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Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysical settings
like supernovae and neutron star binary merger remnants, which are characterized by large neutrino
densities. In these settings, simulations in the mean-field approximation show that neutrino-neutrino
interactions can overtake vacuum oscillations and give rise to fast collective flavor evolution on timescales
t ∝ μ−1, with μ proportional to the local neutrino density. In this work, we study the full out-of-equilibrium
flavor dynamics in simple multiangle geometries displaying fast oscillations in the mean field linear
stability analysis. Focusing on simple initial conditions, we analyze the production of pair correlations and
entanglement in the complete many-body-dynamics as a function of the number N of neutrinos in the
system, for up to thousands of neutrinos. Similarly to simpler geometries with only two neutrino beams, we
identify three regimes: stable configurations with vanishing flavor oscillations, marginally unstable
configurations with evolution occurring on long timescales τ ≈ μ−1

ffiffiffiffi
N

p
, and unstable configurations

showing flavor evolution on short timescales τ ≈ μ−1 logðNÞ. We present evidence that these fast collective
modes are generated by the same dynamical phase transition which leads to the slow bipolar oscillations,
establishing a connection between these two phenomena and explaining the difference in their timescales.
We conclude by discussing a semiclassical approximation which reproduces the entanglement entropy at
short to medium timescales and can be potentially useful in situations with more complicated geometries
where classical simulation methods starts to become inefficient.
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I. INTRODUCTION

Neutrinos are some of the most abundant particles found
in nature, produced during the early universe [1–4], from
stars like the sun during their lifetime [5], and in copious
amounts during core collapse supernovae [6–11]. Neutrino
flavor conversions, or oscillations, are genuine quantum
mechanical phenomena for which a flavor eigenstate is
converted to another during propagation due to it being an
admixture of different mass eigenstates.
In core-collapse supernovae (CCSNe) and neutron star

merger remnants, neutrinos are responsible for both rein-
vigorating a stalled shock-wave and controlling the con-
ditions for nucleosynthesis in the ejected material [12–15].
In these environments neutrino flavor evolution is substan-
tially modified by the presence of neutrino-neutrino scatter-
ing processes which can lead to self-sustained collective

flavor oscillations [16–24]. Since neutrinos in supernovae
are emitted with fluxes and spectra that are strongly flavor
dependent [13], the presence of collective flavor oscillations
could then lead to important effects [25–38]. Neutrino-
neutrino scattering, being between particles of the same
type, is of a different nature than neutrino-matter scattering,
and gives rise to forward scattering terms in the many-body
Hamiltonian which contribute to oscillations [17,39]. These
terms are dependent only on the angle betweenneutrinos and
couple neutrinos of different energies making flavor evolu-
tion a rather intricate many-body problem. Thanks to the
adoption of a mean-field approximation, a rich phenom-
enology of collective neutrino modes have been identified
(see [40,41] for reviews). In particular two main classes of
collective modes have been categorized as the slow and fast
modes of flavor instability based on the triggering mecha-
nism and the typical length scale of the flavor transition.
Slowmodes are due to the interference of the vacuum flavor
mixing and neutrino-neutrino self-induced forward scatter-
ing. The respective conversion rate is ∼ ffiffiffiffiffiffi

ωμ
p

, where ω ¼
Δm2=2Eν is the vacuum oscillation frequency for neutrinos

*a.roggero@unitn.it
†ermalrrapaj@gmail.com
‡z.xiong@gsi.de

PHYSICAL REVIEW D 106, 043022 (2022)

2470-0010=2022=106(4)=043022(16) 043022-1 © 2022 American Physical Society

https://orcid.org/0000-0002-8334-1120
https://orcid.org/0000-0002-3222-7010
https://orcid.org/0000-0002-2385-6771
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.043022&domain=pdf&date_stamp=2022-08-24
https://doi.org/10.1103/PhysRevD.106.043022
https://doi.org/10.1103/PhysRevD.106.043022
https://doi.org/10.1103/PhysRevD.106.043022
https://doi.org/10.1103/PhysRevD.106.043022


of energy Eν with mass square difference Δm2, and μ ¼ffiffiffi
2

p
GFρν indicates the magnitude of self-induced effective

potential with Fermi constant GF and neutrino number
density ρν. Slow flavor evolution typically shows a bipolar
behavior in terms of the flavor survival probability and
usually results in drastic splitting of neutrino spectra [28,40–
42]. Fast flavor conversions can occur even in the absence of
vacuum mixing since it is enabled by nontrivial angular
distributions and the consequent flavor evolution has a
strong angular dependence. The associated flavor conver-
sion rate is ∼μ, much faster than the slow mode when the
neutrino number density ρν is high and μ ≫ ω as, for
example, near the proto-neutron star of CCSNe or the
hyper-massive star of merger remnants [43–50].
In this work we study collective oscillations of two

active neutrino flavors, under only the influence of the
Hamiltonian induced by neutrino-neutrino interactions. We
assume a simplified scenario of electron neutrinos νe, and
an additional flavor which can be considered as a super-
position of tau and muon neutrinos denoted by νx, with no
vacuum mixing (or high neutrino density) and only focus
on the effects of neutrino forward scattering. To simplify
the treatment, we consider a three beam setup as explained
in Sec. II. We note in passing that antineutrinos would also
be present in a realistic scenario. However, in our setting
without vacuummixing, antineutrinos play the same role as
neutrinos of the other flavor (ν̄e;x ↔ νx;e). With Nf flavors
and neglecting momentum-changing interactions, the
many-body Hamiltonian can be formulated in terms of
SUðNfÞ operators acting on the flavor state of neutrinos.
This approach is particularly useful for studying many-
body effects. In Sec. III we perform a linear stability
analysis in the mean field approximation to determine
which configurations are unstable under perturbations, and
proceed to explain the many-body methods used in the
work in Sec. IV. The results for the flavor evolution for the
various setup and increasing particle number are summa-
rized in Sec. V. In Sec. VI we focus on the dynamical
creation of entanglement entropy and correlations from the
initial mean field wave function. The findings are summa-
rized and conclusions are drawn in Sec. VII.

II. THREE BEAM GEOMETRY AND
HAMILTONIAN

Asour focus here is on themany-body effects, we consider
only the flavor evolution of neutrinos under ν − ν forward
scattering and ignore the vacuum term or scattering with
matter. In studies of collective and fast neutrino flavor
oscillations, this is a common choice as the flavor instability
is assumed to originate from this part of the total
Hamiltonian, with an initial “seed” from the other terms
[44–47,51–54]. The presence of this perturbation is required
to ensure flavor evolution within the mean-field approxima-
tion, while in a full many-body simulation the seed is
effectively provided by quantum fluctuations. As shown

in detail in Ref. [55] for the simpler case of a two beam
model, the size of the seed controls the rate of convergence of
the full quantum many-body simulation to the mean-field
prediction. Mapping out the detailed dependence of the
many-body results on this additional parameter is left for
future explorations as the models explored here are already
relatively complicated and we aim at describing beyond
mean-field effects only as was done in Refs. [56,57]. This
work is the first attempt at uncovering the neutrino-neutrino
correlations and quantum entanglement using the complete
many-body treatment of this dynamics under the influence of
multiangle effects. Accounting only for forward scattering,
the Hamiltonian governing flavor evolution can thus by
expressed in the following form [58]

H ¼ μ

N

XN
i≠j

ð1 − cijÞJi · Jj ð1Þ

withN the total particle number and cij ¼ cosðθijÞ the cosine
of the angle between the momenta of neutrinos i and j.
The interactions between neutrinos propagating in parallel
directions therefore vanishes. The coupling constant μ ¼ffiffiffi
2

p
GFρν depends on both Fermi’s constantGF and the local

neutrino density ρν. Here we work in the approximation
where neutrinos have only twopossible flavors and their state
can be specified using a two component isospin degree of
freedom. The single particle operators acting on these flavor
states form an SUð2Þ algebra and can be expressed using
isospin operators

