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We perform numerical simulations of fast collective neutrino flavor conversions in an one-dimensional box
mimicking a systemwith the periodic boundary condition in one spatial direction and translation symmetry in
the other two dimensions.We evolve the systemover several thousands of the characteristic timescale (inverse
of the interaction strength) with different initial ν̄e to νe number density ratios and different initial seed
perturbations. We find that small scale structures are formed due to the interaction of the flavor waves. This
results in a nearly flavor depolarization in a certain neutrino phase space, when averaged over the entire box.
Specifically, systemswith initially equal number of νe and ν̄e can reach full flavor depolarization for the entire
neutrino electron lepton number (νELN) angular spectra. For systems with initially unequal νe and ν̄e, flavor
depolarization can only be reached in one side of the νELN spectra, dictated by the net neutrino e − x lepton
number conservation. Quantitatively small differences depending on the initial perturbations are also found
when different perturbation seeds are applied. Our numerical study here provides new insights for efforts
aiming to include impact of fast flavor conversions in astrophysical simulationswhile calls for better analytical
understanding accounting for the evolution of fast flavor conversions.
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I. INTRODUCTION

The discovery of the flavor oscillations of neutrinos by
terrestrial experiments and astrophysical observations is
one of the most exciting milestones in neutrino physics.
Ongoing and planned experimental projects are expected to
further pin down the yet-unknown parameters in neutrino
mixing—the mass ordering and the CP-violating phase—
while searching for potential signatures of physics beyond
the Standard Model [1].
However, despite the success of the theory of neutrino

mixing in explaining the majority of experimental data, one
aspect that is poorly understood yet is how neutrinos
oscillate in astrophysical environments dense in neutrinos.
Analytical and numerical works over the past decades have
shown that in an environment where the self-interactions

between neutrinos cannot be ignored, various collective
phenomena can arise due to the nonlinear and strong
coupling nature (in the flavor space) of the system; see,
e.g., [2–19] and review articles [20–23]. Exploratory works
also demonstrated that such collective neutrino flavor
oscillations may largely affect our understanding of impor-
tant astrophysical events such as the core-collapse super-
novae and the merger of two neutron stars [24–32].
Among these efforts, an important aspect that was recently

pointed out is the potential occurrence of the “fast” neutrino
flavor conversions [14]. Fast flavor conversions happen
when the angular distribution of the neutrino electron lepton
numbers (νELN) take both positive and negative values—
dubbed “crossings.” Under the two-flavor approximation in
νe–νx subspace, where νx refers to a linear combination of νμ
and ντ, a νELN crossing means that the effective differential
neutrino e − x number density dñν=dΩ, where ñν ¼ nνe −
nν̄e − nνx þ nν̄x andΩ is the solid angle, transits frompositive
tonegative (or viceversa) in the angular phase space.This has
been confirmed by means of linear instability analysis, valid
when the flavor conversion probabilities remain small, as
well as numerical studies [15,33–45]. Meanwhile, searches
for the conditions where fast conversions can develop using
neutrino angular distributions provided by hydrodynamical
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simulations of supernovae and mergers were carried out
extensively [46–54].
In particular, Refs. [37,41] examined how fast flavor

conversions develop in the nonlinear regime using numerical
simulations in a one-dimensional (1D) box which possesses
translation symmetry in the x and y directions while periodic
in the z direction. Reference [37] showed that coherent and
wavelike patterns in flavor space can develop with a point-
source like perturbation. On the other hand, Ref. [41] found
that the system can quickly settle into a state where flavor
depolarizationhappenswhen averaged over the z domain, for
a major part of neutrino spectrum with either point-source
like or random perturbation seeds. These findings seem to
contradict each other and require further examinations.
In this work, we systematically investigate the depend-

ence of the outcome of fast neutrino flavor conversions in a
1D box on the initial condition of the perturbation seeds.
By adopting advanced numerical schemes, we evolve the
systems to late times when quasi steady states are achieved.
We also explore the dependence of the steady-state out-
come on the initial ν̄e to νe number density ratio.
In Sec. II, we describe our models, the initial and

boundary conditions, and the adopted numerical schemes.
We also briefly review the notation of the neutrino
polarization vectors. In Sec. IV, we discuss our numerical
simulation results and the implications. We summarize our
main findings in Sec. V. Throughout the paper, we adopt
natural units and take ℏ ¼ c ¼ 1.

