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We investigate in this work the evolution of the collective fast neutrino flavor conversion (FFC) in a
three-dimensional (3D) cubic box with periodic boundary condition for three different neutrino angular
distributions that are axially asymmetric. We find that the system evolves toward a quasistationary state
where the angular distribution of the spatially averaged neutrino electron-minus-muon lepton number
(ELN) does not contain any crossings. In the quasistationary state, near flavor equilibration is achieved in
one angular domain enclosed by the initial ELN angular crossing contour, similar to the conclusion derived
based on simplified one-dimensional (1D) system with axially symmetric neutrino angular distributions.
We have also performed additional simulations in coordinates where the initial first ELN angular moment
has only one nonvanishing spatial component by using the original axially asymmetric ELN angular
distributions as well as the corresponding axisymmetric ELN distributions and find interesting similarity
between these two sets. Finally, we propose three different analytical prescriptions generalized from earlier
1D models to 3D models and evaluate their performances in predicting the post-FFC moments. Our
findings suggest that further development of effective classical transport models in multidimensions to
capture the effect of FFC is promising.
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I. INTRODUCTION

Neutrinos are known to have significant impacts on the
dynamics and composition of astrophysical systems such as
the core-collapse supernovae and the neutron star mergers.
In the central regions of these systems where the neutrino
densities are large, the flavor evolution of neutrinos is
dominated by the nonlinear self-coupling due to the coherent
neutrino-neutrino forward scattering [1,2]. The nonlinear
nature leads to various collective phenomena of neutrino
flavor oscillations (see, e.g., [3–5] for recent reviews) and
can potentially affect our understanding of these astrophysi-
cal events [6–16]. Among these, the likely occurrence of fast
flavor conversion (FFC) [17,18] due to the presence of the
angular crossing in the neutrino electron-minus-muon lep-
ton number (ELN) in the supernova core or in the merger
remnant has been identified [8–10,19–32]. This has trig-
gered a tremendous number of studies over the last decade
on this topic; see, e.g., [33,34] for earlier reviews.

Since FFC typically develops within physical scales of
subnanoseconds and subcentimeters, much smaller than the
hydrodynamical or interaction time and length scales in
supernovae or neutron star mergers, one strategy to study
FFC is to numerically solve the neutrino quantum kinetic
equation (νQKE) [2,35,36] in a small local volume, within
which the system is assumed to be nearly homogeneous
and collisions of neutrinos may be neglected. Taking the
periodic boundary condition, recent works that assume
translation symmetry in two spatial dimensions and axi-
symmetry in the neutrino angular distributions in local one-
dimensional (1D) boxes suggest that FFC drives the system
to a quasistationary state where near flavor equilibration is
achieved in one side of the ELN crossing when coarse
grained over the volume of the box [13,37–44]. On the
other side of the ELN crossing, the corresponding coarse-
grained properties can be described by simple formulas
subject to the conservation of the total ELN [45,46].
Based on these results, Ref. [47] recently showed that it
is possible to effectively include FFC in the classical
transport model of neutrinos by applying the quasista-
tionary state prescription obtained from local simulations to
locations where ELN crossings are found in global trans-
port simulations under spherically symmetric and static
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supernova background profiles. Different methods address-
ing the global νQKE simulations including FFC have also
been attempted [12,16,43,48–56] or proposed [57–59].
Efforts on identifying fast flavor instabilities [26,31,60–63]
and predicting the post-FFC angular moments [64,65] based
on limited available information of the neutrino angular
moments as well as simulation methods that directly evolve
the neutrino angular moments for FFC [66,67] have been
investigated.
As simulations of FFC in multiple spatial dimensions are

computationally more demanding, they has been carried
out only in a handful of works [53,56,68]. Reference [68]
performed local simulations in two- and three-dimensional
(2- and 3D) boxes with periodic boundary conditions for
several cases. For those with zero total ELN initially,
coarse-grained flavor equilibration is reached, independent
of the dimensionality of the system. For the case with an
initial nonzero total ELN that possesses axisymmetry in the
ELN angular distribution, a similar coarse-grained quasis-
tationary state is also obtained in simulations with different
dimensions. Although these results seem to hint that the
outcome of FFC in a multidimensional periodic box may be
similar to that obtained in the corresponding 1D case with
axisymmetry, it remains important to investigate whether
such a conclusion holds for more general initial condi-
tions.1 It is worth noting that global 2D FFC simulations
have been carried out to explore the impact of the initial
condition [56] and the evolution of FFC in neutron star
merger remnants [53].
In this work, we perform 3D simulations of FFC in a local

box with the periodic boundary condition for three cases
where the system has nonzero total ELN and does not
contain any axisymmetry. We find that, for all these cases,
the ELN angular crossings are erased in the quasistationary
state on a coarse-grained level. Near flavor equilibration is
also reached in one angular domain enclosed by the initial
ELN crossing contour, in agreement with what were found
in earlier 1D andmultidimensional studies.We also perform
additional simulations for the same physical systems in
rotated coordinates where only one spatial component of the
ELN fluxes is nonvanishing and the corresponding auxiliary
simulations for cases that possess axisymmetry. We will
show that in the rotated coordinates, the numerical results
based on the auxiliary axisymmetric cases can be used to
accurately describe the evolution of neutrino angular
moments in the axially asymmetric cases. These simulation
outcomes allow one to generalize previously proposed
analytical prescriptions [45,46] to predict the post-FFC
angular moment values.