Ji ¼
1

2
ðσxi ; σyi ; σzi Þ; ð2Þ

with σki the kth Pauli matrix acting on the ith particle. To
study the large particle number limit, we assume a constant
neutrino densityρν, and the system to be comprised of several
neutrino beams. Each beam contains many neutrinos with
momenta aligned to each other, a configuration made
possible by assigning different energies to the neutrinos in
the beam in order to satisfy their fermionic antisymmetry.We
then define flavor isospin operators for beams as

Jα ¼
X
i∈α

Ji; ð3Þ

where the sum runs over the Nα particles belonging to the
beam α ∈ fA;B;C;…g. Here and in the rest of this work we
will use greek letters to refer to beams and (lower-case) latin
letters to refer to individual neutrinos. Since ½H; J2α� ¼ 0, the
total flavor isospin of each beam is conserved and, for initial
states that are eigenstates of J2α, we can express the nontrivial
part of the Hamiltonian from Eq. (1) in terms of beam
operators as follows

H ¼ μ

N

Xn
α≠β

ð1 − cαβÞJα · Jβ; ð4Þ

wheren is the number of beams and have neglected irrelevant
additive constant terms. This system has many symmetries
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worth pointing out. In addition to the individual J2α being
conserved, also the total angular momentum J2 and total J
commute with the Hamiltonian.
For simplicity, we will take n ¼ 3 beams and assume an

equal number of neutrinos in each beam with Nα ¼ N=3.
We further consider the direction of propagation in these
three beams to lie on a plane and that two of them are
antiparallel. This simple angular configuration is shown in
Fig. 1 and is parametrized by a single angle θAC.
The Hamiltonian then becomes (see Appendix A)

HABC ¼ 4μ

N
JA · JB þ 2μ

N
ð1 − cÞJA · JC

þ 2μ

N
ð1þ cÞJB · JC; ð5Þ

where we introduced c ¼ cosðθACÞ. This Hamiltonian is
invariant for a global SUð2Þ rotation and take as convention
the z axis to be flavor axis. We consider two distinct initial
configurations diagonal in flavor

(i) jΨIð0Þi ¼ j ↑i⊗NA ⊗ j ↑i⊗NB ⊗ j↓i⊗NC ,
(ii) jΨIIð0Þi ¼ j ↑i⊗NA ⊗ j↓i⊗NB ⊗ j ↑i⊗NC ,

and NA ¼ NB ¼ NC ¼ N=3. In the text we will refer to
these initial conditions as setup I and setup II. For both
states we have the conserved expectation values

hJ2iΨI;II
¼ N2=36þ N=2 hJiΨI;II

¼ ð0; 0; N=6Þ: ð6Þ

The convention we use throughout is that electron flavor
is associated with an up-spin and the heavy lepton flavor νx
with a down-spin. This rather special choice of initial states
was motivated by the fact that a mean-field treatment of
their time propagation will result in no flavor evolution and
therefore any flavor dynamics is inherently a many-body
effect. As mentioned at the beginning of this section,
adding a small off-diagonal component leads to an evolving
mean-field solution which we will use to characterize the
stability of the resulting equation of motion.

III. MEAN-FIELD LINEAR STABILITY ANALYSIS

In the mean-field approximation it is commonly assumed
that the correlation between any two neutrinos are negli-
gible: hOiOji ¼ hOiihOji where i and j are indices for
different neutrinos. Therefore, the time evolution for each
neutrino is rewritten as

∂thJii ¼ HMF × hJii ¼
2μ

N

XN
j≠i

ð1 − cijÞhJji × hJii: ð7Þ

This mean field approximation can be expected to hold in
the limit of large quantum numbers and therefore it is
convenient to formulate the evolution equations treating all
the neutrinos in a beam at the same time. One can then
define a normalized polarization vector for each beam as
Pα ¼

P
i∈αhJii=ðNα=2Þ and rewrite the equation of

motions in terms of Pα. For our three beam setup we
have then

∂tPA ¼ μ

N
½2NBPB þ ð1 − cÞNCPC� ×PA

∂tPB ¼ μ

N
½2NAPA þ ð1þ cÞNCPC� ×PB

∂tPC ¼ μ

N
½ð1 − cÞNAPA þ ð1þ cÞNBPB� ×PC: ð8Þ

As we mentioned after the derivation of Eq. (4), the total
flavor isospin J is a conserved quantity. This implies that
NAPA þ NBPB þ NCPC is a constant of motion and
therefore only two polarization vectors are dynamical.
This is an analogous situation to the one encountered in
the two-beam setting leading to bipolar oscillations with the
expectation value of the total isospin hJi playing a similar
role to the vector B pointing in the mass basis (see [58]). We
will exploit this similarity in Sec. V B when explaining the
nature of dynamical phase transitions in the present model
(see also [59] for recent work using this similarity in the
mean-field approximation).
The instability of the neutrino gas can be diagnosed by

analyzing the stability of these differential equations to
small perturbations. In the neutrino case, we will then
assume that the third component Pz

α is dominant and
linearize the mean-field equations of motion (EOM) in
terms of the perturbation away from the flavor axis. Given
NA ¼ NB ¼ NC ¼ N=3, the linearized EOM for the off-
diagonal component Sα ≡ Px

α − iPy
α reads

∂t

0
B@

SA

SB

SC

1
CA ¼ MLMF

0
B@

SA

SB

SC

1
CA ¼ μ

3

0
B@

2Pz
B þ ð1 − cÞPz

C −2Pz
A −ð1 − cÞPz

A

−2Pz
B 2Pz

A þ ð1þ cÞPz
C −ð1þ cÞPz

B

−ð1 − cÞPz
C −ð1þ cÞPz

C ð1 − cÞPz
A þ ð1þ cÞPz

B

1
CA
0
B@

SA

SB

SC

1
CA: ð9Þ

FIG. 1. Beams A and B are antiparallel, and beam C forms an
angle θAC with beam A.
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In the expression above we denoted by MLMF the matrix
obtained for the Linearized Mean Field (LMF) equations of
motion. The unstable mode of the neutrino gas can be
found by parametrizing the time-dependence of the off-
diagonal component as Sα ¼ Qαe−iΩt and solving the
collective oscillation frequency Ω as the eigenvalues of
the matrixMLMF. Any eigenvalues with positive imaginary
components imply the existence of modes with exponen-
tially growing amplitudes, which have been associated with
the appearance of fast flavor conversion [46,60].
The value of Pz

α can be either þ1 or −1 and depends on
the choice of initial conditions. For the state jΨ1i from
setup I, the eigenvalue equation gives

Ω
�
9

�
Ω
μ

�
2

− 12
Ω
μ
þ 3þ c2

�
¼ 0: ð10Þ

Since the quadratic discriminant Δ ¼ 36ð1 − c2Þ is non-
negative, there is no flavor instability at the mean-field
level. For setup II, we have

Ω
�
9

�
Ω
μ

�
2

− 6ð1 − cÞΩ
μ
þ 1 − 4c − c2

�
¼ 0: ð11Þ

Since Δ ¼ 72cðcþ 1Þ, when −1 < c < 0 two complex
conjugate solutions now appear. The instability is associ-
ated with the solution with positive imaginary part leading
to an off-diagonal component Sα which grows exponen-
tially with time. The unstable solution is

Ω ¼ ð1 − cÞ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cðcþ 1Þp

3
μ: ð12Þ

When c ¼ −1=2, the growth rate reaches the maximum
value

ffiffiffi
2

p
μ=6. The value ofΩ for the unstable mode in setup

II can be plugged back into the linearized EOM to obtain
the following relations of the corresponding eigenvector
compared to that of the νx beam:

jQAj2
jQBj2

¼ 1þ c
1 − c

;

jQCj2
jQBj2

¼ 1 −
jQAj2
jQBj2

¼ 2c
c − 1

: ð13Þ

The transverse components are associated with flavor
transitions in each beam in the linear regime. A larger
value for the amplitude jQαj2 leads to a higher change of
flavor content in the corresponding beam

jPz
αðtÞ − Pz

αð0Þj ≈
jSαðtÞj2

2

≈
jQαj2
2

· e2ImðΩÞt: ð14Þ

When the angular parameter c approaches 0, jQCj2 is
smaller than jQAj2 and the flavor conversion is primarily

associated with beam A rather than C. On the other hand,
beam C has more flavor transition when c approaches −1.
While the above relations may not be valid for long
timescales, they can describe which νe beam is mostly
associated with the flavor conversion when the system
transits from the linear to the nonlinear regime.

