
phenomena.
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