This paper is organized as follows. In Sec. II, we describe
the setup of our model, including the equation of motion,
the definition of the coordinate systems, and the numerical
scheme used for the simulations. In Sec. III, we present our
simulation results in both coordinate systems and discuss
the implications. In Sec. IV, we show how to generalize
various analytical prescriptions developed based on 1D box
models to 3D cases to approximately predict the post-FFC
angular moments. Conclusions and outlook are given in
Sec. V. Throughout this paper, natural units with ℏ ¼ c ¼ 1
are adopted.

II. MODEL SETUP

A. Neutrino flavor transport equations

We consider a simplified two-flavor neutrino system in a
localized 3D box in which oscillations can convert the
initial νe and ν̄e to the heavy lepton flavors νx and ν̄x. As we
focus on studying FFC in our simulation domain, we
assume that the neutrino distribution functions inside the
box are homogeneous (before applying perturbation seeds;
see below) and neglect the collisions for neutrinos. The
neutrino vacuum mixing and the neutrino-matter forward
scattering potentials can also be omitted for simplicity.
Under these assumptions, the space-time evolution of the
normalized neutrino and antineutrino densities, ϱvðxÞ and
ϱ̄vðxÞ, is governed by the following equations

vη∂ηϱvðxÞ ¼ −i½HvðxÞ; ϱvðxÞ�; ð1aÞ

vη∂ηϱ̄vðxÞ ¼ −i½H�
vðxÞ; ϱ̄vðxÞ�; ð1bÞ

where xη ¼ ðt; xÞ, vη ¼ ð1;vÞ with vηvη ¼ 0. In Eq. (1a),

HvðxÞ¼ μ

Z
dΓ0ð1−v ·v0Þ½gνðv0Þϱv0 ðxÞ−gν̄ðv0Þϱ̄�v0 ðxÞ�;

ð2Þ

where μ ¼ ffiffiffi
2

p
GFnν with nν the neutrino number density

and dΓ ¼ ðdvzdϕÞ=ð2πÞ with vz the z component of v and
ϕ the corresponding azimuthal angle on the x-y plane. The
neutrino angular distribution function gνðvÞ is normalized
by

R
dΓgνðvÞ ¼ 1, while the antineutrino one gν̄ðvÞ sat-

isfies
R
dΓgν̄ðvÞ ¼ nν̄=nν ¼ α, which represents the num-

ber density ratio between antineutrinos and neutrinos. The
ELN angular distribution function GvðxÞ is defined by

GvðxÞ ¼ gνðvÞðϱee − ϱxxÞ − gν̄ðvÞðϱ̄ee − ϱ̄xxÞ; ð3Þ

where ϱee and ϱxx are the diagonal entries of ϱvðxÞ in the
flavor basis, and ϱ̄ee and ϱ̄xx are the corresponding ones of
ϱ̄vðxÞ, whose dependence on v and x are not displayed
explicitly.

1We note that, during the completion of this manuscript,
Ref. [69], which performed a similar study and analysis,
appeared. Our work presented here has been done independently
using a different simulation code.
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B. Initial ELN distributions

For given initial angular distributions gνðvÞ and gν̄ðvÞ for
νe and ν̄e, the corresponding flux vectors normalized by the
neutrino number density can be computed by

F0
νeðν̄eÞ ¼

Z
dΓvgνðν̄ÞðvÞ: ð4Þ

Without loss of generality, we take a nonzero angle θr ¼
cos−1½F0

νe · F
0
ν̄e
=ðjF0

νe jjF0
ν̄e
jÞ� between F0

νe and F0
ν̄e
. We

assume that gνðν̄ÞðvÞ are axisymmetric with respect to the
direction of their respective flux vectors and are given by

gνðν̄ÞðvÞ ∝ exp½−ðvFνðν̄Þ − 1Þ2=ð2σ2νðν̄ÞÞ�; ð5Þ

where vFνðν̄Þ ¼ v · F0
νðν̄Þ=jF0

νðν̄Þj are the velocity projections

in the directions of the flux vectors and σνðν̄Þ are width
parameters that determine the degree of anisotropy of gνðν̄Þ.
Throughout the rest of the paper, we adopt α ¼ 0.9,