IV. METHODS

In this section we briefly describe the strategy we
employ to perform simulations of the three-beam model
from Eq. (5) with systems up to N ¼ 2700. These system
sizes are much larger than what would be possible using the
tensor network methods employed in previous works
[56,57,61]. Efficient simulations are made possible through
an effective use of the angular momentum representation
(see [62] for the general method and [55] for an application
to a two-beam model).
To give a concrete example, the initial wave function for

setup I in this basis is written as

jΨð0Þi ¼ jjA;mAi ⊗ jjB;mBi ⊗ jjC;mCi; ð15Þ

where jA¼mA¼NA=2, jB¼mB¼NB=2, and jC ¼ −mC ¼
NC=2. The total flavor isospin of each beam, jA, jB, or jC,
is conserved and can be determined from the initial
condition. A simplified many-body notation can be intro-
duced as jΨi ¼ jmA;mBi with only two degrees of free-
dom, where mC is determined by mA and mB given that the
total projection of flavor isospin, mA þmB þmC, is con-
served. The evolving state is then a linear combination of
states with all possible mA and mB,

jΨðtÞi ¼
X
mA;mB

amA;mB
ðtÞjmA;mBi: ð16Þ

We solve the time evolution for the amplitudes of many-
body states described above (for more details see
appendixB).Once the amplitudes are known, the observables
such as polarization and entanglement entropy can be
calculated. The projection of flavor isospin for each beam
is hJzαi ¼

P
mA;mB

mαjamA;mB
j2. Pair correlations are

hJzαJzβi ¼
P

mA;mB
mαmβjamA;mB

j2. The correlations along
the other two directions in flavor space are hJxαJxβi ¼
hJyαJyβi ¼ hJþα J−β þ J−αJ

þ
β i=4, where J�α ¼ Jxα � iJyα. Note

that the terms hJþα Jþβ i and hJ−αJ−β i are both zero because
the net flavor isospin, mA þmB þmC, is a conserved
quantity for the system, and J�α J�β jmA þmB þmCi
∝ jmA þmB þmC � 2i, leads to violations of this quantity.
Detailed expressions in terms of amplitudes can be found in
appendix B.
The Von Neumann entropy is an important measure for

the entanglement in a subsystem. For a general multiqubit
system divided into two subsystems, A and B, the Von
Neumann entropy of subsystem A is defined as
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SA ¼ −Tr½ρA log2ðρAÞ�; ð17Þ

where ρI ¼ TrBðρÞ is the reduced density matrix of sub-
system A. If we take subsystem A to be beam A, we can
write this more explicitly in terms of amplitudes as follows

SA ¼
XNA=2

mA¼−NA=2

��X
mB

jamA;mB
j2
�
log2

�X
mB

jamA;mB
j2
��

:

ð18Þ

Because setup II can be obtained from setup I by
exchanging configurations between beam B and C, all
quantities defined can be modified accordingly and not
explicitly listed here.

V. RESULTS FOR FLAVOR EVOLUTION

In the following we will first focus on studying the flavor
evolution for three beammodels in the two setups and show
their qualitative differences. In particular, we will compute
the survival probability, or persistence, PiðtÞ of a repre-
sentative neutrino in each beam. This can be defined
explicitly in terms of the Ji operators as

PikðtÞ ¼
1

2
þ sik

N
hΨkðtÞjJzi jΨkðtÞi; ð19Þ

with k ¼ 1, 2 denoting to employed initial state and the
constant sik defined as

sik ¼ sign½hΨkð0ÞjJzi jΨkð0Þi�; ð20Þ

to ensure Piðt ¼ 0Þ ¼ 1 for all neutrinos. For ease of
notation, in the following we will denote expectation values
at time t as h·iðtÞ dropping the index k indicating the initial
condition when no risk of confusion arises.

A. Setup I

The initial wave function for setup I is the product state

jΨIð0Þi ¼ j ↑i⊗N=3 ⊗ j ↑i⊗N=3 ⊗ j↓i⊗N=3; ð21Þ

with equal populations in the three beams. This initial state
is symmetric under the exchange A ⇔ B and the
Hamiltonian in Eq. (5) remains invariant under this
permutation if we also exchange c ⇔ −c. In our study
of this system we will therefore limit the discussion to
positive values of the angular parameter c.
The case with c ¼ 0 is special as for this geometry the

total spin J2AB ¼ ðJA þ JBÞ2 is also conserved and the
Hamiltonian takes the simpler form

HABCðc ¼ 0Þ ¼ 4μ

N
JA · JB þ 2μ

N
ðJA þ JBÞ · JC

¼ N
μ

9
þ 2μ

N
ðJAB · JCÞ: ð22Þ

We see then, that up to an overall constant, this case reduces
to a two-beam model with unequal population numbers.
An exact analytical solution for this scenario was already
discussed in Ref. [63] where it was shown that flavor
oscillations are present with an amplitude decaying as a
polynomial in the population difference jNAB − NCj ¼
N=3. This case recovers the mean field solution qualita-
tively, which does not show flavor oscillations, in the large
system size limit. Our many-body simulations show that
this behavior is actually generic for any value of the angular
factor c ≠ 1. The case c ¼ 1 is in fact also special as the
total spin J2AC ¼ ðJA þ JCÞ2 remains conserved and the
Hamiltonian becomes

HABCðc ¼ 1Þ ¼ 4μ

N
JAC · JB: ð23Þ

The crucial difference is however that now the two beams A
and C have opposite flavor polarization and their total spin
is instead hJ2ACi ¼ N=3. A similar situation was also
considered in Ref. [63] but the beam had maximal hJ2ACi
and hJzACi ¼ 0 initially (i.e., fully polarized in the xy-
plane). As the behavior in our case for c ¼ 1 is markedly
different from the other ones, we first discuss the case c ≠ 1
and move to c ¼ 1 near the end of this section.
We start by looking at the qualitative behavior of

the flavor survival probability for c ¼ 0.5. In Fig. 2 we
show results for the evolution of the survival probability
PAðtÞ in the first beam as a function of the evolution time
and for a variety of system sizes ranging from N ¼ 12
to N ¼ 348 (indicated with increasingly darker colors for

FIG. 2. Time evolution of the survival probability starting in the
first beam from the initial state of Setup I and taking c ¼ 0.5 for a
large selection of system sizes (green solid curves, darker colors
indicate progressively larger values of N). With blue dots we also
show the location of the first minimum.
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larger systems). The qualitative evolution remains the same
for other values of c ≠ 1 and for different beams.
In order to more easily track the evolution of the

amplitude of flavor oscillations in the large N limit, we
also show in Fig. 2 the location of the first minimum of the
survival probability using blue dots. In the following we
will indicate the value reached at the first minimum of the
survival probability in beam α as PðminÞ

α . The results for
beam A and different values of the angular distribution
parametrized by c are shown in Fig. 3. We find that in all
cases the survival probability converges to 1 in the large
system size limit. For large but finite N⪆ 50 the scaling
with N is well reproduced by the simple ansatz