II. MODELS

A. Equation of motion

We consider a simple neutrino-dense system, which has
translation symmetry in the x and y directions in space, the
same as in Refs. [37,40,41]. For simplicity, initially we
assume a pure system consisting of only νe and ν̄e (before
setting small flavor perturbations; see below). Focusing
on fast flavor conversions, we neglect the momentum
changing collisions and only keep the neutrino–neutrino
forward scattering contributions [55–57] in the effective
Hamiltonian; i.e., we drop the terms originating fromvacuum
neutrino mixing and neutrino-matter forward scattering
contributions.
Assuming the differential neutrino angular distribution

dnνeðν̄eÞ=dΩ is uniform in z and taking the two-flavor
approximation, the equation of motion, which governs the
evolution of the normalized neutrino density matrices (see
below) ϱ (for neutrinos) and ϱ̄ (for antineutrinos), is given as
follows1:

∂
∂tϱðt; z; vzÞ þ vz

∂
∂zϱðt; z; vzÞ ¼ −i½Hðt; z; vzÞ;ϱðt; z; vzÞ�;

ð1aÞ

∂
∂t ϱ̄ðt; z; vzÞ þ vz

∂
∂z ϱ̄ðt; z; vzÞ ¼ −i½H̄ðt; z; vzÞ; ϱ̄ðt; z; vzÞ�;

ð1bÞ

with

ϱðt; z; vzÞ ¼
�
ϱee ϱex

ϱ�ex ϱxx

�
; ϱ̄ðt; z; vzÞ ¼

�
ϱ̄ee ϱ̄ex

ϱ̄�ex ϱ̄xx

�
;

ð2Þ
in the flavor basis. Since we omit the vacuum mixing
contribution, the flavor evolution of ρ and ρ̄ do not depend
on the neutrino energy.
In Eq. (1), the Hamiltonian H and H̄ can be explicitly

written down as

Hðt; z; vzÞ ¼ μ

Z
1

−1
dv0zð1 − vzv0zÞ

× ½gνðv0zÞϱðt; z; v0zÞ − αgν̄ðv0zÞϱ̄�ðt; z; v0zÞ�;
ð3aÞ

H̄ðt; z; vzÞ ¼ −μ
Z

1

−1
dv0zð1 − vzv0zÞ

× ½gνðv0zÞϱ�ðt; z; v0zÞ − αgν̄ðv0zÞϱ̄ðt; z; v0zÞ�; ð3bÞ

where μ ¼ ffiffiffi
2

p
GFnνe with GF being the Fermi coupling

constant. The asymmetry parameter α ¼ nν̄e=nνe quantifies
the ratio between the number density of ν̄e and νe. The
angular distribution function gνðν̄ÞðvzÞ relates to the physi-
cal neutrino phase-space distribution function fνeðν̄eÞ with-
out any flavor perturbations as

gνðν̄ÞðvzÞ ¼
1

4π2nνeðν̄eÞ

Z
dEνE2

νfνeðν̄eÞ; ð4Þ

where Eν is the energy of a neutrino. Note that the
azimuthal symmetry in phase space of fνeðν̄eÞ with respect
to the z direction is implicitly taken. In this notation, ρee ¼
ρ̄ee ¼ 1 for our system without any initial flavor perturba-
tions while all other matrix elements are zero.
Since μ is the only dimensional quantity in Eq. (1), we

define μ≡ 1 and express t and z in dimensionless form (in
the units of μ−1) hereafter.

B. Initial and boundary conditions

We simulate the flavor evolution of neutrinos inside a box
of size Lz ¼ 1200 in z ∈ ½−600; 600� with the periodic
boundary condition. Similar to Ref. [37], we parametrize
gνðν̄Þ as

1When only considering the neutrino-neutrino self-interaction
term, one can redefine the antineutrino density matrix by
ρ̄ → −σ†yρ̄σy, such that neutrinos and antineutrinos are treated in
equal footing [2]. However, herewe choose to treat them separately
for the purpose of consistency with follow-up works that may
include other terms in the Hamiltonian and the collisions.
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gνðν̄ÞðvzÞ ∝ exp½−ðvz − 1Þ2=ð2σ2νðν̄ÞÞ�; ð5Þ

with normalization condition
R
1
−1 dvzgνðν̄ÞðvzÞ ¼ 1. Through-

out the paper, we fix σν ¼ 0.6 and σν̄ ¼ 0.5, such that ν̄e
are more forward-peaked than νe. For the asymmetry para-
meter α, we take α ¼ 0.9, 1.0, 1.1, 1.2, and 1.3. Figure 1
shows the corresponding νELN distributions GνðvzÞ≡
gνðvzÞ − αgν̄ðvzÞ. With increasing value of α, the νELN
crossing where Gνðvz;cÞ ¼ 0 occurs at smaller vz;c with
jGνðvzÞj being larger (smaller) for vz > vz;c (vz < vz;c). The
values of vz;c for α ¼ 0.9, 1.0, 1.1, 1.2, and 1.3 are 0.65,
0.45, 0.33, 0.23, and 0.15, correspondingly.
For a systemwithout thevacuumHamiltonian, it requires a

small perturbation in ρex (ρ̄ex) to trigger the flavor insta-
bilities. For simplicity, we assume that the perturbations are
independent of vz. Specifically, we use the following
description for our initial condition at t ¼ 0 as:

