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We introduce the implementation details of the simulation code COSEν , which numerically solves a 
set of non-linear partial differential equations that govern the dynamics of neutrino collective flavor 
conversions. We systematically provide the details of both finite difference method supported by Kreiss-
Oliger dissipation and finite volume method with seventh order weighted essentially non-oscillatory 
scheme. To ensure the reliability of the code, we perform comparison of the simulation results with 
theoretically obtainable solutions. In order to understand and characterize the error accumulation 
behavior of the implementations when neutrino self-interactions are switched on, we also analyze the 
evolution of the deviation of the conserved quantities for different values of simulation parameters. We 
report the performance of our code with both CPUs and GPUs. The public version of the COSEν package 
is available at https://github .com /COSEnu /COSEnu.
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1. Introduction

Neutrinos are the most elusive fundamental particles in the 
Standard Model of particle physics. They have no electric charge 
and tiny masses (not yet known experimentally), and only inter-
act with other particles via the weak force. Despite the weakly-
interacting nature, they play a substantial role in deciding the 
evolution and the matter composition of different physical sys-
tems such as core-collapse supernovae (CCSNe), neutron star (NS) 
mergers, and the early Universe. Added to their elusiveness, ter-
restrial based experiments and astrophysical observations revealed 
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that neutrinos are capable of undergoing a phenomenon known as 
flavor transition, by virtue of which they oscillate between e, μ, 
and τ flavors, due to the mixing of their flavor and mass quantum 
eigenstates [1]. Associated with these properties comes a set of 
parameters: the masses of different mass eigenstates and their or-
dering, as well as the mixing angles and the CP-violating phase(s) 
in the neutrino mixing matrix. Most of these parameters have 
been measured precisely in recent years [1] while the ongoing and 
planned experiments are expected to shed more light on the re-
maining ones.

Recent theoretical studies revealed that neutrinos behave differ-
ently when surrounded by dense matter. Apart from the Mikheyev–
Smirnov–Wolfenstein (MSW) [2,3] mechanism in which neutrinos 
experience resonant flavor transition due to their neutral and 
charged current interactions with matter, they can also undergo 
forward scattering among themselves via neutral current inter-
actions resulting in processes such as νe ν̄e � νxν̄x [4,5], where 
νx(ν̄x) represent νμ(ν̄μ) or ντ (ν̄τ ) neutrinos, leading to the col-
lective conversion of neutrino flavors; see Ref. [6] for a recent 
review and references therein. The conversion rates associated 
with this mechanism can be as fast as ωcoll ∝ GFnνe , where GF is 
the Fermi constant and nνe is the local number density of νe . For 
typical neutrino densities (1030 − 1035 cm−3) around the neutrino 
emission surfaces of CCSNe and coalescing NSs, the correspond-
ing ωcoll ∼ O (cm−1) greatly exceeds the vacuum oscillation rate 
ωvac = |�m2|/2E ∼ km−1, where �m2 is the mass-squared dif-
ference of the relevant neutrino mass eigenstates and E is the 
neutrino energy. Various analytical and numerical studies have 
been carried out to understand the behavior of these “fast” neu-
trino flavor conversions [7–29]. Besides, several studies on systems 
such as the NS merger and CCSNe [17,30–40] have inferred that 
the fast conversions may occur in the most dense regions of them 
and can potentially affect the dynamics and the nucleosynthesis of 
these systems.

Because of the highly non-linear structure of the neutrino-
neutrino effective interaction Hamiltonian, it is impossible to have 
a complete analytical solution for the neutrino flavor evolution in 
environments dense in neutrinos. However, it is possible to lin-
earize the system of equations and carry out the normal mode 
analysis [8,10,13,41]. Such analyses show that dense neutrino sys-
tem supports collective flavor runaway modes when certain crite-
ria are satisfied. Although the linear analysis helps us understand 
the behavior of fast oscillations to some extent, the assumption 
that the correlations between different flavors are much smaller 
compared to the self correlation put a very stringent constraint on 
the applicability of this method. Thus, to study the neutrino os-
cillations in dense environments to full extent, several numerical 
simulations have been carried out in recent years. Refs. [15,20,22]
studied the neutrino system in a one-dimensional (1D) box in the 
z-direction with periodic boundaries and translational symmetry in 
the x and y directions using numerical methods which evolves di-
rectly neutrino correlations in discretized grids. Ref. [25] used the 
spectral method to solve the same set of equation in 1D. Mean-
while, the authors of Ref. [27] adopted the particle-in-cell method 
and have recently performed simulations for systems with higher 
spatial dimensions, including both 2D and 3D cases. A study which 
compares in detail simulation outcome from these groups will be 
published soon [42].

The intention of this article is to systematically discuss the 
computational aspects of COSEν (Collective Oscillation Simula-
tion Engine for Neutrinos), the code base developed for simulating 
the collective neutrino flavor conversions and used in Ref. [22].
COSEν is written completely in C++ to ensure the high perfor-
mance. At present, it provides two advanced numerical methods 
for solving the neutrino flavor evolution equations. The first one 
uses the 4th order finite-difference (central) scheme (FD) sup-
2

ported by third-order Kreiss-Oliger (KO3) numerical dissipation 
to treat the advection effectively. The second method adopts the 
finite-volume (FV) formalism. In this scheme, the flux reconstruc-
tion is implemented using the 7th order weighted essentially non-
oscillatory (WENO) scheme. For both cases, we have used the 4th 
order Runge-Kutta method (RK4) for time integration. We shall 
provide implementation details of both methods in the following 
sections. In-depth analysis of the physics of the simulation results 
and their comparison with previous numerical studies for some 
bench-mark cases was reported in Ref. [22].

This article is organized as follows. In section 2, we briefly 
discuss the equations governing the neutrino flavor evolution. 
Section 3 is dedicated to detailed descriptions of the numerical 
schemes used in COSEν . In section 4, we summarize the results 
from the advection tests which provide some insights into the 
numerical error accumulation behavior of both FD and FV imple-
mentations. We also carry out tests when the vacuum oscillation 
is present and compare the results with the analytical solutions. 
In section 5, we present the results from the simulations when 
collective neutrino flavor transitions occur. We provide the com-
putational performance comparison in section 6. Discussion and 
conclusions follow in section 7. Throughout this paper we set 
h̄ = c = 1 to adopt the natural units.

2. Theoretical setup

We considered a simplified set of quantum kinetic equations to 
describe the transport of neutrinos in a physical system [43,44]. 
First, we assume for simplicity a two flavor neutrino system in 
which the single particle flavor state can be represented by a 
2 × 1 column vector (νe, νx)

T , where νe represents the electron 
type neutrino and νx represent the μ type or τ type neutrino or 
an appropriate linear combination of them. Then, we use a 2 × 2
complex valued (Hermitian) density matrix �(t, x, v) [�̄(t, x, v)] 
to represent the quantum statistical phase-space distribution of 
(anti-)neutrinos in our system. The diagonal elements of �, la-
belled as �ee(t, x, v) and �xx(t, x, v) are related to the number 
densities of e and x type neutrinos respectively for a given ve-
locity mode v . The off-diagonal component �ex(t, x, v) is related 
to the correlation between them. The same definition applies to 
the antineutrino density matrix �̄. For this first version of COSEν , 
we choose to ignore other potential correlations such as spin co-
herence and the neutrino-antineutrino correlators [43,44], as well 
as the momentum-changing collisions of neutrinos [45–48]. We 
also assume that the system has a perfect translational symmetry 
in both x and y directions and axial symmetry about the z-axis 
such that the density matrices depend only on t , z and the z
component of the velocity vz . Then, the space-time evolution of 
�(t, z, vz) and �̄(t, z, vz) are determined by the following equa-
tions in 1+1+1(time+space+velocity) dimensions.