PðminÞ
α ðNÞ ≈ 1 − a

N

�
1 − bffiffiffiffi

N
p

�
; ð24Þ

with b ¼ Oð1Þ and a increasing with the angular parameter
c from a ≈ 13 at c ¼ 0 to a ≈ 45 at c ¼ 0.75. Due to the
relatively limited maximum system size considered here,
we found the correction term parametrized by b to be
important for all angular distributions even though its
contribution will vanish in the thermodynamic limit. In
Fig. 3 we show the fit performed using Eq. (24) for the case
c ¼ 0.75 as a green dashed line.
In terms of the expectation value of the spin operators,

the scaling from Eq. (24) indicates that in the many-body
evolution the expectation value of hJzαi deviates from its
initial value �Nα=2 only by a constant factor

jhJzαij⪆
Nα

2
− a

Nα

2N

�
1 −

bffiffiffiffi
N

p
�
; ð25Þ

and the fractional change measured by the z component of
the polarization vectors Pα, defined in Sec. III and used in
the mean-field approximation, vanishes for large systems.
A similar pattern can also be observed in the other two
beams. However, in the second beam we noticed a transient
behavior where the first minimum transitions to a stationary

point as the system size increases, and the initial second
minimum becomes the first one after N ≈ 100. Regardless,
Eq. (24) remains valid also for this beam for large enough
system values (after the transition from first minimum to
stationary point).
The timescale to reach the first minimum of the survival

probability seems to converge to a constant in the large
system size limit agreeing with the expectations from the
study in Ref. [63] which were obtained for c ¼ 0.
As mentioned above, the case c ¼ 1 is peculiar in

that the total spin of beams A and C is conserved and
kept for all times at a small value hJ2ACi ¼ N=3 comparable
with the size of quantum fluctuations in the total spin
hðJxÞ2i ¼ hðJyÞ2i ¼ N=4. Contrary to the previous cases,
this allows for quantum fluctuations to drive flavor
evolution in a similar way as in the simpler two beam
model studied in a previous works (see [56,57,63,64]).
Interestingly however, in this case beams A and C are only
coupled trough their interaction with beam B.
We show the result of our simulation for the survival

probability in beam A for this case in Fig. 4. The behavior
of beam C is the same while beam B shows little flavor
conversion similarly to the results shown in Fig. 2. The top
panel shows the evolution of PA as a function of total time
T. This is in marked contrast with the results seen above
for c ≠ 1: the survival probability converges to 0.5 (full
mixing) for large times displaying oscillations whose
amplitude decays away in the limit of large systems (darker
curves in the plot). In order to display more clearly the
system size dependence of the timescale to reach the

FIG. 3. Evolution with system size N of the value at the first
minimum of the survival probability for beam A using the initial
wave function jΨIi and various cosine values. The dashed green
line corresponds to the best fit for c ¼ 0.75 using the para-
metrization from Eq. (24).

FIG. 4. Time evolution of the survival probability in beam A for
the initial state in Setup I, c ¼ 1 and the same set of system sizes
used for Fig. 2 (darker colors indicate larger values of N). Panel
(a) shows directly the time evolution while panel (b) uses a
rescaled time variable T=

ffiffiffiffiffiffiffiffiffi
N=3

p
to highlight the system size

dependence. The vertical dashed line in panel (b) indicates the
timescale τAC expected for a two-beam model.
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plateau, we also show in the bottom panel of Fig. 4 the
same data but as a function of the rescaled time variable
T=

ffiffiffiffiffiffiffiffiffi
N=3

p
. These results clearly indicate a decaying time-

scale τ ≈ 2μ−1
ffiffiffiffiffiffiffiffiffi
N=3

p
to reach equilibration at PA ¼ 0.5.

Apart from the superimposed oscillations, this is remark-
ably similar to the behavior shown by a two-beam system,
initialized in opposite flavor states. In order to isolate the
effective Hamiltonian for the two beams we rewrite

HABCðc ¼ 1Þ ¼ 2μ

N
ðJ2 − J2ACÞ − μ

N þ 6

18
; ð26Þ

with J2 ¼ J2ABC the total angular momentum. The two
angular momentum operators commute and can then be
applied sequentially. The contribution proportional to the
total angular momentum is proportional to HABCðc ¼ 0Þ in
Eq. (22) (apart from a constant factor) and, as shown above,
does not lead to stable oscillations in the N → ∞ limit. The
large N evolution of the configuration with c ¼ 1 is then
captured by the effective two-beam Hamiltonian

H2Beams
AC ¼ −

2μ

N
J2AC ¼ −

4

3

μ

2N=3
J2AC: ð27Þ

Using the results from Ref. [56], the timescale obtained to
reach the minimum of the survival probability would be
τAC ≈ 3=

ffiffiffi
2

p
μ−1

ffiffiffiffiffiffiffiffiffi
N=3

p
. This value is reported in panel (b)

of Fig. 4 and is seen to match remarkably well the position
of the minimum.
Similarly to the standard two-beam case, for this

configuration we see that the mean-field prediction of no
evolution is recovered as N → ∞ due to the divergence of
the equilibration timescale τ.
In summary the system in Setup I displays the same

“freeze-out” behavior described in Ref. [63] for all angular
distributions with c ≠ 1: the polarization vectors in each
beam are only able to deviate from their initial values by a
vanishing small amount in the large system size limit. The
case with c ¼ 1 is peculiar in that we observe flavor
conversion with a system size independent amplitude but
a diverging timescale τ ∝ μ−1

ffiffiffiffi
N

p
. As we will see in the

next section, the presence of instabilities in the system from
Setup II, for appropriate values of c, will change this picture
qualitatively.

B. Setup II

For setup II the initial product state reads as

jΨIIð0Þi ¼ j ↑i⊗N=3 ⊗ j↓i⊗N=3 ⊗ j ↑i⊗N=3: ð28Þ

The angular configurations with c ¼ −1 is equivalent to the
same angle in the previous setup (upon exchanging B ⇔ C)
and large flavor conversion in beams B and C is seen with a
typical timescale τ ∝ μ−1

ffiffiffiffi
N

p
. The configuration with c ¼

1 is instead equivalent to c ¼ 0 of the previous setup which,

as discussed in the previous section, behaves similarly to
the other stable cases in Setup I with a decaying amplitude
of flavor oscillations as a function of system size for all
beams. In this case the time evolution is however twice as
fast due to the presence of an additional factor of 2 in the
Hamiltonian [see Eqs. (22) and (23)].
For angular distributions with c ≠ �1 we can predict the

qualitative behavior of the flavor evolution using the same
line of reasoning used to obtain the effective Hamiltonian in
Eq. (27) above. We first rewrite the Hamiltonian as a sum of
two commuting parts to which we have added an un-
important constant, h ¼ 5μð6þ NÞ=6,

HABC þ h ¼ μ

N
J2 þ μ

N
ðJ2AB − 2cJC · ðJA − JBÞÞ

¼ μ

N
J2 þ μ

N
ðJ2AB − 2cJ · ðJA − JBÞÞ

≔
μ

N
J2 þHdynamic

ABC ; ð29Þ

where in the second line we used the fact that J2A and J2B are
conserved and take the same value on our initial state. As
already commented, the contribution proportional to the total
angular momentum does not lead to oscillations in
the large N limit and all the flavor dynamics for c ≠ �1 is
driven by the second termdenoted asHdynamic

ABC . This dominant
part of the Hamiltonian is reminiscent of the two-beam
Hamiltonian describing bipolar oscillations [55–57]

Hbip ¼
2μ

N
J2AB − δωB · ðJA − JBÞ; ð30Þ

with the constant vector B replaced by the total spin of the
system J. In this expression, δω is proportional to the vacuum
energy difference in the two beams. This analogywas already
pointed out near Eq. (8) above and is consistent with the
recent work from Ref. [59] in the mean-field approximation.
We can now show that for low energies and large system
sizes, the Hamiltonian Hdynamic

ABC in Eq. (29) has the same
properties as Hbip and in particular shows the same phase
transitions discussed in [57]. Thanks to the all-to-all cou-
plings in the Hamiltonian, the ground state can be approxi-
mated accurately with a mean-field state (see [65,57]) so that
its energy, can be written as