σν ¼ 0.6, σν̄ ¼ 0.5, and take θr ¼ 30°, 45°, and 60° to
explore three different cases without axisymmetry along
any directions. As will be further discussed below,
for each case, we perform simulations in two different
coordinate systems for the same Gv that is axially asym-
metric. The first coordinate system is chosen such that
F0
νe;x ¼ F0

νe;y ¼ F0
ν̄e;y ¼ 0, i.e., F0

νe is along the z-axis while
F0
ν̄e

lies on the x-z plane, similar to what taken in
Ref. [68], and it is denoted as “original” coordinates. For
the second coordinate system (labeled with superscript 0),
it is rotated from the first one such that F0

νe;x0
−

F0
ν̄e;x0

¼ 0, i.e., the x0 component of the first ELN moment
is initially zero and is denoted as “rotated” coordinates for
the rest of the paper. The rotation angle between the two
coordinates is given by

θrot ¼ tan−1

0
B@ sin θr

jF0
νe j

jF0
ν̄e
j − cos θr

1
CA: ð6Þ

Figure 1 shows the relation between the two coordinates
(right panel) as well as the initial ELN distributionsG0

vz;ϕ
in

the original (left panel) and G0
v0z;ϕ0 in the rotated coordinates

(middle panel) for θr ¼ 30° as an example, with the ELN
crossing contours indicated by the black solid curves.
Clearly, the initial ELN angular distribution is less axisym-
metric in the original coordinates than in the rotated
coordinates. We note that the ELN angular distributions
constructed here have reflection symmetry with respect to
ϕ → −ϕ (or ϕ0 → −ϕ0 in the rotated coordinates), resulting
in vanishing y (y0) components of all flux vectors.
Besides the axially asymmetric ELN angular distribu-

tions described above, we also perform auxiliary simula-
tions in the rotated coordinates by taking the axisymmetric
angular distributions averaged over ϕ0 from gνðν̄Þðv0Þ

gaνðν̄Þðv0zÞ ¼
Z

dϕ0

2π
gνðν̄Þðv0Þ: ð7Þ

The corresponding ELN angular distributions Ga
v0z
ðxÞ can

be evaluated in the same way as Eq. (3).

C. Simulation setup

We use the extended version of COSEν, which adopts a
grid-based method to solve Eq. (1), to perform numerical
simulations in a 3D cubic box with periodic boundary
conditions in all three spatial dimensions. The box has a
volume of L3 with L ¼ 100 μ−1 and is discretized by N3

rectangular cell-centered grids with N ¼ 100. For the 2D
phase (angular) space, we discretize −1 ≤ vz ≤ 1 and

FIG. 1. Initial ELN angular distribution function G0
vz;ϕ

in the original (left panel) and G0
v0z;ϕ0 the rotated (middle panel) coordinate

systems for θr ¼ 30°. The relation of the two coordinate systems is shown in the right panel.
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0 ≤ ϕ ≤ 2π into Nvz ×Nϕ cell-centered bins withNvz ¼ 32

and Nϕ ¼ 8 (same for both the original and rotated
coordinates). The spatial derivatives are evaluated using
the finite-volume plus seventh-order accurate weighted
essentially nonoscillatory scheme while the time integra-
tion is computed using the fourth-order Runge-Kutta
method (see [70] for details). We have taken a fixed time
step size Δt ¼ CCFL × ðL=NÞ ¼ 0.4 μ−1 with CCFL ¼ 0.4
the Courant-Friedrichs-Lewy number. The phase-space
integration in Eq. (2) is taken using the simple
Riemann sum.
To trigger the fast flavor instabilities, we assign spherical

Gaussian perturbations centered at the origin of the
coordinates to ϱv and ϱ̄v at t ¼ 0 with

ϱ0ee ¼ ϱ̄0ee ¼
1

2

h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2ðxÞ

q i
; ð8aÞ

ϱ0xx ¼ ϱ̄0xx ¼
1

2

h
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2ðxÞ

q i
; ð8bÞ

ϱ0ex ¼ ϱ̄0ex ¼ ϵðxÞ=2; ð8cÞ

where ϵðxÞ ¼ 10−3 exp½−ðx2 þ y2 þ z2Þ=2σ2r �, and
σ r ¼

ffiffiffi
5

p
μ−1. All simulations are performed up to

t ¼ 344 μ−1 when the systems have reached the coarse-
grained quasistationary states.