ϱeeðz; vzÞ ¼ ϱ̄eeðz; vzÞ ¼ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2ðzÞ

q
Þ=2; ð6aÞ

ϱxxðz; vzÞ ¼ ϱ̄xxðz; vzÞ ¼ ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2ðzÞ

q
Þ=2; ð6bÞ

ϱexðz; vzÞ ¼ ϱ̄exðz; vzÞ ¼ ϵðzÞ=2: ð6cÞ

For ϵðzÞ, we explore the following two different choices:
(1) Point-source like perturbations centered at z ¼ 0:

ϵðzÞ ¼ ϵ0 exp½−z2=50�.
(2) Random perturbations: ϵðzÞ is randomly assigned by

a real value between 0 and ϵ0.
We take ϵ0 ¼ 10−6 throughout the paper.

C. Numerical methods

We discretize z and vz with Nz and Nvz grids, and evolve
ϱ and ϱ̄ defined at the grid centers. In evaluating the
advection terms ∂ϱ=∂z and ∂ϱ̄=∂z, we use two different

methods to check for consistency. The first method uses the
forth-order (central) finite difference method with artificial
dissipation using the third-order Kreiss-Oliger formulation
[58]. For the second method, we use finite volume method
plus the seventh order weighted essentially nonoscillatory
(WENO) scheme [59,60]. For time evolution, we use fourth-
order Runge-Kutta method. The numerical implementation
detailswill be reported in a separate publication togetherwith
the public release of our simulation code COSEν [61].
Using the above initial and boundary conditions, we

perform simulations with fiducial numerical parameters of
NZ ¼ 12000 and Nvz ¼ 200, with a fixed time step size
Δt ¼ CCFLΔz, where Δz ¼ Lz=NZ and the Courant—
Friedrichs–Lewy number CCFL ¼ 0.4. In Appendixes A
and B, we show the comparison of results obtained with
different resolutions and with two different numerical
methods for advection. For the rest of the paper, all results
are obtained using the finite volume method with seventh
order WENO scheme, which provides better numerical
accuracy given the same resolution.

D. Polarization vectors

Before we discuss our results, let us define the neutrino
and antineutrino polarization vectors P and P̄ that are often
used in literature. The three components of the polarization
vector P are defined as

P1 ¼ 2ReðϱexÞ; ð7aÞ

P2 ¼ −2ImðϱexÞ; ð7bÞ

P3 ¼ ðϱee − ϱxxÞ; ð7cÞ

which satisfy ρ≡ ðP · σ þ P0IÞ=2, where σi are the Pauli
matrices and I is the identity matrix. For antineutrinos, we
have

P̄1 ¼ 2Reðϱ̄exÞ; ð8aÞ

P̄2 ¼ 2Imðϱ̄exÞ; ð8bÞ

P̄3 ¼ ðϱ̄ee − ϱ̄xxÞ: ð8cÞ

With this definition, the equation of motion for P has the
same form as for P̄, and we can treat neutrinos and
antineutrinos in equal footing using the νELN spectrum
Gν defined in Sec. II B to account for the contributions from
both neutrinos and antineutrinos in the Hamiltonian.
Dropping the bar for antineutrinos, we have

� ∂
∂tþ vz

∂
∂z

�
Pðt; z; vzÞ ¼ Hðt; z; vzÞ × Pðt; z; vzÞ; ð9Þ

where Hðt; z; vzÞ ¼ R
1
−1 dv

0
zGνðv0zÞPðt; z; v0zÞð1 − vzv0zÞ.

Clearly, in the absence of collisions, the length of the

FIG. 1. The initial νELN angular distributionGðvzÞ for systems
with different ν̄e to νe number density ratios α. The νELN
crossing where GðvzÞ ¼ 0 shifts to smaller vz with larger α.
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polarization vectors are unity for all z and vz, given that our
initial condition has jPj ¼ 1 uniformly in z. Another
physical quantity that is conserved globally is the net
neutrino e − x lepton number in the entire simulation
domain [40,41],

Le−x ∝
Z

Lz=2

−Lz=2
dz

Z
1

−1
dvzGνðvzÞP3ðt; z; vzÞ: ð10Þ

Note that locally this net lepton number can be transferred
from one location to another due to the advection.
However, globally Le−x must be a conserved quantity in
time for the entire system.

III. RESULTS: FLAVOR EVOLUTION
OF THE SYSTEM

In this section, we focus on results obtained with α ¼ 0.9
and α ¼ 1.1. In Sec. III A, we examine how the point-
source like perturbations in the off diagonal elements of the
density matrices grow in the linear regime and compare
their evolution with detailed analysis using the dispersion
relation. In Secs. III B and III C, we further discuss how
flavor evolution proceeds in the nonlinear regime for cases
with point-source like perturbations and random perturba-
tions, respectively.