∂

∂t
�(t, z, vz) + vz

∂

∂z
�(t, z, vz) = −i[H(t, z, vz),�(t, z, vz)],

(1a)

∂

∂t
�̄(t, z, vz) + vz

∂

∂z
�̄(t, z, vz) = −i[H̄(t, z, vz), �̄(t, z, vz)],

(1b)

where the square bracket ([, ]) stands for the commutation opera-
tion. The explicit form for � (for neutrinos) and �̄ (anti-neutrinos) 
are given by,

�(t, z, vz) =
[

�ee �ex

�∗ �

]
, �̄(t, z, vz) =

[
�̄ee �̄ex

�̄∗ �̄

]
. (2)
ex xx ex xx
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The Hamiltonian H (and H̄) in general have contributions stem-
ming from the vacuum oscillations (Hvac), neutrino-matter forward 
scattering (Hm) and neutrino-neutrino forward scattering (Hνν ). In 
the numerical setup we omit the neutrino-matter forward scatter-
ing contribution as it can be removed, assuming Hm is space-time 
independent over the scales determined by Hνν , by making ap-
propriate transformations of the density matrices [49,50].1 In that 
case the Hamiltonian relevant for our present discussion takes fol-
lowing form in the flavor basis,

H(t, z, vz) = Hvac+μ

1∫
−1

dv ′
z(1 − vz v ′

z)

× [�(t, z, v ′
z) − α�̄∗(t, z, v ′

z)],
(3a)

H̄(t, z, vz) = H̄vac−μ

1∫
−1

dv ′
z(1 − vz v ′

z)

× [�∗(t, z, v ′
z) − α�̄(t, z, v ′

z)],
(3b)

where

Hvac = H̄vac = ωvac

2

[ − cos 2θvac sin 2θvac
sin 2θvac cos 2θvac

]

is the vacuum mixing Hamiltonian with θvac the mixing angle. 
The quantity μ = √

2GFn0
νe

represents the effective strength of 
Hνν , where n0

νβ
denotes the number density of β flavor neutri-

nos. α = (n0
νe

/n0
ν̄e

) is the initial neutrino-antineutrino asymmetry 
parameter. Note here that the quantities � and �̄ are normalized 
with respect to the initial number densities of νe and ν̄e respec-
tively.

In literature, another equivalent way of describing the dynam-
ics of the collective neutrino flavor evolution is via the so-called 
polarization vectors, P , defined by

ρ = (P0I + P · σ )/2, (4)

where σ are the Pauli matrices. For cases where the number 
densities of neutrinos and antineutrinos are conserved per phase-
space volume, both P0 and the length of the polarization vector 
|P | =

√∑3
i=1 P 2

i are constants of motion. Due to its ease of imple-
mentation and also keeping potential future extensions in mind,
COSEν is implemented in terms of the density matrix formalism. 
We make use of the conserved quantities while testing simulation 
(see Sec. 5).

3. Numerical implementation

In this section we focus on the numerical implementation of
COSEν which solves the partial differential equations (PDEs) (1a)
and (1b) when supplemented with the Hamiltonian in Eq. (3). The 
idea in both FD and FV implementations is to divide the spatial 
domain which extends from z0 to z1 into Nz grid points and carry 
out the time integration using RK4 from an initial time t0 to a 
final time t f in steps of �t . Then the size of each cell �z = (z1 −
z0)/Nz is related to �t through �t = CCFL(�z/max(|vz|)), where 
CCFL is the Courant–Friedrichs–Lewy number. Since the interaction 
Hamiltonian is velocity dependent and vz takes values from −1 to 
1, the velocity space is also divided into Nvz discrete points such 
that the neutrino beams with vz values ranging between v j and 

1 This amounts to the redefinition of the frames in the flavor space. Note that 
under such a transformation, the vacuum Hamiltonian becomes an effective one 
(Hvac → Heff

vac). For simplicity, we omit the superscript “eff” hereafter.
3

v j + �vz for some 0 ≤ j < Nvz , are treated as a single beam with 
vz value v j + �vz/2. Then the contribution to the Hamiltonian 
from the velocity integrals in the Eqs. (3a) and (3b) are carried out 
using simple Riemann sum.

3.1. Finite difference method

The numerical technique used to solve hyperbolic PDEs in this 
work is based on the “method of lines” (See Sec. 6.7 of Ref. [51]
for instance) where the spatial and temporal discretizations are 
treated conceptually in a separated style. We discretized the advec-
tion term with the 4th order central finite difference scheme. The 
resulting equations become ordinary differential equations (ODEs) 
of time and can be solved as the initial-value problem via the 
explicit, 4th order Runge-Kutta method. For the integration over 
velocities in the right hand side, the standard trapezoid rule of 
second-order accuracy is used with the fixed-width, vertex-center 
grid points over velocities in [−1, 1]. We have also used the basic 
Simpson’s rule of fourth-order accuracy and obtained similar re-
sults. The framework of “method of lines” allows us to treat the 
advection term with other high order methods such as the WENO 
scheme, which will be discussed in the next section.

To suppress the high-frequency instability arising from the FD 
approximation of equations (see Sec. 5), we add Kriess-Oliger dis-
sipation on the right hand side of each evolving variables u, i.e., 
letting ∂t u → ∂t u + Q u. The general form of the 2r-order Kreiss-
Oliger dissipation can be expressed as

Q = εko(−1)rh2r−1(D+)r(D−)r/22r, (5)

where D± are one-sided FD operators for ∂/∂x, defined by D+ ≡
(u+1 − u0)/h and D− ≡ (u0 − u−1)/h. With this convention, the 
central FD of ∂2/∂x2 can be written as D+D− = (u+1 − 2u0 +
u−1)/h2. A sufficiently large dissipation strength εko can suppress 
the instability without destroying the convergence of a symmet-
ric hyperbolic system of equations, as discussed in [51] via the 
Fourier-based analysis. In our work, we have used r = 2 for most 
numerical experiments.

3.2. Finite volume method

Unlike the FD method where the values on the grids points are 
evolved, the FV scheme evolves the cell-averaged values. Let us 
consider the following simple one dimensional hyperbolic equa-
tion,

∂u(t, z)

∂t
+ ∂ f (u(t, z))

∂z
= 0, (6)

where u(t, z) represents the quantity that we want to evolve, and 
f (u(t, z)) is the associated flux function. Given the values of the 
functions u and f at the grid points and assuming we can appro-
priately interpolate them to a required order of accuracy, we have

dūi(t)

dt
= − 1

�z

[
f i+1/2(t) − f i−1/2(t)

]
. (7)

In the above expression we have used the definition Āi(t) =
(1/�z) 

∫ i+1/2
i−1/2 dz A(t, z) for some function A(t, z). The upper and 

lower limits of the integral denoted by i ± 1/2 are the represen-
tatives of zi ± (�z/2), with zi being the coordinate of the ith grid 
point. The PDE in Eq. (6) now becomes an ODE in t , which can be 
solved, given the values on the right hand side of Eq. (7), using any 
standard ODE solver. Then the problem is down to reconstructing 
the flux values at the cell boundaries i ± 1/2 to a required order 
of accuracy. For reconstructing the flux values f i±1/2, the FV im-
plementation of COSEν uses WENO scheme [52–54] such that the 
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fluxes are 7-th order accurate for a smooth function while they are 
at least 4-th order accurate for functions with discontinuities. The 
discussion below closely follows Refs. [52,53].

Given the cell averaged values of the flux function f (z) at n
contiguous locations with a uniform separation of �z, we can 
construct a polynomial f̂ (n) of degree n − 1 such that the recon-
struction of the function f (z) is n-th order accurate. That is,

f (zi) = f̂ (n)
i + O (�zn). (8)

This allows us to write down the n-th order approximation of 
Eq. (7) as,

d

dt
ūi(t) = − 1

�z

[
f̂ i+1/2 − f̂ i−1/2

]
+ O (�zn). (9)

We have omitted the superscript n in Eq. (9). It can be shown 
that, given the cell averaged values of the function f̄ i at each cell 
of the stencil, values of the function at i ± 1/2 can be expressed as 
a linear combination of the values of f̄ i ,

f̂ i+1/2 =
n−1∑
j=0

cr, j f̄ i−r+ j, (10a)

f̂ i−1/2 =
n−1∑
j=0

c̃r, j f̄ i−r+ j, (10b)

with the following definition of the coefficients cr j (see Ref. [53]
for instance),

cr, j =
k∑

m= j+1

∑k
l=0,l 
=m 
k

q=0,q 
=m,l(r − q + 1)


k
l=0,l 
=m(m − l)

, (11)

where r is the shift parameter that can be thought as the measure 
of the left-shift of the stencil under consideration from the point i. 
Since we are reconstructing the values of f at the exact locations 
i ±1/2, the relation c̃r, j = cr−1, j holds true. Note here that the def-
inition of cr, j in the Eq. (11) is valid only for a grid with uniform 
cell size �z.