III. FLAVOR EVOLUTION, QUASITATIONARY
STATE, AND NEAR FLAVOR EQUILIBRATION

A. Results in the original coordinates

We first discuss the evolution of the system in the
original coordinates. Figure 2 shows the volume rendering
of the phase-space averaged ρee, defined as hρeeðxÞiΓ ¼
½R dΓgνðvÞρeeðv; xÞ� at different time snapshots of
t ¼ 17.2, 86.0, 172.0, and 344.0 μ−1 for the case with
θr ¼ 30°. Initially, the flavor instability drives the growth

and spatial drift of the 3D Gaussian perturbation in the
linearized regime [panel (a)]. When the system enters the
nonlinear regime, flavor waves form and propagate, dem-
onstrated by the coherent pattern shown in panel (b). At
later times, when flavor waves interact, smaller-scale
structures appear, as shown in panel (c). Eventually, when
the system settles to the quasistationary state, fully devel-
oped flavor depolarization results in spatial fluctuation
dominated by the length scale of ∼5 μ−1 in the entire
simulation box [panel (d)]. The overall behavior is quali-
tatively very similar to what were reported in the earlier
studies (e.g., [39,68]).
We show in Fig. 3 the time evolution of the νe and ν̄e

survival probabilities averaged over both the 3D box
volume V and the phase space volume Γ

hPνeðtÞiΓ;V ¼
�Z

dΓd3xgνðvÞϱeeðv; x; tÞ
�
=L3; ð9aÞ

hPν̄eðtÞiΓ;V ¼
�Z

dΓd3xgν̄ðvÞϱ̄eeðv; x; tÞ
�
=ðαL3Þ; ð9bÞ

and in Fig. 4 the initial ELN angular distributionsG0
vz;ϕ

(left

panels) as well as the final ELN distributions hGviV ¼R
d3xGvðxÞ=L3 averaged over the entire box (middle

panels) for all three cases with θr ¼ 30°, 45°, and 60°.
Figure 3 shows that, when taking a larger value of θr, the
increased amount of axial asymmetry leads to an earlier
onset of flavor conversion as well as smaller quasistationary
values of hPνeðν̄eÞðtÞiΓ;x. This is related to the absolute
values of the positive and negative parts of the initial ELN,
defined by

Iþ ¼ 2π

Z
dΓΘðG0

vz;ϕ
ÞG0

vz;ϕ
; ð10aÞ

I− ¼ 2πj
Z

dΓΘð−G0
vz;ϕ

ÞG0
vz;ϕ

j; ð10bÞ

FIG. 2. Spatial distribution of hϱeeðxÞiΓ taken at different simulation time snapshots of t ¼ 17.2, 86.0, 172.0, and 344.0 μ−1 shown in
panels (a–d) for θr ¼ 30°, respectively. Flavor conversions are triggered by the initial perturbations at the center of the box [panel (a)]. A
coherent wave-like feature develops when flavor conversions reach the nonlinear regime [panel (b)]. When flavor waves interact as they
cross the periodic boundaries, smaller scale structures appear [panel (c)] and the system eventually settles into the final quasistationary
state [panel (d)].
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whereΘ is the Heaviside function. The values of IþðI−Þ are
1.61(0.98), 2.18(1.55), and 2.76(2.13) for θr ¼ 30°, 45°,
and 60°, respectively. Note that Iþ − I− ¼ 2πð1 − αÞ is the
same for all cases. Clearly, the more asymmetric cases
(with larger θr) have larger values of Iþ and I−, which can
also be seen from the initial ELN distributions shown in the
left panels of Fig. 4. When Iþ and I− are larger, the
associated instability growth rate is also larger (see the inset
of Fig. 3 showing the evolution of hjϱ̄exjðtÞiΓ;V in loga-
rithmic scale for t < 150 μ−1),2 resulting in the earlier onset
of flavor conversions. What is also similar to the 1D box
cases is that the ELN crossing is erased when averaging
over the entire 3D box, as shown in the middle panels of
Fig. 4. Since the total ELN in the box is conserved with the
periodic boundary condition, more flavor conversions
happen when I− is larger, resulting in a lower value of
the quasistationary hPνeðν̄eÞiΓ;V.
Besides the elimination of the ELN crossing, the middle

panels of Fig. 4 also show that, for the angular region where
G0

vz;ϕ
< 0 initially, the corresponding values of hGviV ¼R

d3xGvðxÞ=L3 become nearly zero, showing that near

flavor equilibration on the coarse-grained level in most
part of this angular domain is reached. For completeness,
we show in the right panels of Fig. 4 the final coarse-
grained angle-dependent flavor survival probabilities
hPsurðvz;ϕÞiV ¼ R

d3xρeeðx;vÞ=L3 taken at the final time
snapshot for all three cases. Once again, these panels
confirm that hPsurðvz;ϕÞiV ≃ 0.5 is obtained in the angular
domain whose G0

vz;ϕ
< 0. They also show more clearly that

slight flavor overconversion with hPsurðvz;ϕÞiV ≲ 0.5 hap-
pens in regions where G0

vz;ϕ
are more negative around

ϕ ∼ 0. All these suggest that similar conclusions derived
based on the 1D box simulations hold in a more general
setting where both the axisymmetry in the angular dis-
tribution and the translation symmetry in spatial dimen-
sions are broken explicitly. We note that for all cases the
initial reflection symmetry with respect to ϕ → −ϕ is
preserved throughout the evolution for all cases as can
be inferred from Fig. 4.
Figure 5 shows the evolution of the spatially averaged x

and z components of the νe and ν̄e first angular moments

FIG. 3. Survival probabilities averaged over the box and the
phase-space volume, hPνeiΓ;V (upper panel) and hPν̄eiΓ;V (lower
panel) as functions of time for θr ¼ 30° (red lines), 45° (blue
lines), and 60° (green lines). We also show the evolution of
hjϱ̄exjðtÞiΓ;V in logarithmic scale for t < 150 μ−1 in the inset of
the bottom panel for different θr along with the maximally
unstable growth rates (dotted lines) obtained from the linear
stability analysis.