A. Linear regime

In the regime where jρexj ≪ 1 and jρ̄exj ≪ 1, the evolu-
tion of the system can be qualitatively understood by
performing the standard technique of linearized instability
analysis [15,62]. By inserting ρex ∝ exp½−iðωt − kzzÞ�
(same for ρ̄ex) and keeping terms in the lowest order of
perturbations, Eq. (1) leads to a dispersion relation of the
collective mode of the system ωðkzÞ [15,34,36]. The
complex branch of ω for real kz signifies the existence of
flavor instabilities such that small off diagonal perturbations
can grow exponentially in time as the system evolves. Note
that herewe only include the solution that preserves the axial
symmetry. For the symmetry-breaking solutions, we omit
them here because our simulation setup does not allow
symmetry-breaking solutions.
In Fig. 2, we show in panels (a) and (b) the dispersion

relation ωðkzÞ for systems with νELN asymmetry parameter
α ¼ 0.9 and 1.1. For α ¼ 0.9, there are two regions in kz
where complex ω exist. The maximal value of ImðωmaxÞ ≃
0.044 locates at kz;max ≃ −0.165. At the same kz;max,
ðdω=dkzÞmax ≃ 0.515. Forα ¼ 1.1where the νELNcrossing
is deeper in larger vz (see Fig. 1), ImðωmaxÞ ≃ 0.107 at
kz;max ≃ −0.225. The corresponding ðdω=dkzÞmax ≃ 0.278.
In the bottom panels [(c) and (d)] of Fig. 2, we show the

evolution of jP⊥ðzÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
1 þ P2

2

p
¼ 2jρexj for vz ¼ 0.995

in the liner regime for the same νELNs with point-source
like perturbations. Clearly, an initial Gaussian packet of P⊥
grows exponentially with time and the peak position of P⊥

(a) (b)

(c) (d)

FIG. 2. Panels (a) and (b) The dispersion relation of ωðkzÞ for unstable solutions containing nonzero ImðωÞ for α ¼ 0.9 and 1.1. Panels
(c) and (d) Time evolution of the perpendicular components of the neutrino polarization vectors P⊥ðzÞ in the linear regime (jP⊥j ≪ 1)
for vz ¼ 0.995. Darker curves correspond to earlier times. The same point-source like flavor perturbations are applied for both cases
with α ¼ 0.9 [panel (c)] and α ¼ 1.1 [panel (d)].
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moves toward positive z direction for both the cases. The
growth rate of the maximal value of P⊥;max and the velocity
dzðP⊥;maxÞ=dt both agree well with the values of ImðωmaxÞ
and ðdω=dkzÞmax obtained in the dispersion relation above.
The growth of perturbations using α ¼ 1.1 is indeed much
faster than that with α ¼ 0.9. Moreover, the P⊥ðzÞ with
α ¼ 1.1 spreads over both positive and negative z direc-
tions. For the case with α ¼ 0.9, although the width of
P⊥ðzÞ also increases with time, it mainly drifts to the
positive z direction without spreading over the negative z
direction.

B. Nonlinear regime: Point-source like perturbations

When the perturbations grow to the nonlinear regime,
wavelike oscillatory features develop [37]. InFig. 3,we show
the snapshots of P3ðz; vzÞ at different times for α ¼ 0.9 and
1.1 using the same point-source like perturbations as in
Sec. III A. For the case of α ¼ 0.9, the flavor evolution
behavior of the system is in general similar to those reported
in Ref. [37]. Flavor waves develop and mainly propagate
toward the positive z direction. This is consistent with the
growth of perturbations in the linear regime discussed earlier.
An interesting feature shown here is that although the flavor
oscillations initially can affect all vz modes, illustrated by the
vertical stripes in the upper two subpanels in Fig. 3(a), this
effect diminishes when time proceeds and flavor conversions
are roughly confined in vz ≳ vz;c ≃ 0.65.

Another interesting feature is when the forward-traveling
wave front interacts with the slowly backward propagating
part after t≳ 1200, it pushes thewhole pattern to drift toward
positive z direction. Meanwhile, this interaction breaks the
coherent wavelike pattern. Substructures in smaller scale
develop such that the orientation of the neutrino polarization
vectors varies rapidly in z for vz ≳ vz;c. Consequently,
although at each location z, neutrinos with different vz ≳
vz;c still have jPj ¼ 1, the “average polarization vector” over
the z domain can shrink due to their misalignment. Such a
flavor state was referred as “flavor depolarization” in
Refs. [40,41], and we will discuss its behavior in more
detail in the next section. For vz ≲ vz;c, most neutrinos
remain unaffected.
For α ¼ 1.1 shown in panel (b), flavor conversions

quickly develop toward both the positive and negative z
directions and produces coherent and wavelike structure,
once again consistent with that indicated by the growth of
perturbations in the linear regime. Similarly, when the
forward and backward propagating modes interact after
t≳ 665, smaller structures develop and cause a major part
of vz reaching closer to flavor depolarization. One impor-
tant difference from the previous α ¼ 0.9 case is now flavor
depolarization happens mostly in vz ≲ vz;c ≃ 0.45. We will
also discuss this feature and its consequences in Sec. IV B.
For the other νELN spectra with α ¼ 1.0, 1.2, and 1.3,

the behaviors are qualitatively similar to that with α ¼ 1.1.
Full simulation animations are available at [63].