The n-th order WENO scheme considers a stencil S containing 
n grid points in order to approximate the value of flux at i ± 1/2. 
Then this stencil S is divided into smaller sub-stencils of order k
such that n = 2k −1. The purpose of this decomposition is that, the 
reconstructed values at the given location are n-th order accurate 
for smooth functions and at least k-th order accurate if there exists 
a discontinuity. Each sub-stencil of length k can then be labelled 
using the shift parameter r (see Fig. A.13). As a result, we have

f̂ (n)
i±1/2 =

∑
r

dr f̂ (k)
r,i±1/2. (12)

In order to treat the discontinuities appropriately while making 
the above linear combination [Eq. (12)], WENO uses the weighted 
averaging of the coefficients dr . The weight factor for the contribu-
tion of the sub-stencil r is estimated with respect to a smoothness 
index (SIr ), which as the name implies, measures the smoothness 
of the sub-stencil r. In our implementation, we have used the re-
sults from Refs. [55] and [56] to compute the SIr . Given the values 
of SIr , we replace dr in Eq. (12) with the corresponding weighted 
coefficients,

f̂ (n)
i±1/2 =

∑
r

wr

w
f̂ (k)
r,i±1/2, (13)

where w = ∑
r wr and
4

wr = dr

(SIr + ε)2
. (14)

The ε in Eq. (14) is to avoid the possibility of the denominator 
becoming zero. A typical value of ε can be ∼ 10−6. The explicit 
forms of the quantities f̂ (n) , f̂ (k) , dr , and SIr for 7th order WENO 
are provided in the Appendix A. Note that, when Sr has disconti-
nuity SIr becomes large resulting in smaller value of wr which as 
we can see from the Eq. (13) reduces the contribution of f̂ (k)

r,i±1/2

to f̂ (n)
i±1/2.

4. Tests for advection and vacuum oscillations

Before discussing collective neutrino oscillations in the next 
section, we use this section to discuss the results of some pre-
liminary tests carried out with COSEν when Hνν is turned off. In 
Sec. 4.1 we illustrate the results only with pure advection and in 
Sec. 4.2 we discuss the results when vacuum oscillation term is 
turned on. In both cases we will show that the simulation results 
match very well with what expected theoretically. Also, to quantify 
the numerical error, we define the quantity

E2 =
√

1

L

∫
dzε(z)2, (15)

where L is the length of spatial domain and ε(z) = fExact(z) −
fSim(z) with subscripts Exact and Sim denoting results from simu-
lations and from the analytical solutions. In the following discus-
sions we use FD and FV as the abbreviations for the fourth order 
finite-difference method with third order KO dissipation and fi-
nite volume method with seventh order WENO flux reconstruction 
schemes, respectively. Note that we adopt the periodic boundary 
condition in z for all the simulations discussed later.

4.1. Advection

To test the numerical implementation of the advection term, 
we set the right hand side of the Eq. (1) to zero. The resulting PDE 
has the solution of the form f (z − v(t − t0)) for an initial pro-
file f (z, t0) when the advection velocity is set to v . To illustrate 
the behavior of the advection implementations, we consider two 
different initial profiles f (z, t0): a unit Gaussian to represent con-
tinuous profiles and a boxcar profile of unit height representing 
profiles with discontinuities.

Fig. 1 shows the results of the advection tests with the Gaus-
sian profile of unit amplitude initially centered at z = 0. We have 
chosen Nz = 2000, CCFL = 0.2 and v = 0.5 mode. The panel (a) 
shows the exact solution and the results from both FV and FD at 
the end of the simulation at t = 600 while panel (b) shows the 
corresponding errors. Here we see that both implementations of 
the advection are capable of producing the expected profile with 
errors at the order of O(10−8). The panel (c) demonstrates the er-
ror accumulation behavior of FD and FV. It is evident that even 
though the magnitudes of the errors remain small, FD accumulates 
the errors faster compared to FV. The fact that the error remains 
almost constant in FV reflects the conservative nature of the FV 
scheme.

In panels (a) and (b) of Fig. 2, we show the E2 errors and the 
corresponding numerical order of convergence (see Appendix C for 
more details) respectively for different values of Nz . Blue colored 
lines are used to indicate the results from FV while red colored 
lines (dotted and solid lines for results with and without Kriess-
Oliger dissipation respectively) are used for FD. As can be observed 
from Fig. 2, the errors in FD and FV reduce with increasing value 
of Nz . The panel (b) shows that both implementations asymptoti-
cally reach the expected order of accuracy (7 for 7th order WENO 



M. George, C.-Y. Lin, M.-R. Wu et al. Computer Physics Communications 283 (2023) 108588

Fig. 1. Results of the advection tests for a traveling Gaussion packet initially centered at z = 0 with velocity vz = 0.5. Panel (a): numerical solutions obtained with FV and FD 
schemes as well as the exact solution at t = 600. Panel (b): the spatial distribution of the error ε(z) at the same t = 600 as in panel (a). Panel (c): the error indicator E2

(see text for definition) obtained with FV and FD at different times during the evolution. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Fig. 2. E2 [panel (a)] at t=600 and the corresponding convergence rate [panel (b)] from advection tests for different values of Nz . Blue and red lines are used to represent 
the results obtained with FV and FD schemes, respectively. The dotted and solid red lines distinguish the results with and without the Kriess-Oliger dissipation. The light 
dot-dashed blue and red lines in panel (b) represent the theoretical asymptotic values for the order of convergence.

Fig. 3. Results of advection tests with a box centered initially at z = 0 with vz = 0.5. Panel (a)–(c) show the same quantities as in Fig. 1.
and 4 for 4th order FD for a smooth function). Note that the nu-
merical accuracy gets reduced when we include the KO dissipation 
for FD (for the tests we have used KO3 with εKO = 0.1). However, 
this sacrifice in the numerical accuracy is compensated by the nu-
merical stability as will be illustrated in the section 5.

Next, we demonstrate the nature of the COSEν implementation 
when some part of the domain contains discontinuity. For this pur-
pose, we have chosen an initial box car profile,

f (z, t = 0) =
{

1 for − 100 ≤ z ≤ 100,

0 otherwise.
(16)

The results obtained are shown in Fig. 3. The sub-panel (a) 
shows the comparison of the results from FD and FV with the exact 
solution. The sub-panel (b) shows the nature of error accumula-
tion of both FD and FV. Unlike the Gaussian profile, the maximum 
values of the error are ∼ 0.5 throughout the evolution for both 
5

cases. This is pertained to the slight increase in the width at the 
base and a slight decrease in the width at the top of the profile 
obtained from the simulation compared to the exact one. Further-
more, the FD scheme produces small oscillation errors across the 
discontinuities due to the Gibbs phenomenon [51]. When increas-
ing the resolution, we find that the maximum value of the errors 
in both FD and FV across the discontinuities remains unchanged. 
However, the E2 error can be reduced with larger Nz .

We additionally compute the Fourier transformed spectra for 
all cases discussed above. In Fig. 4, panel (a) compares the dis-
crete Fourier spectrum of the exact solution with the same of the 
simulation result for an initial Gaussian profile. Similarly panel (b) 
illustrates those for an initial box profile. As evident from the fig-
ure, the simulations produce nearly identical Fourier spectrum as 
the exact one when the Gaussian profile is used. For cases with 
the box profile, the Fourier spectra at the low frequencies compare 
well with the exact one for both the FD and FV schemes. Both 
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Fig. 4. Comparison of the discrete Fourier spectrum of the solutions obtained using FD and FV simulations with that of the exact solutions at t = 600. Panel (a): cases with 
initial Gaussian profile shown in Fig. 1. Panel (b): cases with initial box car profile shown in Fig. 3.

Fig. 5. Results from the vacuum oscillation tests (see text for details). Panel (a): comparison between the simulation and the exact solutions for �ee. Panel (b): the error 
accumulation behavior for simulations with FD and FV schemes. Panel (c)–(e): the time evolution of the quantities 〈�ee〉, Re[〈�ex〉] and Im[〈�ex〉].
implementations clearly suppress the high frequency part of the 
Fourier spectrum due to the slight deviation from perfect discon-
tinuities at the edges of the box. Moreover, the FD scheme here 
shows further suppression of the high |k| power when compared 
to the FV scheme, as a result of the KO dissipation discussed in 
the section 3.1. A comparison of the advection test results with 
and without the KO dissipation for FD is shown in Appendix B.