E0ðcÞ ¼
2μ

N
hJAi · hJBi −

2cμ
N

hJi · ðhJAi − hJBiÞ

¼ 2μ

N
hJAi · hJBi −

cμ
3
ðhJzAi − JzBiÞ; ð31Þ

where we used hJi ¼ ð0; 0; N=6Þ. This is exactly the same
energy function one obtains withHbip and displays the same
quantum phase transitions (see [57]). In particular, for the
initial state jΨIIð0Þi, we expect to see a dynamical phase
transition for −1 < c ≤ 0 with substantial flavor oscillations
and no dynamical flavor evolution for 0 < c < 1. This is
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compatible with the expectations from the mean-field linear
stability analysis from Sec. III with the exception of c ¼ 0
which was considered stable instead.
The point c ¼ 0 is the critical point and dynamics there

is expected to happen on timescales t ≈
ffiffiffiffi
N

p
, as in the

marginally stable configurations with c ¼ �1 in the pre-
vious setup, while for −1 < c < 0 flavor evolution should
happen on timescales t ≈ logðNÞ. Notably, the frequency of
bipolar oscillations generated by the dynamical phase
transition in Hbip are proportional to

ffiffiffiffiffiffiffiffi
μδω

p
which is

typically much smaller than μ close to the neutrino-sphere.
In the multiangle case studied here instead, the coupling
constant in front of the one body term in Hdynamic

ABC is also
proportional to μ and this gives rise to oscillations with
frequency proportional to μ instead. This suggests that the
mechanism behind both bipolar and fast oscillations is the
same dynamical phase transition and the difference in
timescales is simply given by the difference in coupling
constants.
In order to better illustrate the similarity between the

dynamical phase transition in the two-beam case leading to
bipolar oscillations and the unstable configurations in the
present three-beam setup, we now present results for the
Loschmidt echo. This is defined as the (squared) overlap
between the evolved state jΨðtÞi and the initial state
as follows

LðtÞ ¼ jhΨð0ÞjΨðtÞij2: ð32Þ

As discussed more in detail in Refs. [66,67] (see also
Ref. [57] for applications in neutrino physics) a dynamical
phase transition is signalled by nonanalyticities of the
Loschmidt echo as a function of time. For systems with
degenerate initial state, as both the two-beam bipolar case
for δω ¼ 0 or the three-beam unstable case for c ¼ 0, a
suitable generalization of this quantity is obtained as
follows (see Refs. [57,68,69])

LkðtÞ ¼ jhΦkjΨðtÞij2: ð33Þ

where jΦki are the two degenerate states: one is the initial
state jΦ0i ¼ jΨð0Þi, and the other one is obtained by
exchanging the polarization of the A and B beams. In our
setup we have then jΦ1i ¼ j↓i⊗NA ⊗ j ↑i⊗NB ⊗ j ↑i⊗NC

for setup II where jΨð0Þi ¼ jΨIIð0Þi. From these defini-
tions of the Loschmidt echo we can also introduce a related
quantity, the Loschmidt rate, defined as

λðtÞ ¼ −
1

N
log½LðtÞ�: ð34Þ

Here N is the total number of particles in the system and
λðtÞ an intensive “free energy” [66,70]. The rate λðtÞ plays
here the role of a nonequilibrium equivalent of the
thermodynamic free-energy. In cases where the generali-
zation of the Loschmidt echo from Eq. (33) applies, the free

energy is given by the minimum of the two rates λðtÞ ¼
min½λ0ðtÞ; λ1ðtÞ� (see [68]). In these cases, a dynamical
phase transition can therefore occur whenever these rates
cross for some time t�, giving rise to a kink in λðtÞ. We
present results for these Loschmidt rates at various values
of the angular parameter c in Fig. 5. The second Loschmidt
rate λ1ðtÞ is shown only for the degenerate case c ¼ 0.
These results can be directly compared with Fig. 9 of
Ref. [57] where the two-beam setup was considered
instead. Similarly to that situation, we find that indeed
the Loschmidt rates cross for a time t� ≈ 34μ−1 for c ¼ 0
while for nonzero values of c the behavior is markedly
different between the stable and unstable cases: for stable
configurations with c > 0 the Loschmidt rate displays
periodic oscillations that return to zero while for unstable
configurations the Loschmidt rate shows sharp peaks. This
is exactly the behavior found in Ref. [57] for the case of
slow bipolar modes and suggests that the argument pro-
vided above, which links this phenomenon to the fast
oscillation case as being produced by the same dynamical
phase transition, might be valid. Further work to establish a
more robust connection and explore the full dynamical
phase diagram of the model is warranted.
As a further confirmation of the stability of configura-

tions with positive values of c, the numerical results we
obtain for these configurations show indeed flavor evolu-
tion similar to the stable cases observed before, with
oscillation amplitudes vanishing as ≈1=N in the large
system size limit.
We can now turn to present the result of our simulation

for the survival probability in beam B and c ¼ −0.5 in
Fig. 6. The time axis has been scaled by the factor 1þ
logN to show the system size dependence (darker curves
corresponds to larger systems). In Fig. 7 we plot the system
size dependence of the time to reach the first minimum in

FIG. 5. Loschmidt rate in a system with N ¼ 348 neutrino
amplitudes initialized in jΨ2ð0Þi of setup II with different values
of c: the red and black lines correspond to unstable cases with
negative values c ¼ −1=2 and −1=4 respectively, the blue and
orange lines correspond to stable cases with positive values c ¼
1=4 and 1=2 respectively, and the green line is with c ¼ 0
transiting from unstable to stable configuration. Solid lines are for
the Loschmidt rate λðtÞ while dashed line shows the second rate
λ1ðtÞ as defined in the text.
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the survival probability in beam B. As expected from
the discussion on the presence of a dynamical phase
transition in this regime, the time dependence for the
unstable configurations with −1 < c < 0 is logarithmic
Tmin
B ∝ logðNÞ. We have observed the same qualitative

behavior for all beams and values of c in the unstable
region.
The ratios of flavor transitions in each beams during that

intermediate stage and their dependence on the angular
parameter c are also compared to the mean-field relations in
Eq. (13). We pick a time point where the transition
probability of beam B, ΔPB ≡ j1 − PBj, first reaches a
value of 1=2 (∼Oð1Þ) to represents an intermediate
stage. We calculate the ratio of transition probabilities,
ΔPA=ΔPB, at that time, and do the same for all five
unstable angular parameters of c ≤ 0 and two system sizes
N ¼ 384 and 2700 in Fig. 8. At a larger system size of
N ¼ 2700, the ratios tend to converge on the prediction
from the linear analysis.
However, the long-term evolution of survival probability

can deviate from the mean-field result. Within mean-field

assumption, this three-beam setup where two beams are
antialigned is equivalently an axisymmetric setup and
should lead to a bipolar motion with the same minimum
survival probabilities in each flavor conversion cycle
[48,59], but Fig. 6 shows that the minimal value of survival
probabilities in the second cycle (at the rescaled time ≈6) is
much higher than that in the first one (at the rescaled time
≈2) as the system size N goes to 2700. This deviation is
consistent with the behavior of decoherence found in
Ref. [62] and will also be reflected by the entanglement
and correlations as to be discussed in next section.

VI. ENTANGLEMENT AND CORRELATIONS

In the previous section we studied the dependence of
single particle observables like the survival probability on
system size. For marginally unstable and unstable configu-
rations we discovered that the many-body result does not
converge to the mean field prediction in the large particle
number limit. When such a difference appears, one is left to
wonder whether the initial mean field wave function
evolves with time to a more complicated one. In such a
scenario, many-body effects like correlations and entangle-
ment, which would otherwise not be present, tend to
develop dynamically [56,57,71,72]. The focus of this
section is the study of the pair correlations and entangle-
ment generated during the time evolution.

A. Beam correlations

As we mentioned in the derivation of the mean-field
equations in Sec. III, one of the underlying assumptions
behind the mean field approximation is the factorization of
expectation values hOiOji ≈ hOiihOji for different neu-
trinos. Here we explore the violations of this assumptions
due to many-body effects by measuring the connected pair
correlations along the flavor axis

Cαβ ¼
4

NαNβ
ðhJzαJzβi − hJzαihJzβiÞ: ð35Þ

FIG. 6. Time evolution of survival probability in beam B for the
initial state in Setup II and c ¼ −0.5. The plot uses a rescaled
time variable T=ð1þ logNÞ (darker colors indicate larger values
of N) to highlight the system size dependence.