FIG. 3. Snapshots of P3ðz; vzÞ at different simulation times for the same systems shown in Fig. 2 when the initial perturbations have
grown to the nonlinear regime. Flavor waves with coherent structures develop and propagate. Small scale structures form when flavor
waves interact and breaks the coherent structure.
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C. Nonlinear regime: Random perturbations

Now, let us look at how the flavor systems evolve when
we adopt different seed of random perturbations. We show
again P3ðz; vzÞ at different time snapshots in Fig. 4 for
α ¼ 0.9 and 1.1. With random perturbations, some loca-
tions have larger P⊥ initially such that flavor conversions
develop faster around those locations (see the top sub-
panels). Similar to what discussed in Sec. III B for single
point-source like perturbations, flavor waves can initially
develop independently now at different locations. The
flavor waves transported in space interact and break the
coherent pattern to form small-scale structures. Thus, with
perturbations everywhere in space, the interaction of flavor
waves happen at much earlier times and no large-scale
coherent structure can be formed, differently from cases
with point-source like perturbations. The systems can then
reach closer to flavor depolarization in vz ≳ vz;c (vz ≲ vz;c)
for α ¼ 0.9 (1.1) within a much shorter amount of time.
Once again, for the other νELN spectra with α ¼ 1.0,

1.2, and 1.3, the behaviors are qualitatively similar to that
with α ¼ 1.1. Full simulation animations are also available
at [63].

IV. RESULTS: EVOLUTION OF
AVERAGED QUANTITIES

In the previous Sec. III, we have discussed how fast
flavor conversions of neutrinos can develop in space and

time with different seed perturbations. In this section, we
further examine the time evolution of relevant quantities
averaged over z and/or vz in Sec. IVA and Sec. IV B.

A. Overall flavor conversion probability in the box

We define the overall flavor survival probabilities of
neutrinos and antineutrinos, hPeei and hP̄eei in the simu-
lation domain by

hPeei ¼
Z

dzdvzϱeeðz; vzÞgνðvzÞ=
Z

dzdvzgνðvzÞ; ð11aÞ

hP̄eei ¼
Z

dzdvzϱ̄eeðz; vzÞgν̄ðvzÞ=
Z

dzdvzgν̄ðvzÞ; ð11bÞ

where the brackets and overline denote averaging over z
and vz, respectively. The integration limits over z and vz are
from −Lz=2 to Lz=2 and from −1 to 1, respectively.

Figure 5 shows the time evolution of hPeei and hP̄eei for
all five different νELN spectra that we considered (see
Fig. 1). The cases with point-source like perturbations and
random perturbations are shown in panels (a) and (b),
respectively. First, we see that cases with larger α reach the
final asymptotic states earlier in time for both point-source
like and random perturbations. Meanwhile, all cases with
random perturbations reach the asymptotic states much
earlier than those with point-source like perturbations as
discussed in Sec. III C.

FIG. 4. Snapshots of P3ðz; vzÞ for systems with the same νELN shown in Fig. 3 but with different seed perturbations. With random
perturbations, interaction of flavor waves happen much earlier. No large-scale coherent structures can be formed when compared to
Fig. 3, which adopts point-source like perturbations.
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Second, systems with α ¼ 1 (equal number of neutri-
nos and antineutrinos) have final asymptotic values of

hPeeif ≃ hP̄eeif ≃ 0.5; i.e., full flavor depolarization is
almost reached for the entire system. For systems that

are more asymmetric, the asymptotic hPeeif and hP̄eeif are
larger; i.e., on average less νe and ν̄e are converted.

Comparing hPeeif to hP̄eeif for a given α, one finds that

cases with α > 1 have larger values of asymptotic hP̄eeif
than those of hPeeif (vice versa for α < 1). This is related to
the fact that for α > 1 (α < 1), neutrinos with vz ≲ vz;c
(vz ≳ vz;c) experience more flavor conversions. Since for
our adopted neutrino angular spectra, gν̄ðvzÞ is more
forward peaked in positive vz than gνðvzÞ, more flavor

conversions in larger vz naturally lead to smaller hP̄eeif
than hPeeif.
Comparing the final values of hPeeif and hP̄eeif for

cases with point-source like and random perturbations, the
point-source like ones generally lead to a slightly smaller