4.2. Vacuum oscillations

The second set of tests that we do for COSEν is to consider the 
cases including both the advection and the vacuum oscillations of 
neutrinos. Since the vacuum Hamiltonian Hvac is independent of 
�, this allows us to obtain an analytical solution for the space-
time evolution of �(t, z). For a pure initial state consisting of only 
electron neutrinos, the analytical solution of the components of 
density matrix under the action of Hvac takes the following form,

�ee(t, z) =�
t0
ee(z − v(t − t0))

×
[

1 − sin2(2θvac)sin2(
ωvac

2
(t − t0))

]
,

(17a)

�xx(t, z) =�
t0
ee(z − v(t − t0))

×
[

sin2(2θvac)sin2(
ωvac

(t − t0))
]
,

(17b)
2

6

Re[�ex(t, z)] = − �
t0
ee(z − v(t − t0))

×
[

sin(2θvac)cos(2θvac)sin2(
ωvac

2
(t − t0))

]
,

(17c)

Im[�ex(t, z)] =�
t0
ee(z − v(t − t0))

×1

2
[sin(2θvac)sin(ωvac(t − t0))] ,

(17d)

where �t0
ab(z) is the value of the of density matrix components at 

t = t0 for the matrix component ab. Note that here we are only 
interested in testing if the simulation results match with the ex-
act solutions given in the Eqs. (17). For this purpose, we consider 
a wave packet of pure electron neutrinos with a Gaussian pro-
file initially centered at z = 0. The entire wave packet travels with 
vz = 0.5 in the z-direction. We set ωvac to 0.1 and θvac to 37 de-
grees and choose Nz = 2000 and CCFL = 0.2.

Fig. 5 shows the results from vacuum oscillation tests. Panel (a) 
plots the spatial profiles of �ee obtained from simulations with FD 
and FV on top of the analytical solution. Panel (b) shows the tem-
poral evolution of the E2 error associated with the same for both 
FD and FV. Similar to earlier results from the advection tests, E2
remains at the level of O(10−8) for both FD and FV schemes. Once 
again, the error grows faster in the FD case than FV. The enve-
lope of the error for the latter remains almost constant, also due 
to the conservative nature of the FV scheme. The oscillatory be-
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Fig. 6. Evolution of the components of the polarization vector with vz = 0.99 for the fiducial case discussed in the sub-section 5 using Nz = 2000, Nvz = 100 and CCFL = 0.2. 
The diagonal dotted lines are used to indicate the light cone.
havior of the error accumulation shown in the figure is related 
to the oscillatory behavior of 〈�ee〉(t): when 〈�ee〉(t) approaches 
possible minimum value (0.076 for our choice of vacuum oscilla-
tion parameters), the profile �ee(z, t) becomes smoother, resulting 
in relatively lower truncation error compared to the profile when 
〈�ee〉(t) = 1. Note that, here we have used the notation 〈�ab〉(t)
to indicate 

∫
�ab(z, t)dz/ 

∫
�

t0
ee(z)dz. For clarity, we show 〈�ee〉(t), 

Re[〈�ex〉(t)] and Im[〈�ex〉(t)] respectively in panels (c), (d) and (e). 
With this definition, what is shown in panel (c) corresponds to the 
time evolution of the survival probability of neutrinos. Once again, 
the results obtained here clearly match the exact solution well.

5. Collective oscillations

In the previous two sections, we have performed tests for ad-
vection and vacuum oscillations. We now examine the results ob-
tained from the simulations when collective oscillations occur. We 
switch off the vacuum oscillations and set μ = 1 so that t and 
z are expressed in terms of μ−1 hereafter. The nonlinear and 
multi-angle nature of the νν interaction makes the evolution of 
collective neutrino flavor conversions complicated. As a result, we 
cannot compare our simulation results to analytic solutions like 
in previous sections. Instead, we consider the deviation of several 
conserved quantities from their initial values to quantify the nu-
merical errors.

Following the convention used in Refs. [15,22], we rewrite the 
density matrix � in the following way,

�(t, z, vz) → gν(vz)ρ(t, z, vz), (18a)

and

�̄(t, z, vz) → gν̄ (vz)ρ̄(t, z, vz), (18b)

where gν(ν̄)(vz) = 1
4π2nν(ν̄)

∫
E2dE fν(ν̄) is the normalized neutrino 

(anti-neutrino) angular distribution function, i.e., 
∫ 1
−1 gν(ν̄)(vz)dvz

= 1. In this notation the angular distribution of electron lepton 
number (ELN) of the neutrinos takes the form G(vz) = gν(vz) −
αgν̄ (vz), where α = nν̄e /nνe . When the neutrino and antineutrino 
number densities are homogeneous in z, the length of the polar-
ization vector |P | = 1 is conserved for any given z and vz (P is 
defined by the decomposition ρ = (P0I + P · σ )/2). Furthermore, 
by virtue of the nature of the interaction, we can also show that 
the quantity

M0(t) =
∫

dz

∫
dvznνe (z, t)G(vz)P (t, z, vz), (19)

whose third component corresponds to the net neutrino lepton 
number, is also conserved when periodic boundary condition is 
considered [16].
7

We have chosen the same angular distribution functions

gν(ν̄)(vz) ∝ exp[−(vz − 1)2/2σ 2
ν(ν̄)], (20)

as in Refs. [15,22]. The corresponding neutrino ELN distributions 
for different values of α can be found in Ref. [22]. For following 
discussion we consider α = 0.9 as our fiducial value for the asym-
metry parameter. We also use the values σν = 0.6 and σν̄ = 0.5
such that the ν̄ velocity distribution is more forward-peaked than 
that of ν . Note that in the absence of the vacuum oscillation term, 
this configuration does not spontaneously produce any flavor tran-
sitions. Thus, one needs to provide initial perturbations to the 
off-diagonal components of the density matrix. In our tests, the 
perturbations are supplied in the following manner,

ρee(z, vz) =
(

1 +
√

1 − ε2(z)
)

/2 = ρ̄ee(z, vz), (21a)

ρxx(z, vz) =
(

1 −
√

1 − ε2(z)
)

/2 = ρ̄xx(z, vz), (21b)

ρex(z, vz) = ε(z)/2 = ρ̄ex(z, vz), (21c)

where ε(z) = 10−2exp[−z2/50]. We then impose the periodic 
boundary condition in z and evolve the system with COSEν .

In Fig. 6, we show the time evolution of the components of 
the polarization vector with vz = 0.99 for the above mentioned 
fiducial case. For this simulation we have chosen the parameters 
Nz = 2000, Nvz = 100 and CCFL = 0.2. We can see that collec-
tive neutrino oscillations, signified by the change of Pi from their 
initial values, occur close to the center of the simulation domain 
where the initial perturbation is maximal. Flavor waves are pro-
duced and propagate primarily toward the positive z direction, but 
never cross the light cone represented by the dotted lines.

Both FV and FD with Kriess-Oliger dissipation produces nearly 
identical results. In order to emphasize the importance of the KO 
dissipation scheme in FD, we additionally show in Fig. 7 a compar-
ison of P3 with vz = 0.99 obtained with and without Kriess-Oliger 
dissipation scheme. As can be seen from the left panel, the FD sim-
ulation without dissipation leads to numerical instabilities start-
ing at t 
 800, indicated by the back-propagating pattern which 
violates the causality and produces unphysically large values of 
P3 > 1.

We now examine the numerical error accumulation in sim-
ulations for collective oscillations. We first check the maximum 
(δPmax) and the average (〈δP 〉) of the deviation of the norm of 
the polarization vector from unity (δP ). These quantities are de-
fined as follows,

δPmax =max(|δPν |max, |δP ν̄ |max), (22)

〈δP 〉 =
∫

dz
∫

dvz|δPν |gν(vz)∫
dz

∫
dvz gν(vz)

, (23)
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Fig. 7. Comparison of FD results without (left panel) and with (right panel) the Kriess-Oliger dissipation scheme for the evolution of P3. The dotted lines are used to indicate 
the light cone.

Fig. 8. Error of the conserved quantities in COSEν simulations for different values of Nz and CCFL. Panel (a) shows the δPmax, panel (b) shows the 〈δP 〉 and panel (c) shows 
the deviation of the third component of δM0. Solid and dotted lines are for simulations with FV and FD schemes respectively. Different colors are used for results with 
different values of CCFL. Note here that the dotted lines for different values of CCFL are indistinguishable in the sub-panels (a) and (b) as they are on top of each other.