FIG. 7. Time to reach the first minimum in the survival
probability in beam B for the initial state in Setup II and different
angular distributions as function of system size (on a log scale).
The straight lines for −1 < c < 0 emphasize the log N depend-
ence for unstable configurations.

FIG. 8. Setup II: Comparison between the relation of
jQAj2=jQBj2 in mean-field approximation and the ratio of
transition probabilities, ΔPA=ΔPB, in many-body calculations
for five unstable parameters of c and two system sizes N ¼ 384
and 2700, respectively.
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We first note that, due to the conservation of the total
polarization along the z-axis, the sum for all α; β ∈
fA; B;Cg becomes

X
α;β

CαβðtÞ ¼
4

N2
ðhðJzÞ2i − hJzi2Þ ¼ 0; ð36Þ

where the last equality comes from the initial condition
being a product state. This constraint implies that the
intrabeam correlations CAiAi

ðtÞ are not independent on
the correlations CαβðtÞ between different beams α ≠ β.
In particular we have

CdiagðtÞ ¼ −CodiagðtÞ; ð37Þ

where CdiagðtÞ and CodiagðtÞ are the sum of diagonal and off-
diagonal pair correlations respectively.
As we have seen in the previous section, for appropriate

values of the angular parameter c the three-beam models
considered in this work can show flavor evolution in
contrast to the mean-field prediction. In these situations
we, then, expect correlations to be present as they are
responsible for the nontrivial evolution. Since the system in
setup II can reproduce all three types of time evolution
(stable, marginally unstable, and unstable) we restrict the
present discussion to this setup only.
In Fig. 9 we show the time evolution of all three off-

diagonal pair correlations for three indicative scenarios and
N ¼ 348: the left panel shows the case of a stable system
with vanishing flavor evolution (c ¼ 1), the central panel
shows results for a marginally unstable system with flavor
evolution at the long timescale τ ≈ μ−1

ffiffiffiffi
N

p
(c ¼ −1) and

the right panel shows results for an unstable system
(c ¼ −0.5) with flavor evolution at the short scale
τ ≈ μ−1 logðNÞ. These results shows that for stable systems
Cαβ ≈ 0 at all times, with like flavor beams (A and C)
positively correlated and opposite flavor beams anticorre-
lated. For the marginally unstable system at c ¼ −1 the two
antiparallel beams B and C whose total spin is conserved
are strongly anticorrelated and along times CBC ≈ −0.5
while the stable beam A has vanishing correlation with the

other two. Finally, for the unstable case c ¼ −0.5, all
beams show substantial correlations among each other.
The results shown in Fig. 9 suggest that one can detect

instabilities in the neutrino flavor evolution by looking at
pair correlations among the beams while the conservation
of the total spin also indicates [see Eq. (37)] that correla-
tions must be present inside the beams themselves. These
correlations are however influenced by finite size effects
and for small system sizes this separation is less pro-
nounced. To show this we present in Fig. 10 the long time
average of the total diagonal correlations

CtFdiag ¼
1

tF

X
α

Z
tF

0

dtCααðtÞ; ð38Þ

as a function of system sizeN. Due to Eq. (37) we have that
CtFdiag ¼ −CtFodiag and the quantities provide a similar measure
of correlations. The main panel shows CtFdiag in the three
cases considered above for tF ¼ 400μ−1. This value was

FIG. 9. The time evolution of the three off diagonal pair correlations CAB, CAC and CBC (shown with full, dashed and dotted lines
respectively) for the system size N ¼ 348. The left panel is a stable system with c ¼ 1; the center panel depicts a marginally unstable
case with c ¼ −1.0, and the right panel shows an unstable case with c ¼ −0.5.

FIG. 10. Evolution with system size N of the long time
averaged diagonal pair correlation CtFdiag from Eq. (38) for the
initial state jΨIIð0Þi and three angular distributions: c ¼ 1 (blue
circles), c ¼ −1 (green diamonds) and c ¼ −0.5 (orange
squares). The inset shows the dependence on the integration
time tF for the three angular distributions and two system sizes:
N ¼ 96 (dashed lines) andN ¼ 348 (solid lines). The time axis in
the inset has been scaled with 1=

ffiffiffiffi
N

p
to better show the systems

size dependence.
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chosen to guarantee convergence to the long time average
for the largest system considered here, N ¼ 348. In general
we observe that convergent results can be obtained for all
angular distributions choosing tF ∝

ffiffiffiffi
N

p
, this is shown in

the inset of Fig. 10 where we present the dependence of the
time averaged correlations with the size tF of the time
window upon rescaling with

ffiffiffiffi
N

p
: the dashed lines corre-

spond to N ¼ 96 and the continuous lines to N ¼ 348.

B. Entanglement entropy

Another important way to characterize correlations in a
many-body system is to estimate the amount of entangle-
ment generated during time evolution. From a practical
point of view, entanglement controls the computational cost
of classical tensor network methods to simulate the flavor
dynamics of a neutrino system. An important example,
already used in the study of collective neutrino oscillations
in Refs. [56,57], and more recently in [61], are matrix
product state (MPS) which can approximate efficiently
(i.e., in polynomial cost) quantum states for which the
Rényi entropies Rα for any bipartition of the system grow at
most logarithmically in the size of the bipartition [73]. We
will comment more on the efficiency of a MPS simulation
of collective neutrino systems in the conclusions.
Quantum correlations like entanglement are more gen-

erally useful tools to analyze the structure of many-body
neutrino systems and have been shown to be helpful in
detecting the presence of bipolar collective modes in the
past [55–57]. These calculations were performed using
only two beams and therefore only display slow modes.
Here we are interested in extending this connection to fast
modes instead, and therefore, might be important near the
surface of a proto-neutron star where μ ≫ ω [43,46]. In
[72], the authors found that the largest values of entangle-
ment entropies occur for neutrinos with energies closest to
the spectral split energy.
In Fig. 11 we depict, as function of time for N ¼ 2700

and the three angular setups from the previous plots, the
entanglement entropy Sα [see Eq. (17)] obtained from
the reduced density matrix of the A beam (full lines) and,
for the stable system with c ¼ 1, also of the B beam
(dashed line). For this latter setup, in Figs. 9 and 10 we
saw that correlations vanish as the system size increases
while entanglement entropy does not. Instead, it rises
quickly and then proceeds to oscillate with a relatively
small amplitude. For marginally unstable (c ¼ −1) and
unstable (c ¼ −0.5) configurations, the entropy reaches
Smax ≈ log2ðN=3Þ. The associated timescales are t ∼

ffiffiffiffi
N

p
and t ∼ logðNÞ respectively, in agreement with our pre-
vious observations on the persistence in Sec. V B.
To further confirm the behavior of Smax with N, in

Fig. 13 we depict how it scales with system size, with
x-axis in log scale, for beam B. The stable configuration
(c ¼ 1) reaches a plateau while the marginally unstable and
unstable configurations increase logarithmically. This is

even more evident by comparing the data from simulations
to the line log2ðN=3Þ (dashed black line). This logarithmic
behavior has also been observed in past MPS based
calculations of bipolar oscillations [56,57] as well as more
general two-beam models [55].
As the particle number increases, so do the initial

expectation values of Jz and J2. Then, for large N we
expect to represent the flavor operators Jx;y;zα through
canonical bosonic operators, following the Holstein-
Primakoff transformation [74] truncated to leading order.
If we approximate the state of each beam by a Gaussian,
then, the entanglement entropy (Von Neumann entropy) for
a beam can be approximated,

SαðtÞ ¼
1þ 2ΓαðtÞ
logð2Þ arccothð1þ 2ΓαðtÞÞ

þ 1

2
½log2ðΓαðtÞÞ þ log2ð1þ ΓαðtÞÞ�: ð39Þ

The term Γα, related to the covariance matrix of the
Gaussian state, can be approximated in two different ways,

ΓðaÞ
α ðtÞ ¼ Nαð1 − PαðtÞÞ;