hPeeif and hP̄eeif than the random ones. This is due to the
reason discussed in Sec. III B: although the interaction of
the flavor waves lead to states close to flavor depolariza-
tion, for cases with point-source like perturbations, some
large-scale coherent structures can remain until the end of
the simulations. This can also be seen in Fig. 6, which
shows the spatially averaged flavor survival probabilities
hPeeðvzÞif as functions of vz at the end of our simulations,
where hPeeðvzÞi is defined by

hPeeðvzÞi ¼
Z

dzϱeeðz; vzÞ=
Z

dz: ð12aÞ

Note that hP̄eeðvzÞi that can be similarly defined are equal
to hPeeðvzÞi, when only neutrino-neutrino self-interaction
terms are included here.
Figure 6 clearly shows several interesting features. First,

for cases with either point-source like or random perturba-
tions, those with α > 1 (α < 1) lead to nearly full flavor
depolarization (hPeeðvzÞif ≃ 0.5) for velocity modes vz <
vz;c (vz > vz;c). For velocity modes in the other side of the
νELN, nearly flavor equipartition cannot be achieved and

(a) (b)

FIG. 5. Time evolution of the flavor survival probabilities [see Eq. (11)] for νe (upper subpanels) and ν̄e (lower subpanels) averaged
over z and vz for systems with point-source like perturbations [panel (a)] and random perturbations [panel (b)] with different ν̄e to νe
number density ratios α. See text in Sec. IVA for details.

(a)

(b)

FIG. 6. The final flavor survival probabilities hPeeðvzÞif
averaged over z [Eq. (12)] for the same systems shown in Fig. 5.
Nearly flavor depolarization can be reached in one side of the
νELN spectra for cases with α ≠ 1. For α ¼ 1, the entire νELN
spectra can achieve nearly flavor depolarization.
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hPeeðvzÞif gradually increase from≃0.5 to larger values for
larger (smaller) vz for α > 1 (α < 1). For the case with
α ¼ 1, i.e., symmetric in neutrinos and antineutrinos, full
flavor depolarization for the entire νELN can be achieved.
Comparing results with different perturbations, one sees
that due to the remaining large-scale coherent structures
(see, e.g., Fig. 3), systems with point-source like perturba-
tions give rise to smaller hPeeðvzÞif ≃ 0.4 in some regions
in vz < vz;c (vz > vz;c) for α > 1 (α < 1) than those with
random perturbations.
Based on our simulation results, we make a conjecture as

follows. For a system with the periodic boundary condition
in one spatial direction (while having perfect translation
symmetry in the other two directions) where interaction of
flavor waves can happen, the system can evolve to an
asymptotic state where nearly flavor equipartition can be
reached for velocity modes in one side of the νELN, when
averaged over space. In other words, when averaged over
space, the νELN crossing nearly vanishes. For such a
scenario to happen, the net neutrino e − x lepton number
conservation Le−x [see Eq. (10)] would enforce that nearly
flavor depolarization can only happen for velocity modes in
the shallower side of the νELN.
An additional remark is: comparing Figs. 5 and 6, we also

point out that althoughFig. 6 seems to suggest that a narrower
range of velocity modes in νELN distribution reaches nearly
flavor depolarization for α ¼ 0.9 than those with α > 1, on
average, more neutrinos and antineutrinos are being con-
verted. Once again, this is because the spectra gνðvzÞ and
gν̄ðvzÞ are more forward peaked. This means that although a
system with α < 1 may appears to be affected in less phase
space volume in vz, flavor conversions there can actually
have a larger impact on physical processes that are flavor
dependent in realistic astrophysical environments.

B. Evolution of different velocity modes

References [40,41] proposed that the behavior of the
system can be understood by examining the time evolution
of hPðvzÞi. From Eq. (9), one obtains

d
dt

hPðvz; tÞi ¼ hM0 × Pðvz; tÞi − vzhM1ðtÞ × Pðvz; tÞi;
ð13Þ

whereMiðz; tÞ≡
R
dvzLiðvzÞGνðvzÞPðz; vz; tÞwith LiðvzÞ

the Legendre Polynomials. The authors of Refs. [40,41]
argued that the spatial averaging of the cross products in
Eq. (13) can be approximated as the cross products of two
vectors that are spatially averaged separately,

d
dt

hPðvz; tÞi ≃ ½hM0i − vzhM1ðtÞi� × hPðvz; tÞi: ð14Þ

By doing so, the time evolution of hPðvz; tÞi may be
understood as a vector precessing around an effective

Hamiltonian vector hHðvzÞi ¼ hM0i − vzhM1ðtÞi. More-
over, the depolarization of hPðvz; tÞi happens when the
hHi⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hHi21 þ hHi22

p
roughly exceeds jhH̃i3j [41],

where hH̃i3 differs from hHi3 by a factor related to
hM2i when going to a co-rotating frame (see Ref. [40]
for details).
We carefully examine the validity of these claims. In

