
Many-body effects of collective neutrino oscillations

Zewei Xiong (熊泽玮)
*

GSI Helmholtzzentrum für Schwerioneneforschung, 64291 Darmstadt, Germany

(Received 31 October 2021; accepted 15 April 2022; published 2 May 2022)

Collective neutrino oscillations are critical to determine the neutrino flavor content, which has striking
impacts on core-collapse supernovae or compact binary merger remnants. It is a challenging many-body
problem that so far has been mainly studied at the mean-field approximation. We use a setup that captures
the relevant physics and allows exact solution for a large number of neutrinos. We find that quantitative
deviation from the mean-field evolution can exist even for a large system. The underlying mechanism due
to many-body decoherence in flavor space is analyzed, and similar features have been observed in a spin-1
Bose-Einstein condensate. Our results call for more careful examinations on the possible many-body
corrections to collective neutrino oscillations in astrophysical environments.
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I. INTRODUCTION

Dense astrophysical environments such as core-collapse
supernovae and neutron-star mergers provide unique labo-
ratories to probe rich phenomena of neutrino oscillations
and its flavor evolution. The neutrino flavor content
determines the impact of charged-current reactions, as they
mainly involve νe and ν̄e in the astrophysical environment.
Large neutrino fluxes emitted from the protoneutron star, in
the case of supernovae, or from the hypermassive neutron
star remnant, in the case of mergers, not only provide
heating and cooling mechanisms on the ejecta, but also alter
the nucleosynthesis by determining the neutron-to-proton
ratio [1–10]. Additionally, the flavor ratio is a key observ-
able for the next Galactic supernova event [11–14].
Neutrino oscillations in vacuum and ordinary matter are

well established by experiments with solar, atmospheric,
reactor, and accelerator [15]. In addition, neutrinos propa-
gating in a dense neutrino gas undergo coherent forward
scattering among each other. This refractive effect leads to
various behaviors of collective flavor oscillations including
slow flavor instability [16–20], fast flavor instability [21–
31], and matter-neutrino resonance [32–34].
While most of the above manifestations have been

studied at the mean-field approximation, we know that
neutrinos constitute a many-body quantum gas affected by
many-body entanglement. Exact solutions involving few
neutrinos have become available in the past decade [35–
39]. The main obstacle placed on those studies is, however,
the drastically increasing many-body Hilbert state space for
a multi-spin-like system with total particle number N,
which goes as ∼OðeNÞ, considering that we are more

interested in the time evolution of the whole system rather
than the behaviors of the ground state and a few excited
states. A variety of efforts have been devoted to surmount
this exponential barrier [40–43]. Those approaches provide
encouraging progress, but none of them at the moment
shows a convergence to the properties of the infinite
system. This drawback could be due to the limited number
of neutrinos considered: N ≲ 20. Tensor network methods
[44,45] can provide an alternative to study larger-scale
systems and understand the thermodynamic limit; however,
at the moment they are still limited to ∼Oð100Þ neutrinos.
The analytical scheme of a simplified oscillation model
based on the analogous of angular-momentum representa-
tion in Refs. [46,47] is able to handle a large system, but it
is restricted to a two-beam setup, i.e., neutrinos moving in
two different directions, without the one-body vacuum
term. In this setup, they can take advantage of the fact that
the total projected flavor isospin commutates with the
Hamiltonian and solve the evolution equation analytically,
but it does not allow any mean-field flavor instability with
exponentially growing modes, so only flavor conversion
occurring in a timescale of ∼Oð ffiffiffiffi

N
p Þ was discovered.

Following those pioneering works, we propose a new
method that generalizes the angular-momentum scheme in
a simple and efficient numerical way for setups that allow
exponentially growing flavor instabilities in the mean-field
level. We mainly focus on two-beam slow flavor instability
with zero vacuum mixing angle and show that the flavor
evolution qualitatively converges to a bipolar motion. This
two-beam setup is the minimal nontrivial configuration that
captures the property of bipolar motion, which is the crux
of collective neutrino flavor instabilities.
We reveal a many-body effect leading to decoherence in

the flavor evolution that quantitatively deviates from mean-
field predictions even for a large system with the number of*z.xiong@gsi.de
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neutrinos ∼Oð106Þ. We discuss an extension to more
beams and nonzero vacuum mixing angle for other flavor
instabilities. We also point out the similar features shared
with other many-body systems and discuss the potential
experimental explorations.