FIG. 4. The initial ELN angular distribution G0
vz;ϕ

(left panels),
the spatially averaged final ELN angular distribution hGviV at
t ¼ 344 μ−1 (middle panels), and the spatially averaged flavor
survival probabilities hPsurðvz;ϕÞiV (right panels) for θr ¼ 30°
(upper panels), 45° (middle panels), and 60° (right panels),
respectively.

2The dotted lines in the inset of Fig. 3 are the respective
maximally unstable growth rates obtained from the linear stability
analysis [71,72] taking the same angular grids for jkx;y;z=μj < π.
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(normalized by nν)

hFνeiV ¼ 1

L3

Z
d3xdΓvgνϱvðxÞ; ð11aÞ

hFν̄eiV ¼ 1

L3

Z
d3xdΓvgν̄ϱ̄vðxÞ ð11bÞ

for θr ¼ 30°. For the initially nonzero flux vector compo-
nents (hFνe;ziV , hFν̄e;ziV , and hFν̄e;xiV), flavor conversions
of νe (ν̄e) to νx (ν̄x) lead to the reduction of their values in all
cases. For hF0

νe;xiV, which is initially zero, since FFC
converts more (less) νe to νx around ϕ ∼ 0 (ϕ ∼ π) as shown
in the right panels of Fig. 4, it becomes negative over time
as a result of the broken axisymmetry. Similar evolution of
the flux vector components are obtained for other values
of θr.

B. Results in the rotated coordinates

Wenow turn our attention to results obtained in the rotated
coordinates. Since the physical evolution of the system is
independent of the choice of the coordinate system, we do
not repeat the flavor evolution and the properties of the
quasistationary states reported in Sec. III A. Instead, we
focus on comparing results obtained by taking the axially
asymmetric ELN distribution G0

v0z;ϕ0 and the corresponding

axisymmetric ELN distribution Ga;0
v0z

¼ R
dϕ0G0

v0z;ϕ0=ð2πÞ,
constructed by averaging over ϕ0 from G0

v0z;ϕ0 . Since this

coordinate system is chosen such that the only nonzero
initial first ELN angular moment

R
dΓ0vG0

v0z;ϕ0 is along the z0

direction as introduced in Sec. II B, the initial zeroth and first
ELN angular moments evaluated using axisymmetric ELN
Ga;0

v0z
are identical to those evaluated using G0

v0z;ϕ0 .

Figure 6 compares the time evolution of the first ELN
moments (averaged over the box volume) for the axially
asymmetric (FELN) and the axisymmetric (Fa

ELN) cases for
θr ¼ 30°, defined as

FELN ¼ 1

L3

Z
d3x0dΓv0Gv0z;ϕ0 ; ð12aÞ

Fa
ELN ¼ 1

L3

Z
d3x0dΓv0Ga

v0z
: ð12bÞ

It shows that the evolution of FELN;z0 and Fa
ELN;z0 closely

follow each other. However, for the axially asymmetric
cases, FELN;x0 becomes nonzero due to the breaking of the
axisymmetry, while Fa

ELN;x0 remains zero throughout the
evolution.
Interestingly, if we take the time-dependent, spatially

averaged flavor survival probability computed in the axially
symmetric cases hPaxi

ee ðt; v0zÞi and use it together with the
angular distribution functions used in the axially asym-
metric cases to approximately evaluate the time evolution
of the survival probability, flux-ratio vectors, or ELN
moments, it results in remarkable agreements. Figure 7
shows the comparison of hFνe;x0 iV 0 , hFνe;z0 iV 0 , hFν̄e;x0 iV 0 ,
hFν̄e;z0 iV 0 from the axially asymmetric simulations with
those evaluated by

Faxi−appr
νeðν̄eÞ ¼

Z
dΓ0v0gνðν̄Þðv0ÞhPaxi

ee ðt; v0zÞiV 0 ; ð13Þ

for the case with θr ¼ 30° as an example. It clearly shows
that one can use hPaxi

ee ðt; v0zÞiV 0 derived in the axially
symmetric simulations in the rotated frame with the axially
asymmetric initial angular distributions to closely predict
the time evolution of the angle-integrated quantities. We
have also verified that similar agreements apply to cases
with different values of θr.