Fig. 7, we show in panel (a) the time evolution of jhH̃i3j
and hH⊥i for α ¼ 0.9 of vz ¼ 1 and α ¼ 1.1 of vz ¼ −1
using random perturbations as examples. Despite these
modes undergo nearly flavor depolarization, Fig. 7(a)
shows that the values of hH⊥i remain much smaller than
jhH̃i3j nearly during the whole time, in contrast to what
discussed in Ref. [41].
In panels (b) and (c) of Fig. 7, we show the evolution of

jhPðvzÞij and the relative angles θr between the two
vectors on the right-hand sides of Eqs. (13) and (14)
for ten vz modes for the case with α ¼ 1.1 with random
perturbations. Clearly, for modes with vz ≲ vz;c that reach
flavor depolarization (darker colors), i.e., jhPðvzÞij → 0,
their cos θr oscillate rapidly between −1 and 1. This
indicates that Eq. (14) is in fact not a good approximation
of Eq. (13).
In sum, our findings here suggest that the picture which

explains the late-time behavior and the depolarization of
the system proposed in Refs. [40,41] using the spatially
averaged polarization vectors needs to be revisited.

(a)

(b)

(c)

FIG. 7. Time evolution of different spatially averaged quan-
tities. See text in Sec. IV B for details.
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V. SUMMARY AND DISCUSSIONS

We have performed long-term numerical simulations of
fast collective neutrino flavor conversions for systems with
translation symmetry in two spatial (x and y) directions using
a newly developed code COSEν. Our numerical calculations
were conducted based on the finite volume method with
seventh order WENO scheme and the finite difference
methodwithKreiss-Oliger dissipation.Bothmethods showed
good capability of numerical error suppression, which allows
simulations being carried to longer than a few thousand
characteristic timescale of the system. Assuming uniform
νELN distributions in z and taking periodic boundary
conditions, we have investigated how flavor conversions
happen with different νELN spectra, controlled by the initial
ν̄e to νe asymmetric ratio parameter α, as well as how the
results depend on the chosen flavor perturbations. Our main
findings can be summarized as follows.
First, we found that for systems with point-source like

initial perturbations, flavor waves with coherent structures
can develop and propagate. With periodic boundary con-
ditions, these flavor waves can then interact and break into
smaller scale structures. When adopting perturbation seed
randomly placed in z, the flavor waves originated from
different locations can interact much faster such that no
coherent structure can be formed.
The interactions of the flavor waves lead the system to a

final state where part of the velocity space (vz) is close to
flavor depolarization when averaging over the space. For
any asymmetric system with α ≠ 1, only one side of the
νELN spectrum relative to the νELN crossing point can
reach close to an averaged flavor depolarization while
neutrinos in the other side of νELN experience less flavor
conversions, as constrained by the conservation of the net
neutrino e − x number. Specifically, for α > 1 (α < 1),
nearly flavor depolarization can be reached for vz ≲ vz;c
(vz ≳ vz;c) when the antineutrinos angular distribution are
more forward peaked than that of neutrinos. On the other
hand, for systems with α ¼ 1, the entire neutrino spectra
can reach close to averaged flavor depolarization. This
phenomenon is qualitatively similar for systems with either
point-source like or random perturbations. Quantitatively,
the developed large-scale coherent pattern in cases with
point-source like perturbations allow part of the velocity
space to have on average more flavor conversions than
perfect flavor depolarization.
Comparing our results with those reported in

Refs. [37,40,41], our results with point-source like pertur-
bations agree with [37], which, however, only evolves the
system for a shorter period of time without allowing flavor
waves to interact. On the other hand, Refs. [40,41] obtained
results nearly independent of whether the initial perturba-
tions are being point-source like or random. In fact,
behavior of random perturbations emerged in their simu-
lations using point-source like perturbations, different from
what we obtained here. One potential reason is that

Refs. [40,41] used fast Fourier transform to evaluate the
derivative terms, which might artificially generate errors of
random nature in the spatial domain. Moreover, we have
tried to verify the mechanisms proposed in Refs. [40,41] in
explaining the occurrence of the flavor depolarization.
However, our results do not support the proposed mech-
anisms and suggest that better understanding is needed.
Practically, our numerical findings may provide insights

for efforts which attempt to include the impact of fast
neutrino flavor conversions in hydrodynamical simula-
tions; e.g., [32]. For instance, if the adopted neutrino
transport scheme can provide the antineutrino-to-neutrino
asymmetry ratio and the crossing points in the νELN
spectrum, partial flavor depolarization to one end of the
νELN together with the net e − x neutrino lepton number
may be applied to the neutrino distribution functions at
where νELN crossings are identified.
Needless to say, there are still several improvements to

be made in future. For example, our simulations were
performed in reduced dimensions. How the symmetry-
breaking solutions may develop and affect our conclusions
need to be further examined. In our simulations, we have
completely omitted the vacuum and the matter terms in the
Hamiltonian, as well as the collision terms. Adding these
terms and incorporating full treatment with three neutrino
flavors may introduce new effects recently investigated in
works without advection [64–67]. Full inclusion of them
are to be implemented in future. Last but not least, the
potential impact of the many-body nature of the problem
remain to be further elucidated [68–71].
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APPENDIX A: CONVERGENCE TESTS