II. METHOD

Although collective neutrino oscillations are three-flavor
phenomena [48–51], we consider, for simplicity, two
neutrino flavors: electron neutrinos νe and heavy-lepton
neutrinos νx. The Hamiltonian describing oscillations is

H ¼
XN
k¼1

ωkB · τk þ λτzk
2

þ
XN
i<j

μJij
2N

ðτi · τj þ 1i1jÞ; ð1Þ

where ωk ¼ Δm2=2Ek is the vacuum oscillation frequency
in terms of mass-square difference Δm2 and energy Ek
for the kth neutrino, τ is the Pauli matrix operating in
flavor space, 1 is an identity matrix, λ ¼ ffiffiffi

2
p

GFne is the
effective potential with matter, GF is the Fermi constant,
ne is the net electron number density, μ ¼ ffiffiffi

2
p

GFN=V
represents the neutrino self-interaction strength, N is
the conserved neutrino number in a volume of V, and
Jij is the two-body coupling coefficient between the ith
and jth neutrinos. The vacuum mixing vector B is
ðsin 2θV; 0;− cos 2θVÞ in normal mass hierarchy or
ð− sin 2θV; 0; cos 2θVÞ in inverted mass hierarchy with
the vacuum mixing angle θV . Despite the all-to-all inter-
acting nature of the self-scattering term, this Hamiltonian is
similar to a Heisenberg model. The two-body operator in
the self-scattering term can be rewritten as

τi · τj þ 1i1j ¼ ð1i1j þ τzi τ
z
jÞ þ 2τþi τ

−
j þ 2τ−i τ

þ
j ; ð2Þ

where τ� ¼ ðτx � iτyÞ=2 are the ladder operators. The first
two terms only contribute a phase, while the other two lead
to the particle exchange between νe and νx.
In our model, the neutrinos are divided into two beams

with all νe in beam A and νx in beam B at the initial time.
Those neutrinos in the same beam move in almost the same
velocity and share the same vacuum oscillation frequency
ωI , where I ¼ A, B. The neutrino number of each beam nI
is conserved, and the initial total wave function is given as a
Slater determinant corresponding to the state with maxi-
mum flavor isospin. As the system evolves, the flavor
isospin for each beam is conserved and, hence, is conven-
ient to work in a flavor isospin representation.
We denote the total flavor isospin of both beams TA ¼

nA=2 and TB ¼ nB=2 as well as the projection mA ¼ nA=2
and mB ¼ −nB=2. The total flavor isospin projection is
defined as M ¼ mA þmB ¼ ðnA − nBÞ=2. At large matter
densities, the effective mixing angle is highly suppressed,
so the first component of B is negligible. Assuming inverse
mass hierarchy, the Hamiltonian becomes

H ¼ ω0
Aτ

z
A þ ω0

Bτ
z
B

2
þ μJAB

2N
ðτA · τB þ nAnBÞ; ð3Þ

where ω0
I ¼ ωI þ λ and τI ¼

P
i∈I τi. Given that the choice

of beam velocities in the two-beam model effectively
changes only the self-interaction strength, we take JAB ¼
1 in the following discussion.
This Hamiltonian conserves the total isospin projection.

As a result, the evolving wave function is a linear
combination of many-body states with all possible νe-νx
pair-exchange numbers p, such as mA ¼ nA=2 − p and
mB ¼ p − nB=2. Hence, we can characterize the states by
the number p: jpi≡ jTA;mAi ⊗ jTB;mBi; and the wave
function is written as jΨðtÞi ¼ Ppmax

p¼0 apðtÞjpi, with the
maximal pair-exchange number pmax ¼ minðnA; nBÞ and
the time-dependent amplitude apðtÞ.
Since the Hamiltonian of Eq. (3) can connect only many-

body states differing by zero or one pair-exchange number,
the evolution is determined by solving the equations of
motion (EOM):

i∂tap ¼ i∂thpjΨi ¼
Xpmax

p0¼0

hpjHjp0ihp0jΨi

¼ Hp−1
p ap−1 þ ðHð1Þ

p þHp
pÞap þHpþ1

p apþ1; ð4Þ

where the contribution from the two-body operator is

Hp−1
p ¼ μ

N
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnA − pþ 1ÞðnB − pþ 1Þ

p
;

Hp
p ¼ μ

N
½pðnA − pÞ þ pðnB − pÞ�;