Fig. 9. Values of δPmax [panel (a)] and κ [panel (b)] obtained from COSEν simulations for different values of Nz while keeping dt fixed. The light dot-dashed blue and red 
lines in panel (b) represent the expected asymptotic values for the order of convergence.
where |δPν |max and |δP ν̄ |max are the maximum values of |δP |
among all velocity modes for ν and ν̄ respectively. We then carry 
out the following two studies to understand the error accumula-
tions from the spatial derivative and time integration separately. 
In the first one we vary the value of CCFL for each value of Nz

and in the second case we keep �t constant while varying Nz . 
The panels (a) and (b) of Fig. 8 show the results for the first 
case, where we plotted the errors obtained at the end of the 
tests. The panel (c) shows the deviation of the third component 
of M0 from its initial value. We have used dotted and solid lines 
to indicate the results from FD and FV respectively while differ-
ent colors are used to indicate results obtained using different 
values of CCFL. From panels (a) and (b), we can see that dou-
bling the resolution leads to considerable improvements in the 
errors for both FD and FV. However, Changing the value of CCFL

alone while keeping Nz unchanged (equivalent to changing only 
�t) does not affect the errors in the case of FD whereas the same 
8

improves the numerical accuracy of FV. This implies that in the 
case of FD, the major contribution to the error arises from the 
treatment of the spatial derivative while in the case of FV the er-
ror from the spatial part is similar to or slightly less than that 
from the time integration. To further illustrate this we consider 
the second case in which we keep �t constant and choose a set 
of Nz and CCFL as explained in the Appendix C. �t here is cho-
sen such that Nz = 32768 has CCFL = 1.0. Fig. 9(a) shows the 
values of δPmax at the end of 1000 iterations from this test. For 
FD, the error decreases monotonically as we increase the value of 
Nz . For FV, however, the error decreases until a saturation value 
Nsat

z (= 8962 here), after which it stays constant. The reason for 
this is that when Nz reaches Nsat

z , the error from time integra-
tion becomes similar in magnitude as that from the spatial part. 
For Nz larger than the saturation value, the predominant contribu-
tion to the error [see Eq. (C.2)] comes from the time integration, 
which is a constant since �t is a constant here. This is more 
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Fig. 10. P3(vz, z) (top panels) at different times and the corresponding errors of |P | with FD [middle] and FV [bottom] schemes.

Fig. 11. The Fourier spectrum computed using the perpendicular components of the polarization vector at different times indicated by different colors obtained with the FD 
(dotted lines) and FV (solid lines) schemes.
evident from Fig. 9(b) where we show the quantity κ , defined 
as

κ = log
[
δPmax(Nz,i)/δPmax(Nz,i+1)

]
log(2)

, (24)

where Nz,i refers to the ith Nz value adopted in this set of cal-
culations with Nz,i+1 = 2Nz,i . Since we kept �t constant, κ cor-
responds to the order of numerical convergence when the error 
from time integration is negligible compared to the numerical er-
ror from the spatial derivative. If the situation is the other way 
around, κ approaches zero. Thus, the approximate constant value 
of κ for FD indicates the domination of the error from spatial 
derivative in the total error. Note here that κ assumes similar value 
that we obtained for the order of accuracy in the Sec. 4.1. On the 
other hand, κ for FV initially increases with the increase in Nz and 
then quickly approaches zero as a result of the aforementioned 
reasons.

From our simulations, we also observe that the δPmax is asso-
ciated with the collective mode which propagates with maximum 
speed. This is because damping occurs most severely at the spatial 
regions where the smoothness is the lowest (see also the previous 
advection tests in Sec. 4.1). This is illustrated in Fig. 10 where the 
error distribution as a function of z and vz is plotted. The top pan-
els show P3(z, vz) at two different times and serve as a reference 
to locate the collective wave fronts. The middle and the bottom 
panels show the deviation δP (z, vz) obtained from FD and FV, re-
spectively. This plot clearly shows that the errors are larger at the 
edge of the wave fronts with largest values occurring at vz 
 1 as 
discussed above.
9

Finally, in Fig. 11 we show the time evolution of the Fourier 
spectra for vz = 0.99 obtained from our fiducial simulation (Nz =
2000 and CCFL = 0.2) with FD (dotted lines) and FV (solid lines). 
Both FD and FV produce similar Fourier spectra in the range of 
−1 ≤ k ≤ 1. For larger values of |k|, we see that the FV scheme 
results in faster rise in spectrum when compared to the case with 
FD. Nevertheless, we confirm that this difference does not lead to 
any discernible impact on other quantities examined here or in 
Ref. [22]. We note that the reason for causing this difference likely 
differs from that discussed in Sec. 4.1 for advection tests, but we 
do not pursue the exact reason in this paper and leave it for future 
work.

6. Performance comparison

In the previous sections we have discussed the implementation 
details and the numerical behavior of COSEν . We now briefly com-
ment on the parallelization strategy as well as the computational 
performance of the code. COSEν exploits multi-core and GPU ac-
celerations with the help of the directive based parallelization 
provided by OpenMP [57] and OpenACC [58], respectively, with a 
single source code. For OpenMP, we extensively used parallel 
for collapse(n) clause for every n-level tightly nested loop 
without data dependency, which is most of our case. The re-
duction clause is appended to the parallel directives whenever 
necessary (mostly while computing integrals and doing the analy-
sis). Similarly in OpenACC, we extensively used parallel loop 
collapse(n) clause for tightly nested loops and reduction
clause in analysis routines. In the computation of the right-hand 
side if the Eq. (1), we further exploit the levels of parallelism such 
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Fig. 12. Comparison of the average computational time taken by COSEν package per grid per iteration for different grid configurations. Left panels display the time per 
grid when Nvz is kept constant and the right panels show the same when Nz is kept constant. The top and bottom panels show the multi-core and GPU performances 
respectively. Note that solid and dotted lines are used to differentiate the results with FV and FD respectively and different colors for the lines are used to indicate different 
values of Nvz .

 

as gang, worker and vector provided by OpenACC. For data 
management on GPU, we currently rely on the feature of unified 
memory allowing a compiler handle the data allocation on the GPU 
and its movement between the CPU when necessary. Using the 
minimal set of the compiler directives mentioned above already 
attain acceptable time-to-solution for the scale of problems in this 
work and serve as the baseline for future extension. We note that 
the performance can be optimized by more sophisticated controls 
on data movement and asynchronous execution, which will be ex-
plored in future iterations of COSEν .

Fig. 12 compares the computational time per iteration per grid 
number (Nz × Nvz ) for both FD and FV using different values of Nz

and Nvz . The left and right panels show the results obtained with 
fixed Nvz and Nz , while the top and the bottom panels are with a 
20 core Intel®Xeon®E5-2620 processor and NVIDIA P100 GPU, re-
spectively. Solid and dotted lines are used to distinguish the results 
from FV and FD. Note that here we have switched off all the parts 
which analyze and output the simulation results in the code, but 
only considered the computational part, which consumes the ma-
jor part of the total computing time. First, for nearly all cases the 
FD version performs slightly better than the FV version on both 
the GPU and CPU (note that the FV version provides better accu-
racy as described in previous sections). Second, it is clear that the 
performance with a single GPU card used here provides much bet-
ter (� 20 times faster) than that with a single CPU node. Third, the 
cases with constant Nvz show nearly perfect scaling when varying 
Nz in CPU. The scaling is slightly less than ideal in GPU mainly 
due to tests performed in the under-saturated region of Nz . On 
the other hand, the computing time per grid per iteration increases 
nearly linearly as Nvz becomes large, as shown in the right panels 
of Fig. 12. The linear dependency is consistent with the estimated 
computing costs of the integration over Nvz in the right-hand side 
of Eq. (1), which grows linearly over Nvz and is the most time-
consuming part of the program.

7. Conclusion and future plans

We have provided details of the numerical implementation in 
the simulation code, the Collective Simulation Engine for Neutri-
nos (COSEν), which numerically solves a set of partial differential 
equations that dictates the dynamics of the collective neutrino fla-
vor conversions in 1+1+1 dimensions. In-depth details for both 
the finite difference method supported by the third order Kriess-
Oliger dissipation scheme as well as the finite volume method with 
10
seventh order weighted essentially non-oscillatory scheme were 
discussed. We have also tested the code against advection and vac-
uum oscillations and shown that COSEν is capable of reproducing 
the analytical results to a very good precision.

For collective neutrino oscillations, we discussed a fiducial case 
and demonstrated that adopting the dissipation scheme in the fi-
nite difference version of the implementation is essential to pre-
vent the growth of numerical instabilities. The analysis of the con-
served quantities showed that COSEν can simulate collective os-
cillations with very small numerical errors when appropriate spa-
tial and temporal resolutions are chosen. We have also evaluated 
and provided the performance of COSEν on both CPUs and GPU. 
The public version of the COSEν package is available at https://
github .com /COSEnu /COSEnu.