FIG. 6. Evolution of the first ELN angular moments obtained in
the rotated coordinates with axially asymmetric initial distribu-
tion function (FELN;x=z, solid curves) and with axisymmetric
distribution (Fa

ELN;x=z, dotted curves with dots) for θr ¼ 30°.

FIG. 5. Time evolution of the x (red curves) and z (blue curves)
components of hFνeiV (upper panel) and hFν̄eiV (lower panel)
for θ ¼ 30°.
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IV. APPROXIMATED PRESCRIPTIONS
FOR EVALUATING THE
ANGULAR MOMENTS

A main goal of conducting local box FFC simulations
is to find simple prescriptions to characterizing the post-
FFC angular distributions or angular moments for
practical implementation into effective classical neutrino
transport models [47]. Below, we discuss how to general-
ize different analytical prescriptions proposed in [45,46]
for 3D cases without axisymmetry in neutrino angular
distributions.
First, given the fact that near flavor equilibrium is

reached in one of the angular domain, it is straightfor-
ward to generalize the prescription of the “boxlike”
scheme [45,46] to approximate the post-FFC survival
probabilities for both νe and ν̄e with

Pb
surðvz;ϕÞ ¼

� 1
2

for Γ<;

1 − I<=ð2I>Þ for Γ>;
ð14Þ

where I< ¼ minðI−; IþÞ, I> ¼ maxðI−; IþÞ and Γ< (Γ>)
denotes the corresponding angular domain that contrib-
utes to I< (I>). Equation (14) allows us to approximately
evaluate various coarse-grained angle-integrated quan-
tities after FFC has settled to the quasistationary state in a
straightforward manner. For instance, the spatially aver-
aged post-FFC zeroth and first angular moments in this
boxlike scheme can be estimated by

Np
νe ¼

Z
dΓgνðvÞPb

surðvz;ϕÞ; ð15aÞ

Np
ν̄e
¼

Z
dΓgν̄ðvÞPb

surðvz;ϕÞ; ð15bÞ

Fp
νe ¼

Z
dΓvgνðvÞPb

surðvz;ϕÞ; ð15cÞ

Fp
ν̄e
¼

Z
dΓvgν̄ðvÞPb

surðvz;ϕÞ: ð15dÞ

Second, the excellent agreement in the evolution of
moments shown in Fig. 7 in the rotated coordinates
suggests that one may directly utilize the improved ana-
lytical prescription developed based on axisymmetric
simulations [46] to approximately evaluate the post-FFC
angular moments. Below, we show how a axisymmetric (in
the rotated coordinates) prescription can be directly
employed in the multidimensional condition. First, we find
the angular domains corresponding to I< and I> as small
and large sides, respectively. The flavor equilibration is
assumed on the small side. For the large side, we will
determine the distribution of survival probability as fol-
lows. We find the initial ELN flux vector F0

ELN whose
direction points to where the large side is located. We then
compute the values of the projection of all ELN crossing
velocity vc along F̂0

ELN and find the maximal projected
value as vmc , where F0

ELN ¼ F0
ELN=jF0

ELNj. The survival
probability on the large side is then given by

Pp−s
sur ðvÞ¼

8<
:

1
2
; for v · F̂0

ELN≤vmc ;

1− 1
2
h
�jv·F̂0

ELN−v
m
c j

a

�
; for v · F̂0

ELN>vmc ;
ð16Þ

where hðxÞ ¼ ðx2 þ 1Þ−1=2, and the parameter a can be
determined using the following equation derived from the
conservation of the ELN,

I< ¼
Z
Γ>

dΓGðvÞhðjv · F̂0
ELN − vmc j=aÞ; ð17Þ

where the integration is performed over the domain Γ>,
generalized from [46].3 We then use Eq. (16) to replace
Pb
surðvÞ in Eqs. (15) to compute the corresponding values of

the zeroth and the first moments. This scheme is named
“power-1=2-s.”
Third, we can further generalize the power-1=2 pre-

scription to include the axial asymmetric feature of the
results and use it to evaluate the post-FFC moments,
dubbed as the “power-1=2-a” scheme. Just as the original

FIG. 7. Comparison of the evolution of the νe (upper panel) and
ν̄e (lower panel) flux vector components obtained from simu-
lations with axially asymmetric distribution (solid curves) with
that estimated using coarse-grained survival probabilities ob-
tained in the corresponding axisymmetric simulations (dotted
curves with dots) [see Eq. (13)] in the rotated coordinates with
θr ¼ 30°.