ΓðbÞ
α ðtÞ ¼ Nα

4
−
hðJzαÞ2i
Nα

; ð40Þ

based on the survival probabilities and correlations, respec-
tively. The detailed analysis can be found in Appendix C. In
Fig. 12 we plot the entanglement entropy for beam B and
N ¼ 2700 as function of time, together with the predictions
obtained from these two approximations. The panel on the
left is a stable system with c ¼ 1; the center panel depicts a
marginally unstable case with c ¼ −1.0, and the right panel
shows an unstable case with c ¼ −0.5. The survival prob-
ability and correlations employed in making this plot were
computed with the method described in Sec. IV. For stable
configurations, Eq. (39) seems to match the exact result for

FIG. 11. Entanglement entropy as function of time for system
size N ¼ 2700. The three angular distributions are c ¼ 1 (blue),
c ¼ −1 (yellow) and c ¼ −0.5 (purple). Beam A (dashed) is
shown only for the stable configuration (c ¼ 1) while beam B is
shown of all three angles.
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long term dynamics, while for marginally unstable and
unstable cases it is a rather good approximation for short
time dynamics. The approximation based on the survival
probability seems to perform better than the one based on
correlations in the marginally unstable case (panel (b)) as it
follows the exact evolution for longer times. In the unstable
case however, this approximation misses the double peak
structure around t ¼ 20μ−1 associated with flavor inversion
in the beam (i.e., PA < 0.5), a situation that cannot be
described at leading order in the semiclassical expansion
(see Appendix C for more details).
These results show that nontrivial evolution of the

survival probability is intimately connected to the presence
of entanglement and correlations. It would be interesting to
extend this approach to more complicated models including
a nondiagonal one body Hamiltonian (vacuum frequency)
as well as performing the full evolution within the semi-
classical approach. In addition, it remains to be seen
whether the Holstein-Primakoff approximation is the best
choice to represent the system, and, perhaps the truncated
Wigner approximation (see [75] and references therein)
could also be employed. While their numerical implemen-
tation is beyond the scope of this work, if semiclassical
treatments are good approximations in the large particle
number limit, they may be of practical importance for

simulations relevant for supernovae and neutron star
binary mergers.

VII. SUMMARY AND CONCLUSION

In compact objects, core-collapse supernovae and neu-
tron star mergers, neutrinos play a vital role in shaping the
dynamics of the system and the conditions for nucleosyn-
thesis in the ejected material. The presence of collective
flavor oscillations, primarily due to neutrino-neutrino
scattering, could lead to important effects in these afore-
mentioned developments. As these scatterings are depen-
dent only on the angle between particles and couple
neutrinos of different energies, flavor evolution is a very
complicated many-body problem.
In this work we performed a complete many-body

treatment based on the method described in Ref. [62].
We considered a simplified setup of three coplanar beams,
parametrized by c—the cosine of the angle between two of
the beams, and two neutrino flavors. We focused only the
effects due to neutrino scattering and studied the depend-
ence on system size. We selected two initial configurations
for the wave function,
(1) jΨIð0Þi ¼ j ↑i⊗NA ⊗ j ↑i⊗NB ⊗ j↓i⊗NC ,
(2) jΨIIð0Þi ¼ j ↑i⊗NA ⊗ j↓i⊗NB ⊗ j ↑i⊗NC .

For these setups, the mean field approximation predicts no
flavor evolution, and any dynamics is purely a many-body
effect. By analyzing the time evolution of the survival
probability or persistence for each of the beams, we
discovered that for jcj < 1 in setup I and c ≥ 0 in setup
II, the many-body results converge to the mean field ones in
the large particle number limit. The extremal values of the
cosine in setup I and c ¼ −1 in setup II denote marginally
unstable situations where the survival probability does not
converge to 1 as would have been predicted by the mean-
field analysis. However, the time to reach its minimum
∼μ−1

ffiffiffiffi
N

p
, “freezing” the flavor evolution for large N. The

effective Hamiltonian governing these situations is analo-
gous to the two beam system studied in Refs. [56,57] and
the results agree with the behavior found there. The system
in setup II can instead develop fast collective oscillations

FIG. 12. The time evolution of the entanglement entropy for beam B and the system size N ¼ 2700. The left panel is a stable system
with c ¼ 1; the center panel depicts a marginally unstable case with c ¼ −1.0, and the right panel shows an unstable case with c ¼ −0.5.
The approximation ΓðaÞ

i ðtÞ ¼ Nið1 − PiðtÞÞ gives a closer result to the exact value than ΓðbÞ
i ðtÞ ¼ Ni

4
− hJzi Jzi i

Ni
.

FIG. 13. Maximal value of the entanglement entropy as
function of N for beam B, and angles c ¼ −1 (dashed blue),
c ¼ −0.5 (solid orange), and c ¼ 1 (dotted green). For compari-
son, we have also included the log2ðN=3Þ (dashed black) func-
tional form to show the system size dependence.
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when −1 < c < 0 leading to a crossing of the angular
distributions. For these cases the persistence does not
converge to 1 as N increases and the timescale to reach
the first minimum ∼μ−1 logðNÞ. These unstable configu-
rations can also be derived by rewriting the Hamiltonian to
separate the dominant term, which is analogous to bipolar
oscillations in the presence of the vacuum term. This
establishes a connection between the dynamical phase
transition leading to bipolar oscillations and the presence
of fast modes. The main difference between the two
situations is that now the one body term playing the role
of the vacuum frequency there has a coupling proportional
to μ. This fact explains in a natural way the distinction
between the frequency of oscillations in slow and fast
modes. These results are also in agreement with the linear
mean field instability analysis we performed in Sec. III. In a
follow up work we plan to perform a detailed study of the
dynamical phase diagram in this simple multibeam model.
To further confirm the presence of many-body effects,

and beyond mean field behavior, we analyzed the entan-
glement entropy of each beam as well as the time averaged
flavor correlations among them. The pair correlations agree
qualitatively with the results of the persistence analysis:
with increasing system size they vanish for stable configu-
rations but not for marginally unstable or unstable ones.
However, the time to reach the plateau scales as∼μ−1

ffiffiffiffi
N

p
in

contrast to the survival probabilities. The entanglement
entropies closely resemble the survival probabilities in
timescales, and, for unstable configurations reach the
maximal values ≈ log2ðN=3Þ.
We have also analyzed the evolution of the entropy using

a correspondence between the survival probability and the
entanglement entropy in a beam obtained using a semi-
classical approximation employing Holstein-Primakoff
approximation. This correspondence shows directly that
flavor evolution in our system is necessarily accompanied
by an increase of the entanglement entropy. The good
agreement obtained between this approach and the
exact numerical simulations suggests that semiclassical
approaches might provide a powerful tool to explore
neutrino dynamics in large systems for short time-scales.
This will be especially interesting in more complicated
situations with a large number of neutrino beams where the
angular momentum basis scheme employed here will
become computationally too expensive and the entangle-
ment entropy might become too large for tensor network
simulations. Finally, simulations using quantum devices
[76–78] will likely become important in order to study the
long time evolution of these systems.
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APPENDIX A: THREE BEAM GEOMETRY

We assume the neutrino system is comprised of three
beams and the neutrinos in each beam are parallel. This
makes for a total of 3 different directions: A, B, C. These
vectors form a tetrahedron with volume,

V ¼ ABC
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2cABcACcBC − c2AB − c2AC − c2BC

q
:

where, cAB is the cosine of the angle between vectors A and
B. The non-negativity of the volume requires

1þ 2cABcACcBC − c2AB − c2AC − c2BC ≥ 0:

For a given volume, two of the three cosines are free
parameters. To further simplify our analysis, we assume the
three vectors are coplanar and two are antiparallel,

c ¼ cAC ¼ −cBC; cAB ¼ −1

The corresponding Hamiltonian becomes

HABC ¼ μ
4

N
JA · JB þ 2μ

1 − c
N

JA · JC

þ 2μ
1þ c
N

JB · JC; ðA1Þ

where N ¼ NA þ NB þ NC is the total number of spins.
Note that we used the fact that J2α is conserved for each one
of the beams.