Beyond what was described in this work, we plan to extend
COSEν to include other spatial and phase-space dimensions, as 
well as the collisions between neutrinos and matter. We will also 
explore other numerical schemes to further suppress the associ-
ated errors, and pursue better speed-up with cross nodes and/or 
multiple GPU cards. All these improvements will be released in fu-
ture version of COSEν .
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Fig. A.13. The pictorial representation of the stencils used to compute the fluxes at the locations xi − �x/2 and xi + �x/2 (locations of these points on the stencil are 
represented using vertical dotted lines). The stencil labelled S corresponds to the base stencil. The WENO scheme implemented in the COSEν uses the linear combination of 
4th order accurate fluxes computed using sub-stencils labelled Sr, r = 0, 1, 2, 3.
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Appendix A. Seventh order WENO-explicit form

In order to reconstruct the flux at i + 1/2, we consider a stencil 
S = {i − 3, i − 2, i − 1, i, i + 1, i + 2, i + 3} and divide it into four 
sub-stencils of consists of four grid points each (see the Fig. A.13
for a pictorial representation of the stencil S and the sub-stencils 
used for the WENO reconstruction) [53].

S0 = {i, i + 1, i + 2, i + 3}, for r = 0,

S1 = {i − 1, i, i + 1, i + 2}, for r = 1,

S2 = {i − 2, i − 1, i, i + 1}, for r = 2,

S3 = {i − 3, i − 2, i − 1, i}, for r = 3.

Then we have

f̃ (7)
i+1/2 =(

−1

140
) f̄ i−3 + (

5

84
) f̄ i−2 + (

−101

420
) f̄ i−1+

(
319

420
) f̄ i + (

107

210
) f̄ i+1 + (

−19

210
) f̄ i+2 + (

1

105
) f̄ i+3,

(A.1)

and

f̂ (4)
r=0,i+1/2 = (

3

12
) f̄ i + (

13

12
) f̄ i+1 + (

−5

12
) f̄ i+2 + (

1

12
) f̄ i+3, (A.2a)

f̂ (4)
r=1,i+1/2 = (

−1

12
) f̄ i−1 + (

7

12
) f̄ i + (

7

12
) f̄ i+1 + (

−1

12
) f̄ i+2, (A.2b)

f̂ (4)
r=2,i+1/2 = (

1

12
) f̄ i−2 + (

−5

12
) f̄ i−1 + (

13

12
) f̄ i + (

3

12
) f̄ i+1, (A.2c)

f̂ (4)
r=3,i+1/2 = (

−3

12
) f̄ i−3 + (

13

12
) f̄ i−2 + (

−23

12
) f̄ i−1 + (

25

12
) f̄ i .

(A.2d)

From Eqs. (12), (A.1), (A.2), we get d0 = 1
35 , d1 = 12

35 , d2 = 18
35

and d3 = 4
35 . Using these values of dr we can construct the weight 

factors using Eq. (14). Furthermore, for each sub-stencil, one need 
to estimate the smoothness indices (SIr ). In our implementation 
we have used the following SIr [55,56] for r = 0, 1, 2, 3.

SI0 = f̄ i(2107 f̄ i − 9402 f̄ i+1 + 7042 f̄ i+2 − 1854 f̄ i+3)

+ f̄ i+1(11003 f̄ i+1 − 17246 f̄ i+2 + 4642 f̄ i+3)

+ f̄ (7043 f̄ − 3882 f̄ ) + 547 f̄ 2 ,

(A.3a)
i+2 i+2 i+3 i+3
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SI1 = f̄ i−1(547 f̄ i−1 − 2522 f̄ i + 1922 f̄ i+1 − 494 f̄ i+2)

+ f̄ i(3443 f̄ i − 5966 f̄ i+1 + 1602 f̄ i+2)

+ f̄ i+1(2843 f̄ i+1 − 1642 f̄ i+2) + 267 f̄ 2
i+2,

(A.3b)

SI2 = f̄ i−2(267 f̄ i−2 − 1642 f̄ i−1 + 1602 f̄ i − 494 f̄ i+1)

+ f̄ i−1(2843 f̄ i−1 − 5966 f̄ i + 1922 f̄ i+1)

+ f̄ i(3443 f̄ i − 2522 f̄ i+1) + 547 f̄ 2
i+1,

(A.3c)

SI3 = f̄ i−3(547 f̄ i−3 − 3882 f̄ i−2 + 4642 f̄ i−1 − 1854 f̄ i)

+ f̄ i−2(7043 f̄ i−2 − 17246 f̄ i−1 + 7042 f̄ i)

+ f̄ i−1(11003 f̄ i−1 − 9402 f̄ i) + 2107 f̄ 2
i .

(A.3d)

Simple pseudo code for the above described steps for calculat-
ing the value of the flux at xi + �x/2 is given in Algorithm 1.

Algorithm 1 Estimation of flux at i + 1/2 using 7th order accurate 
WENO scheme.
1: For each spatial grid i assign:

S0 ← { f̄ i , ̄f i+1, ̄f i+2, ̄f i+3}
S1 ← { f̄ i−1, ̄f i , ̄f i+1, ̄f i+2}
S2 ← { f̄ i−2, ̄f i−1, ̄f i , ̄f i+1}
S3 ← { f̄ i−3, ̄f i−2, ̄f i−1, ̄f i}

2: Compute 4th order accurate values f̂ (4)
r, i+1/2 for each Sr , r = 0, 1, 2, 3 using 

Eq. (A.2)
3: Compute smoothness SIr for each Sr using Eq. (A.3)
4: Compute the weight factor wr using dr and SIr using Eq. (14)
5: Compute average weight factor w̄r = wr

�r wr
, r = 0, 1, 2, 3

6: Compute the 7th order accurate values at f̂ (7)
i+1/2 using w̄r and f̂ (4)

r, i+1/2 with 
Eq. (13)

We can follow the similar procedure to reconstruct the value of 
flux at i − 1/2 as well.

Appendix B. Effect of Kreiss-Oliger dissipation

As discussed in Sec. 3, our implementation of the COSEν sim-
ulation with the FD method uses the third order KO dissipation 
scheme to take care of the possible numerical instabilities. To il-
lustrate the advantage of the KO scheme, in Fig. B.14 we show the 
results and the Fourier transform of the results from the FD simu-
lations with and without KO dissipation.

As shown in the bottom left panel of Fig. B.14, the Fourier 
power spectrum from the simulation without KO dissipation has 
the same amplitude as that of the exact solution. However, the 
phases are only retained relatively well for |k| � 1 but become 
random for |k| � 1. This leads to a numerical instability clearly 
visible in the top left panel. When we apply the KO scheme with 
εKO = 0.1, although the phases remain random for |k| � 1, it clearly 
suppresses the amplitudes of these modes and thus the corre-
sponding numerical artifact.
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Fig. B.14. Comparison of the effect of KO dissipation scheme. Top-left panel shows results from the pure advection for a box profile with (blue) and without (red) Kreiss-
Oliger dissipation. The solid black line represents the exact solution. Bottom-left panel displays the absolute value of the discrete Fourier spectra corresponding to the profiles 
shown in the top left panel and the right panels show the phase values (in degrees) of the same Fourier spectra.
Appendix C. Numerical estimation of the order of accuracy

The general form of the numerical truncation error, E , can be 
expressed as,

E 
 Cz�zα + Ct�tβ, (C.1)

where Cz and Ct are some constants and α and β are the spatial 
and temporal order of accuracy respectively. Now, if we have a set 
S =

{
�z0,�z1, ...|�zi+1 = �zi

r , r > 1
}

, then

Ei = Cz(
�z0

ri
)α + Ct�tβ

i . (C.2)

If we choose a set of CCFL such that �ti is a constant for all values 
of �zi ∈ S then the spatial order of accuracy α can be estimated 
using

α = log
(
(Ei+1 − Ei)/(Ei+2 − Ei+1)

)
log(r)

. (C.3)

References

[1] P. Zyla, et al., PTEP 2020 (8) (2020) 083C01, https://doi .org /10 .1093 /ptep /
ptaa104.

[2] L. Wolfenstein, Phys. Rev. D 20 (1979) 2634–2635, https://doi .org /10 .1103 /
PhysRevD .20 .2634.