3The integrand in the right-hand side of Eq. (17) is a
monotonic function of a, so a unique solution can always be
found.
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motivation for the power-1=2 prescription in 1D-box
simulations, which is to provide a prescription with the
survival probability smoothly transitioning across the
angular crossing, we achieve the same goal for the
power-1=2-a scheme by defining a shortest “distance” to
the initial ELN crossing contour as

DðvÞ ¼ 1 − fmaxðvÞ; ð18Þ

where the function fmaxðvÞ returns the maximal value of
v · vc for all vc with a given v. The corresponding survival
probability to predict the quasistationary state in this
scheme is then defined by

Pp−a
sur ðvÞ ¼

(
1
2
; for Γ<;

1 − 1
2
h½DðvÞ=a�; for Γ>:

ð19Þ

The determination of a in the power-1=2-a scheme follows
the same procedure outline above for the power-1=2-s
scheme.
Table I compares the values of the νe and ν̄e zeroth

moments as well as the x and z components of their first
moments derived from the simulations in the original
coordinates to those evaluated using the above three
different prescriptions for all three different θr values. In
all cases, the fractional differences between values obtained
by numerical simulations and those with prescriptions are
smaller than ∼10%. Unsurprisingly, the boxlike scheme
generally leads to larger errors, due to its simplest form that
is discontinuous. For the power-1=2-s scheme and the
power-1=2-a scheme, the fractional differences are gener-
ally smaller compared to the boxlike scheme, especially for
the zeroth moment as well as the z component of the flux
vectors. Figure 8 shows the graphical representation of the

FIG. 8. Graphical representation of the initial νe (black arrows) and ν̄e flux vectors (blue arrows), their final coarse-grained vectors
from simulations (red and magenta arrows), and the values predicted using the box-like (green dots), the power-1=2-s prescription (cyan
dots), as well as the power-1=2-a prescription (red dots) for θr ¼ 30° (left panel), 45° (middle panel), and 60° (right panel) in the original
coordinates, respectively.

TABLE I. Values of the post-FFC spatially averaged νe and ν̄e zeroth angular moments as well as their x and z
components of the first angular moments obtained from numerical simulation (scheme “sim”), estimated using the
box-like prescription for survival probability [scheme “box”; see Eq. (14)], the power-1=2-s prescription [scheme
“power-1=2-s”; see Eq. (16)], and the power-1=2-a prescription [scheme “power-1=2-a”; see Eq. (19)].

θr Scheme Np
νe Np

ν̄e
Fp
νe;x Fp

νe;z Fp
ν̄e;x Fp

ν̄e;z

30° Sim 0.563 0.463 −0.049 0.294 0.109 0.247
30° Box 0.599 0.498 −0.047 0.312 0.118 0.267
30° Power-1=2-s 0.583 0.483 −0.050 0.302 0.120 0.256
30° Power-1=2-a 0.570 0.470 −0.047 0.285 0.125 0.244

45° Sim 0.542 0.442 −0.036 0.288 0.168 0.197
45° Box 0.584 0.484 −0.033 0.309 0.186 0.217
45° Power-1=2-s 0.566 0.466 −0.039 0.297 0.185 0.203
45° Power-1=2-a 0.559 0.459 −0.041 0.283 0.187 0.196

60° Sim 0.537 0.436 −0.027 0.288 0.213 0.141
60° Box 0.576 0.476 −0.023 0.306 0.235 0.155
60° Power-1=2-s 0.559 0.459 −0.032 0.296 0.232 0.143
60° Power-1=2-a 0.555 0.455 −0.036 0.286 0.232 0.138
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initial νe (black arrows) and ν̄e flux vectors (blue arrows),
their final coarse-grained vectors from simulations (red and
magenta arrows), and the values predicted using the box-
like (green dots), the power-1=2-s prescription (cyan dots),
as well as the power-1=2-a prescription (red dots) for all
three cases with different θr to demonstrate the impact of
FFC and the difference between the numerical outcome and
the approximated evaluations. Once again, it illustrates that
in general the power-1=2-a scheme provides the best
prediction for the post-FFC flux vectors, followed by the
power-1=2-s scheme and then the boxlike scheme.
Finally, we note that in the power-1=2-s scheme that

assumes axisymmetry in the rotated coordinates we have
conservatively chosen the maximally projected velocity vmc
as the critical velocity value in Eq. (16). This is to avoid
having a final ELN angular distribution that still contains
ELN crossings. If we have used the averaged projected
velocity value as the critical velocity in Eq. (16), it will
result in similar approximated numbers for the final
moments, but the corresponding final ELN angular dis-
tribution will have crossings. Such a choice can lead to
inconsistency when implemented into the effective classical
transport model generalized from [47] in multidimensions.
We also caution that this method is not guaranteed to work
for very extreme cases where vc · F̂

0
ELN span a very wide

range of values. As for the further improved power-1=2-a
scheme, it does not suffer from this issue and can be
universally used for any ELN distributions without axi-
symmetry. Also noted is that, for cases with very shallow
ELN angular crossings, the power-1=2-a scheme automati-
cally converges toward the boxlike scheme.