APPENDIX B: THE METHOD IN ANGULAR
MOMENTUM REPRESENTATION

The equations of motion for the amplitudes of the many-
body state defined in Eq. (16) is

i∂tamA;mB
¼TmA;mB

mA;mBamA;mB

þTmAþ1;mB
mA;mB amAþ1;mB

þTmA;mBþ1
mA;mB amA;mBþ1

þTmAþ1;mB−1
mA;mB amAþ1;mB−1þTmA−1;mBþ1

mA;mB amA−1;mBþ1

þTmA−1;mB
mA;mB amA−1;mB

þTmA;mB−1
mA;mB amA;mB−1;

ðB1Þ

where
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TmA;mB
mA;mB ¼ μJAC

N
½kCðNA − kAÞ þ kAðNC − kCÞ�

þ μJBC
N

½kCðNB − kBÞ þ kBðNC − kCÞ�

þ μJAB
N

½kAkB þ ðNA − kAÞðNB − kBÞ�;
TmAþ1;mB
mA;mB ¼ TmA;mB

mAþ1;mB

¼ μJAC
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kAkCðNA − kA þ 1ÞðNC − kC þ 1Þ

p
;

TmA;mBþ1
mA;mB ¼ TmA;mB

mA;mBþ1

¼ μJBC
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBkCðNB − kB þ 1ÞðNC − kC þ 1Þ

p
;

TmAþ1;mB
mA;mBþ1 ¼ TmA;mBþ1

mAþ1;mB

¼ μJAB
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kAkBðNA − kA þ 1ÞðNB − kB þ 1Þ

p
;

ðB2Þ
and kA, kB, and kC are the flipping numbers with mA ¼
NA=2 − kA, mB ¼ NB=2 − kB, and mC ¼ kC − NC=2
respectively. The polarization is related to the projection
of flavor isospin

Pα ¼ 2hJzαi=Nα ¼
X
mA;mB

2mA

NA
jamA;mB

j2; ðB3Þ

and the pair correlations are

hJxAJxAi ¼
1

4

X
mA;mB

ðNA þ 2kANA − 2k2AÞjamA;mB
j2;

hJxAJxBi ¼
1

2

X
mA;mB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kAkBðNA − kA þ 1ÞðNB − kB þ 1Þ

p

× Reða�mA;mBþ1amAþ1;mB
Þ;

hJxAJxCi ¼
1

2

X
mA;mB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kAkCðNA − kA þ 1ÞðNC − kC þ 1Þ

p

× Reða�mA;mB
amAþ1;mB

Þ: ðB4Þ

APPENDIX C: SEMICLASSICAL EXPANSION

In this section we introduce the truncated Holstein-
Primakoff transformation, already used in [79,80] for spin
systems with long-range interactions, and show how pair
correlation in the neutrino beams are directly connected
with the entanglement in the system.
As a first step we introduce canonical bosonic operators

pα and qα for each beams as follows

8>>><
>>>:

Jxα ¼
ffiffiffiffiffi
Nα
2

q
qα þOð 1ffiffiffiffiffi

Nα
p Þ

Jyα ¼
ffiffiffiffiffi
Nα
2

q
pα þOð 1ffiffiffiffiffi

Nα
p Þ

�iJzα ¼ Nα
2
− q2αþp2

α−1
2

; ðC1Þ

where the symbol �i denotes a þ sign for beams that
started in the e flavor (positive z polarization) and a − sign
for beams that started in the x flavor (negative z polari-
zation). Note that the commutation relations of the spin
operators are preserved only in the asymptotic regime
Nα ≫ 1 for which Jzα ≈ NAα=2. This approximation is
useful around the limit for which the number of excitations
measured by the operator

n̂α ¼
q2α þ p2

α − 1

2
ðC2Þ

remains small compared to Nα, a condition that for our
system is fulfilled with good accuracy only for stable
solutions. We will also approximate the state of each beam
as a Gaussian state with covariance matrix

Gα ¼
� hq2αi hqαpαþpαqαi

2

hqαpαþpαqαi
2

hp2
αi

�
: ðC3Þ

Since we start from a product state we expect this
approximation to hold for sufficiently short evolution
times. Following the construction in [80], we will use this
approximation for the beam wave functions to compute an
approximation to the entanglement entropy of each beam.
The result reads

SαðtÞ ¼
2

logð2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detGαðtÞ

p
arccothð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detGαðtÞ

p
Þ

þ 1

2
log2

�
detGαðtÞ −

1

4

�
; ðC4Þ

where we made explicit the time dependence of the
covariance matrix, and thus the entropy. As we can see,
the covariance matrix completely characterizes the entan-
glement properties of a Gaussian state.
In order to calculate the determinant, we first rewrite the

diagonal element in terms of spin operators

hq2αi ¼
2

Nα
hJxαJxαi hp2

αi ¼
2

Nα
hJyαJyαi; ðC5Þ

due to the Uð1Þ symmetry shared by both the initial state
and the Hamiltonian these expectation values remain equal
at all times. For the off-diagonal terms instead, we first
introduce ladder operators

J�α ¼ Jxα � iJyα ¼
ffiffiffiffiffiffi
Nα

2

r
ðqα � ipαÞ; ðC6Þ

from which we find

hqαpα þ pαqαi
2

¼ −
i
Nα

hJþα Jþα − J−αJ−α i; ðC7Þ
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this are also zero for our system due to the conservation of
the total spin. We can now proceed in two ways: the first
one is to use the definition of JzAα

in Eq. (C1) to write

hq2αi ¼ hp2
αi ¼

1

2
þ hn̂αi

¼ 1

2
þ Nα

2
∓i hJzαi

¼ 1

2
þ Nαð1 − PαðtÞÞ; ðC8Þ

where in the last line we avoided the beam-dependent ∓i
sign by using the definition of flavor survival probability
for beam i from Eq. (19) of the main text (note that here we
have not indicated the initial condition). We can express the
covariance matrix as

GðaÞ
α ¼

�
1

2
þ Nαð1 − PαðtÞÞ

��
1 0

0 1

�
: ðC9Þ

The second one is to use the conservation of the angular
momentum J2α to write the covariance matrix as

GðbÞ
α ¼ 2

Nα

� hJxαJxαi 0

0 hJyαJyαi

�

¼ J2α − hJzαJzαi
Nα

�
1 0

0 1

�

¼
�
1

2
þ Nα

4
−
hJzαJzαi
Nα

��
1 0

0 1

�
; ðC10Þ

where in the last step we have used the initial value J2α ¼
NαðNα þ 2Þ=4 valid for every beam.
We finally find the following compact expression for the

Von Neumann entropy in both approximations as

Sða=bÞα ðtÞ¼1þ2Γða=bÞ
α ðtÞ

logð2Þ arccothð1þ2Γða=bÞ
α ðtÞÞ

þ1

2
½log2ðΓða=bÞ

α ðtÞÞþlog2ð1þΓða=bÞ
α ðtÞÞ�: ðC11Þ

In these expression we have introduced the quantity

ΓðaÞ
α ðtÞ ¼ Nαð1 − PαðtÞÞ ðC12Þ

for approximation (a) and

ΓðbÞ
α ðtÞ ¼ Nα

4
−
hJzαJzαi
Nα

; ðC13Þ

for approximation (b). At the beginning of time evolution

Γða=bÞ
α ðtÞ ¼ 0 and so is the entropy. The largest value this

can reach in approximation (a) is when the survival
probability goes to zero while in approximation (b) when
all the angular momentum is in the ðX; YÞ plane and
hJzαJzαi ¼ 0. In these limits the entropy is approximately

SðaÞmax ≈ 1þ log2ðNαÞ

SðbÞmax ≈ 1þ log2

�
Nα

4

�
: ðC14Þ

Since the (b) approximation depends directly on the
approximate definition of the spin operators in the X and
Y direction from Eq. (C1), we expect it to break down when
hJzαi deviates significantly from its initial value. On the other
hand approximation (a) only relies on this mapping to
establish hq2αi ¼ hp2

αi and that the off diagonal elements of
Gα are zero but is otherwise exact (within the Gaussian
approximation). We then expect approximation (a) to
perform better in practice in the limit of large system size.
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