[3] S. Mikhaev, A. Smirnov, Sov. J. Nucl. Phys. 42 (913) (1985).
[4] J.T. Pantaleone, Phys. Lett. B 287 (1992) 128–132, https://doi .org /10 .1016 /0370 -

2693(92 )91887 -F.
[5] G. Sigl, G. Raffelt, Nucl. Phys. B 406 (1993) 423–451, https://doi .org /10 .1016 /

0550 -3213(93 )90175 -O.
[6] F. Capozzi, N. Saviano, Universe 8 (2) (2022) 94, https://doi .org /10 .3390 /

universe8020094, arXiv:2202 .02494.
[7] R.F. Sawyer, Phys. Rev. Lett. 116 (2016) 081101, https://doi .org /10 .1103 /

PhysRevLett .116 .081101.
[8] I. Izaguirre, G. Raffelt, I. Tamborra, Phys. Rev. Lett. 118 (2017) 021101, https://

doi .org /10 .1103 /PhysRevLett .118 .021101.
[9] B. Dasgupta, A. Mirizzi, M. Sen, J. Cosmol. Astropart. Phys. 2017 (02) (2017) 

019, https://doi .org /10 .1088 /1475 -7516 /2017 /02 /019.
[10] F. Capozzi, B. Dasgupta, E. Lisi, A. Marrone, A. Mirizzi, Phys. Rev. D 96 (2017) 

043016, https://doi .org /10 .1103 /PhysRevD .96 .043016.
[11] S. Abbar, H. Duan, Phys. Rev. D 98 (2018) 043014, https://doi .org /10 .1103 /

PhysRevD .98 .043014.
[12] F. Capozzi, G. Raffelt, T. Stirner, J. Cosmol. Astropart. Phys. 2019 (09) (2019) 

002, https://doi .org /10 .1088 /1475 -7516 /2019 /09 /002.
12
[13] C. Yi, L. Ma, J.D. Martin, H. Duan, Phys. Rev. D 99 (2019) 063005, https://doi .
org /10 .1103 /PhysRevD .99 .063005.

[14] M. Chakraborty, S. Chakraborty, J. Cosmol. Astropart. Phys. 01 (2020) 005, 
https://doi .org /10 .1088 /1475 -7516 /2020 /01 /005, arXiv:1909 .10420.

[15] J.D. Martin, C. Yi, H. Duan, Phys. Lett. B 800 (2020) 135088, https://doi .org /10 .
1016 /j .physletb .2019 .135088.

[16] S. Bhattacharyya, B. Dasgupta, Phys. Rev. D 102 (2020) 063018, https://doi .org /
10 .1103 /PhysRevD .102 .063018.

[17] L. Johns, H. Nagakura, G.M. Fuller, A. Burrows, Phys. Rev. D 102 (2020) 103017, 
https://doi .org /10 .1103 /PhysRevD .102 .103017.

[18] I. Padilla-Gay, S. Shalgar, I. Tamborra, J. Cosmol. Astropart. Phys. 01 (2021) 017, 
https://doi .org /10 .1088 /1475 -7516 /2021 /01 /017, arXiv:2009 .01843.

[19] F. Capozzi, M. Chakraborty, S. Chakraborty, M. Sen, Phys. Rev. Lett. 125 (2020) 
251801, https://doi .org /10 .1103 /PhysRevLett .125 .251801, arXiv:2005 .14204.

[20] S. Bhattacharyya, B. Dasgupta, Phys. Rev. Lett. 126 (2021) 061302, https://doi .
org /10 .1103 /PhysRevLett .126 .061302.

[21] S. Richers, D.E. Willcox, N.M. Ford, A. Myers, Phys. Rev. D 103 (8) (2021) 
083013, https://doi .org /10 .1103 /PhysRevD .103 .083013, arXiv:2101.02745.

[22] M.-R. Wu, M. George, C.-Y. Lin, Z. Xiong, Phys. Rev. D 104 (2021) 103003, 
https://doi .org /10 .1103 /PhysRevD .104 .103003.

[23] T. Morinaga, Fast neutrino flavor instability and neutrino flavor lepton number 
crossings, arXiv:2103 .15267, 3 2021.

[24] Z. Xiong, Y.-Z. Qian, Phys. Lett. B 820 (2021) 136550, https://doi .org /10 .1016 /j .
physletb .2021.136550.

[25] M. Zaizen, T. Morinaga, Phys. Rev. D 104 (8) (2021) 083035, https://doi .org /10 .
1103 /PhysRevD .104 .083035, arXiv:2104 .10532.

[26] C. Kato, H. Nagakura, T. Morinaga, Astrophys. J. Suppl. 257 (2) (2021) 55, 
https://doi .org /10 .3847 /1538 -4365 /ac2aa4, arXiv:2108 .06356.

[27] S. Richers, D.E. Willcox, N.M. Ford, A. Myers, Phys. Rev. D 103 (2021) 083013, 
https://doi .org /10 .1103 /PhysRevD .103 .083013.

[28] B. Dasgupta, Phys. Rev. Lett. 128 (8) (2022) 081102, https://doi .org /10 .1103 /
PhysRevLett .128 .081102, arXiv:2110 .00192.

[29] S. Abbar, F. Capozzi, arXiv:2111.14880, 11 2021.
[30] M.-R. Wu, I. Tamborra, Phys. Rev. D 95 (2017) 103007, https://doi .org /10 .1103 /

PhysRevD .95 .103007.
[31] M.-R. Wu, I. Tamborra, O. Just, H.-T. Janka, Phys. Rev. D 96 (2017) 123015, 

https://doi .org /10 .1103 /PhysRevD .96 .123015.
[32] T. Morinaga, H. Nagakura, C. Kato, S. Yamada, Phys. Rev. Res. 2 (1) (2020) 

012046, https://doi .org /10 .1103 /PhysRevResearch .2 .012046, arXiv:1909 .13131.
[33] H. Nagakura, T. Morinaga, C. Kato, S. Yamada, Fast-pairwise collective neutrino 

oscillations associated with asymmetric neutrino emissions in core-collapse su-
pernova, arXiv:1910 .04288, 10 2019, https://doi .org /10 .3847 /1538 -4357 /ab4cf2.

[34] M. Delfan Azari, S. Yamada, T. Morinaga, H. Nagakura, S. Furusawa, A. Harada, 
H. Okawa, W. Iwakami, K. Sumiyoshi, Phys. Rev. D 101 (2) (2020) 023018, 
https://doi .org /10 .1103 /PhysRevD .101.023018, arXiv:1910 .06176.

[35] S. Abbar, H. Duan, K. Sumiyoshi, T. Takiwaki, M.C. Volpe, Phys. Rev. D 
101 (4) (2020) 043016, https://doi .org /10 .1103 /PhysRevD .101.043016, arXiv:
1911.01983.

[36] R. Glas, H.T. Janka, F. Capozzi, M. Sen, B. Dasgupta, A. Mirizzi, G. Sigl, Phys. Rev. 
D 101 (6) (2020) 063001, https://doi .org /10 .1103 /PhysRevD .101.063001, arXiv:
1912 .00274.

https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1103/PhysRevD.20.2634
https://doi.org/10.1103/PhysRevD.20.2634
http://refhub.elsevier.com/S0010-4655(22)00307-1/bib64ECF22A23D574F9704AF00B3FBDC746s1
https://doi.org/10.1016/0370-2693(92)91887-F
https://doi.org/10.1016/0370-2693(92)91887-F
https://doi.org/10.1016/0550-3213(93)90175-O
https://doi.org/10.1016/0550-3213(93)90175-O
https://doi.org/10.3390/universe8020094
https://doi.org/10.3390/universe8020094
https://doi.org/10.1103/PhysRevLett.116.081101
https://doi.org/10.1103/PhysRevLett.116.081101
https://doi.org/10.1103/PhysRevLett.118.021101
https://doi.org/10.1103/PhysRevLett.118.021101
https://doi.org/10.1088/1475-7516/2017/02/019
https://doi.org/10.1103/PhysRevD.96.043016
https://doi.org/10.1103/PhysRevD.98.043014
https://doi.org/10.1103/PhysRevD.98.043014
https://doi.org/10.1088/1475-7516/2019/09/002
https://doi.org/10.1103/PhysRevD.99.063005
https://doi.org/10.1103/PhysRevD.99.063005
https://doi.org/10.1088/1475-7516/2020/01/005
https://doi.org/10.1016/j.physletb.2019.135088
https://doi.org/10.1016/j.physletb.2019.135088
https://doi.org/10.1103/PhysRevD.102.063018
https://doi.org/10.1103/PhysRevD.102.063018
https://doi.org/10.1103/PhysRevD.102.103017
https://doi.org/10.1088/1475-7516/2021/01/017
https://doi.org/10.1103/PhysRevLett.125.251801
https://doi.org/10.1103/PhysRevLett.126.061302
https://doi.org/10.1103/PhysRevLett.126.061302
https://doi.org/10.1103/PhysRevD.103.083013
https://doi.org/10.1103/PhysRevD.104.103003
http://refhub.elsevier.com/S0010-4655(22)00307-1/bib645FF83F7D5087C37855608964E95589s1
http://refhub.elsevier.com/S0010-4655(22)00307-1/bib645FF83F7D5087C37855608964E95589s1
https://doi.org/10.1016/j.physletb.2021.136550
https://doi.org/10.1016/j.physletb.2021.136550
https://doi.org/10.1103/PhysRevD.104.083035
https://doi.org/10.1103/PhysRevD.104.083035
https://doi.org/10.3847/1538-4365/ac2aa4
https://doi.org/10.1103/PhysRevD.103.083013
https://doi.org/10.1103/PhysRevLett.128.081102
https://doi.org/10.1103/PhysRevLett.128.081102
http://refhub.elsevier.com/S0010-4655(22)00307-1/bib637F0071DAE466EBA27B72C67746FD8Ds1
https://doi.org/10.1103/PhysRevD.95.103007
https://doi.org/10.1103/PhysRevD.95.103007
https://doi.org/10.1103/PhysRevD.96.123015
https://doi.org/10.1103/PhysRevResearch.2.012046
https://doi.org/10.3847/1538-4357/ab4cf2
https://doi.org/10.1103/PhysRevD.101.023018
https://doi.org/10.1103/PhysRevD.101.043016
https://doi.org/10.1103/PhysRevD.101.063001


M. George, C.-Y. Lin, M.-R. Wu et al. Computer Physics Communications 283 (2023) 108588
[37] Z. Xiong, A. Sieverding, M. Sen, Y.-Z. Qian, Astrophys. J. 900 (2) (2020) 144, 
https://doi .org /10 .3847 /1538 -4357 /abac5e.