V. CONCLUSION AND OUTLOOK

In this work, we have conducted numerical simulations
of collective neutrino fast flavor conversions in three spatial
dimensions in a cubic box with periodic boundary con-
ditions using the extended version of COSEν. We first
examined three different physical cases with axially asym-
metric neutrino ELN angular distributions in a coordinate
system where the x and y components of the νe flux vector
are zero. Our results show that, when the system has
reached the quasistationary state, the spatially averaged
ELN angular crossing is erased, and near flavor equilibra-
tion is reached in one angular domain defined by the initial
ELN crossing contour, similar to what previously observed
in the 1D box cases. We have further conducted the same
set of axially asymmetric simulations in rotated coordinate
systems where the x0 and y0 components of the ELN
angular moments are zero, as well as the corresponding
axisymmetric counterparts. We found that the evolution of
the zeroth ELN moments and the z0 components of the first
ELN moments in these two sets of simulations are nearly
identical, while the evolution of the x0 components of the
first ELN moments differs. Interestingly, we find that, by
folding the spatially averaged flavor survival, probabilities

computed based the axisymmetric counterpart distributions
with the initially axially asymmetric angular distributions.
Based on the simulation outcomes, we have provided a

generalized boxlike scheme and two different versions
(power-1=2-s and power-1=2-a) based on the power-1=2
scheme proposed in [46] to approximate the post-FFC
flavor survival probabilities in 3D. The generalized power-
1=2-s scheme assumes axisymmetry in the rotated coor-
dinates while the power-1=2-a scheme takes into account
the axial asymmetric feature of the system. While we have
found that all these schemes give rise to less than ≲10%
errors in the predicted post-FFC moments, the power-1=2-a
scheme predicts the post-FFC moments more accurately
than the other two approximated prescriptions. We note
that, however, the implementation of the power-1=2-a and
the power-1=2-s schemes require more computation time
than the simplest boxlike scheme, for their better accuracy.
The numerical studies presented in this work indicate

that the important feature—the erasure of the spatially
averaged ELN crossing and the coarse-grained flavor
equilibration in an angular domain—concluded based on
1D periodic box simulations with axisymmetric neutrino
distributions remains generally valid in multidimensional
cases without axisymmetry. Hence, it is expected that one
can similarly implement the analytical prescriptions pro-
posed in this paper into the effective classical transport
model proposed in [47] to take into account the effect of
FFC in global neutrino transport simulation in multidi-
mensions. This aspect will be further pursued in the future.
We acknowledge the following software: MATPLOTLIB [73],

NUMPY [74], and YT [75].
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APPENDIX: ANGULAR DISTRIBUTIONS
OF ASYMPTOTIC STATES

In addition to the angular moments, we compare the full
angular distributions in the asymptotic states given by
different analytical prescriptions to the coarse-grained ones
from simulation for the case of θr ¼ 30° in Fig. 9. The left
column compares the survival probability Psur obtained
from spatially averaged hPsuriV to Pb

sur [Eq. (14)], Pp−s
sur

[Eq. (16)], and Pp−a
sur [Eq. (19)], labeled by “simulation,”

“box,” “power-1=2-s,” and “power-1=2-a,” respectively.
The right column shows the corresponding electron neu-
trino angular distributions, gνPsur, for all cases. For better
illustration, these distributions are interpolated onto finer
velocity grids. Black dotted curves denote the initial ELN
angular crossing for all panels.
As described in the main text, the angular distribution of

the survival probability obtained from simulation shows that
near flavor equilibration (Psur ∼ 0.5) is achieved in one of
the angular domains separated by the ELN crossing contour,
with a slight flavor overconversion aroundϕ ∼ 0 and vz ∼ 0.

In the other domain,Psur increases smoothly from∼0.5 from
the ELN crossing contour to larger values of ∼0.8 at ϕ ∼ π
and θ ∼ 0.5. For Psur given by different prescriptions, both
the power-1=2-s and power-1=2-a schemes qualitatively
capture the smooth transition obtained in simulation,
although both schemes predict fewer flavor conversions
around ϕ ∼ 0 and vz ≲ 0. As for the box-like scheme, Psur

takes two distinct values, which transit abruptly at the
crossing contour by construction.
For the νe angular distribution, gνPsur, since gν is more

forward peaked in vz, the values of gνPsur are suppressed in
vz ≲ 0 in all cases as shown in the right column of Fig. 9.
However, the above abrupt transition in the box-like
scheme remains clearly visible in gνPsur, which results
in larger deviation of the predicted angular moments
discussed in the main text. For the two power-1=2 pre-
scriptions, the overall shapes of gνϱee agree better with the
simulation results than that from the box prescription,
leading to smaller deviations in angular moments discussed
in the main text.

FIG. 9. Comparison for the angular distributions of the survival probability Psur (left panels) and gνϱee (right panels) in the coarse-
grained asymptotic states from the simulations with those using the box-like, power-1=2-s, and power-1=2-a prescriptions for θr ¼ 30°.
Black dotted curves denote the initial ELN angular crossing.
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