In this appendix, we quantify errors associated with the
resolution of our numerical simulations. As described in the
main text, our fiducial resolution is with Nz ¼ 12000 and
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Nvz ¼ 200. In panel (a) of Fig. 8, we compare the absolute

difference of hPeei between runs with different resolutions
and our fiducial case, taking α ¼ 0.9 with point-source like
perturbations. It shows that the difference of hPeei amounts
to ∼10−3 and ∼10−2, when we reduce Nvz by a factor of
2 and 4, respectively, while keeping Nz being the same. For
runs with fixed Nvz ¼ 200 but with reduced Nz ¼ 6000

and 3000, the relative differences are smaller than 10−6

and are thus not shown in the figure. This can also be
inferred by looking at the nearly identical black and red
curves, which represent the differences with ðNz; NvzÞ ¼
ð12000; 100Þ and (6000,100), respectively.
However, this does not mean that we can adopt a much

reduced resolution in Nz. In panels (b) and (c) of Fig. 8, we
show the deviation of the length of the polarization vector
from unity, averaged spatially and spectrally over gνðvzÞ,

hδjPji ¼
Z

dzdvzgνðvzÞðjPðz; vzÞj − 1Þ=
Z

dzdvzgνðvzÞ;

ðA1Þ

and the maximal deviation of the length of the polarization
vectors in the entire simulation domain ðδjPjÞmax. Both
panels clearly show that the errors are mostly depending
on the resolution in Nz. For our fiducial case with

ðNz; NvzÞ ¼ ð12000; 200Þ, the associated errors in hδjPji
and ðδjPjÞmax are smaller than 10−8 and 10−5, respectively,
for α ¼ 0.9 with point-source like perturbations. For all of
our simulations with different α and different perturbation
seeds, we obtain hδjPji < 10−4. For ðδjPjÞmax, all cases have
ðδjPjÞmax < 10−2 except for α ¼ 1.2 and 1.3 with point-
source like perturbations, for which their ðδjPjÞmax reach
Oð1Þ by the end of the simulation. We note, however, that
demanding ðδjPjÞmax ≪ 1 may not be a practical conver-
gence criterion because ðδjPjÞmax is usually associated with
the grids with largest jvzj, which has minor contribution to
the Hamiltonian and the averaged quantities. In fact, we have
compared the errors in the averaged quantities for all cases
with lowered resolutions (Nz ¼ 6000) and confirmed that all
the averaged quantities agree within 5 × 10−3.

APPENDIX B: RESULTS USING DIFFERENT
NUMERICAL SCHEMES

In this appendix, we compare our results obtained with
two different numericalmethods described in Sec. II C. Panel
(a) of Fig. 9 shows the difference of hPeei between the
run using the finite volume method with the seventh

(a)

(b)

(c)

FIG. 8. Panel (a) Difference in hPeei between runs using
different ðNz; NvzÞ and hPeei0 obtained with ðNz; NvzÞ ¼
ð12000; 200Þ with α ¼ 0.9 and point-source like perturbations.
Panels (b) and (c) Evolution of hδjPji and ðδjPjÞmax with different
simulation resolutions.

(a)

(b)

(c)

FIG. 9. Comparison of the same quantities as those in Fig. 8 for
simulations with α ¼ 0.9 and point-source like perturbations,
using the finite volume method with the seventh order WENO
scheme (FVþWENO) and the finite difference method supplied
by the third-order Kreiss-Oliger dissipation term (FDþ KO3).
Note that in panels (b) and (c), we show additionally the
quantities derived using the finite difference method only without
dissipation (FD only).
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orderWENO scheme (FVþWENO) and that with the finite
difference method supplied by the third-order Kreiss-Oliger
dissipation term (FDþ KO3), for α ¼ 0.9 with point-
source like perturbations and our fiducial resolution of
ðNz; NvzÞ ¼ ð12000; 200Þ. One sees that the differences
are smaller than 10−5 throughout the whole time. Panels
(b) and (c) of the same figure show once again hδjPji and
ðδjPjÞmax. Here, we see that although both quantities remain
much smaller than one with either the FVþWENO or the

FDþ KO3 scheme, the FVþWENO scheme gives rise to
errors much smaller than those using FDþ KO3 scheme. In
addition, we show values of hδjPji and ðδjPjÞmax using
simply the finite difference method without applying any
error suppressionmechanisms (FDonly) in panels (b) and (c)
of Fig. 9. It shows clearly that both our FVþWENO and
FDþ KO3 schemes help suppress numerical errors in hδjPji
by more than 2 orders of magnitudes for this particular
parameter set.
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