[38] M. George, M.-R. Wu, I. Tamborra, R. Ardevol-Pulpillo, H.-T. Janka, Phys. Rev. D 
102 (2020) 103015, https://doi .org /10 .1103 /PhysRevD .102 .103015.

[39] X. Li, D.M. Siegel, Phys. Rev. Lett. 126 (2021) 251101, https://doi .org /10 .1103 /
PhysRevLett .126 .251101.

[40] H. Nagakura, L. Johns, A. Burrows, G.M. Fuller, Phys. Rev. D 104 (8) (2021) 
083025, https://doi .org /10 .1103 /PhysRevD .104 .083025, arXiv:2108 .07281.

[41] A. Banerjee, A. Dighe, G. Raffelt, Phys. Rev. D 84 (2011) 053013, https://doi .org /
10 .1103 /PhysRevD .84 .053013, arXiv:1107.2308.

[42] S. Richers, H. Duan, M.-R. Wu, S. Bhattacharyya, M. Zaizen, M. George, C.-Y. Lin, 
Z. Xiong, Phys. Rev. D 106 (4) (2022) 043011, https://doi .org /10 .1103 /PhysRevD .
106 .043011.

[43] A. Vlasenko, G.M. Fuller, V. Cirigliano, Phys. Rev. D 89 (2014) 105004, https://
doi .org /10 .1103 /PhysRevD .89 .105004.

[44] C. Volpe, D. Väänänen, C. Espinoza, Phys. Rev. D 87 (2013) 113010, https://
doi .org /10 .1103 /PhysRevD .87.113010.

[45] S. Shalgar, I. Tamborra, Phys. Rev. D 103 (2021) 063002, https://doi .org /10 .
1103 /PhysRevD .103 .063002, arXiv:2011.00004.

[46] L. Johns, Collisional flavor instabilities of supernova neutrinos, arXiv:2104 .
11369, 4 2021.

[47] J.D. Martin, J. Carlson, V. Cirigliano, H. Duan, Phys. Rev. D 103 (2021) 063001, 
https://doi .org /10 .1103 /PhysRevD .103 .063001, arXiv:2101.01278.

[48] G. Sigl, Phys. Rev. D 105 (4) (2022) 043005, https://doi .org /10 .1103 /PhysRevD .
105 .043005, arXiv:2109 .00091.

[49] H. Duan, G.M. Fuller, Y.-Z. Qian, Phys. Rev. D 74 (2006) 123004, https://doi .org /
10 .1103 /PhysRevD .74 .123004.

[50] H. Duan, G.M. Fuller, Y.-Z. Qian, Annu. Rev. Nucl. Part. Sci. 60 (2010) 569–594, 
https://doi .org /10 .1146 /annurev.nucl .012809 .104524, arXiv:1001.2799.

[51] B. Gustafsson, H.-O. Kreiss, J. Oliger, Time Dependent Problems and Difference 
Methods, vol. 24, John Wiley & Sons, 1995.

[52] X.-D. Liu, S. Osher, T. Chan, J. Comput. Phys. 115 (1) (1994) 200–212, https://
doi .org /10 .1006 /jcph .1994 .1187.

[53] C.-W. Shu, Essentially Non-oscillatory and Weighted Essentially Non-oscillatory 
Schemes for Hyperbolic Conservation Laws, Springer Berlin Heidelberg, Berlin, 
Heidelberg, 1998, pp. 325–432.

[54] C.-W. Shu, Int. J. Comput. Fluid Dyn. 17 (2) (2003) 107–118, https://doi .org /10 .
1080 /1061856031000104851.

[55] G.-S. Jiang, C.-W. Shu, J. Comput. Phys. 126 (1) (1996) 202–228, https://doi .org /
10 .1006 /jcph .1996 .0130.

[56] D.S. Balsara, C.-W. Shu, J. Comput. Phys. 160 (2) (2000) 405–452, https://doi .
org /10 .1006 /jcph .2000 .6443.

[57] OpenMP, http://www.openmp .org/.
[58] OpenACC, http://www.openacc .org/.
13

https://doi.org/10.3847/1538-4357/abac5e
https://doi.org/10.1103/PhysRevD.102.103015
https://doi.org/10.1103/PhysRevLett.126.251101
https://doi.org/10.1103/PhysRevLett.126.251101
https://doi.org/10.1103/PhysRevD.104.083025
https://doi.org/10.1103/PhysRevD.84.053013
https://doi.org/10.1103/PhysRevD.84.053013
https://doi.org/10.1103/PhysRevD.106.043011
https://doi.org/10.1103/PhysRevD.106.043011
https://doi.org/10.1103/PhysRevD.89.105004
https://doi.org/10.1103/PhysRevD.89.105004
https://doi.org/10.1103/PhysRevD.87.113010
https://doi.org/10.1103/PhysRevD.87.113010
https://doi.org/10.1103/PhysRevD.103.063002
https://doi.org/10.1103/PhysRevD.103.063002
http://refhub.elsevier.com/S0010-4655(22)00307-1/bib54919EE604EB8FB1AF76BB17DCF02151s1
http://refhub.elsevier.com/S0010-4655(22)00307-1/bib54919EE604EB8FB1AF76BB17DCF02151s1
https://doi.org/10.1103/PhysRevD.103.063001
https://doi.org/10.1103/PhysRevD.105.043005
https://doi.org/10.1103/PhysRevD.105.043005
https://doi.org/10.1103/PhysRevD.74.123004
https://doi.org/10.1103/PhysRevD.74.123004
https://doi.org/10.1146/annurev.nucl.012809.104524
http://refhub.elsevier.com/S0010-4655(22)00307-1/bib3E8BAE037D3B14AEC1B15E86D27FD724s1
http://refhub.elsevier.com/S0010-4655(22)00307-1/bib3E8BAE037D3B14AEC1B15E86D27FD724s1
https://doi.org/10.1006/jcph.1994.1187
https://doi.org/10.1006/jcph.1994.1187
http://refhub.elsevier.com/S0010-4655(22)00307-1/bibD0BC07E3DBF2573D5E80F3CFEE2154E0s1
http://refhub.elsevier.com/S0010-4655(22)00307-1/bibD0BC07E3DBF2573D5E80F3CFEE2154E0s1
http://refhub.elsevier.com/S0010-4655(22)00307-1/bibD0BC07E3DBF2573D5E80F3CFEE2154E0s1
https://doi.org/10.1080/1061856031000104851
https://doi.org/10.1080/1061856031000104851
https://doi.org/10.1006/jcph.1996.0130
https://doi.org/10.1006/jcph.1996.0130
https://doi.org/10.1006/jcph.2000.6443
https://doi.org/10.1006/jcph.2000.6443
http://www.openmp.org/
http://www.openacc.org/

	COSEν: A collective oscillation simulation engine for neutrinos
	1 Introduction
	2 Theoretical setup
	3 Numerical implementation
	3.1 Finite difference method
	3.2 Finite volume method

	4 Tests for advection and vacuum oscillations
	4.1 Advection
	4.2 Vacuum oscillations

	5 Collective oscillations
	6 Performance comparison
	7 Conclusion and future plans
	Declaration of competing interest
	Data availability
	Acknowledgement
	Appendix A Seventh order WENO-explicit form
	Appendix B Effect of Kreiss-Oliger dissipation
	Appendix C Numerical estimation of the order of accuracy
	References