Hpþ1
p ¼ μ

N
ðpþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnA − pÞðnB − pÞ

p
ð5Þ

and the contribution from the one-body operator is

Hð1Þ
p ¼ −2δωpþ ðnAω0

A − nBω0
BÞ=2; ð6Þ

with δω ¼ ðωA − ωBÞ=2. The second term in the one-body
operator is a constant independent of p that contributes
only to the diagonal and, hence, does not affect the
evolution.
Once the amplitudes for all many-body states are known,

we can calculate the associated physical observables. The
averaged electron flavor fraction in each beam is deter-
mined as

PA ¼
Xpmax

p¼0

�
1 −

p
nA

�
japj2; PB ¼

Xpmax

p¼0

p
nB

japj2; ð7Þ

respectively. To illustrate the difference between mean-field
and the exact solution, we use two different measures: the
pair correlation and entanglement entropy. We define the
pair correlation for beam A as
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CAA ¼ hΨj
�

τzA
2nA

þ 1

2

�
2

jΨi − P2
A

¼ −P2
A þ

Xpmax

p¼0

�
1 −

p
nA

�
2

japj2 ð8Þ

and similar definitions for CBB and CAB. The von Neumann
entanglement entropy

S ¼ −
Xpmax

p¼0

japj2log2japj2 ð9Þ

is independent of the beam.
The mean-field approximation assumes negligible cor-

relation between two neutrinos, i.e., hτi · τji ¼ hτii · hτji.
Then, it is enough to evolve the single-particle density
matrix for the ith neutrino, ϱðiÞ, using the mean-field

EOM: i∂tϱ
ðiÞ ¼ ½HðiÞ

MF;ϱ
ðiÞ�, where HðiÞ

MF ¼ ðωi þ λÞτz=2þ
ðμ=NÞPN

j≠i Jijϱ
ðjÞ. For our two-beam setup, nonvanishing

oscillations in the averaged flavor fraction, so-called
flavor instabilities, appear whenever ðnA=N − 1=2Þ2 þ
ðδω=μ − 1=2Þ2 < 1=4 [52].

III. MANY-BODY FLAVOR EVOLUTION

We solve the EOM in Eq. (4) for four choices of
δω=μ ¼ 0, 1=4, 1=2, and 1 in equal-partition (nA ¼ N=2)
and νe-dominant (nA ¼ 3N=4) cases, respectively. The
total neutrino number is N ¼ 1000. Figure 1 shows the
evolution of the averaged electron flavor fraction PA.
Consistent with the mean-field instability analysis, for both
equal-partition and νe-dominant cases, significant flavor
oscillations occur for δω=μ ¼ 1=4 and 1=2. In the νe-
dominant case, the parameters δω=μ ¼ 0 and 1 do not

satisfy the unstable condition, and there is almost no flavor
transition. The equal-partition case for δω=μ ¼ 1 is at the
edge of instability region, so the flavor conversion is
strongly suppressed and will further decrease with increas-
ing system size. An exception in equal-partition setup is
that a large flavor transition is found when δω=μ ¼ 0. This
is the same instability reported in Ref. [46], where the
transition timescale was shown to scale with the number of
neutrinos as ∼Oð ffiffiffiffi

N
p Þ. Hence, it does not occur for a

macroscopic neutrino gas.
The square root of pair correlation

ffiffiffiffiffiffiffiffi
CAA

p
, i.e., the

standard deviation of flavor fraction, is shown by the light
bands around curves of PA in Fig. 1. The correlation
remains zero when there is no flavor instability but can be
gradually enhanced in unstable cases.
To explore the dependence with number of particles of

the oscillation amplitude, its convergence, and the behavior
of the pair correlation, we examine cases with different
numbers of neutrinos N for δω=μ ¼ 1=4 and nA ¼ N=2.
The upper panel in Fig. 2 shows PA and

ffiffiffiffiffiffiffiffi
CAA

p
for

N ¼ 400, 2000, 1.2 × 104, 6 × 104, and 3 × 105. The
flavor evolution follows a bipolarlike motion with a lower
value for the averaged electron flavor fraction at each cycle
that is independent of the number of particles considered
and an upper value that approaches PA ¼ 1 with an
increasing number of particles. The maxima of the flavor
transition probability are associated with maxima in the
pair correlation and entanglement entropy. The entangle-
ment entropy reaches a maximal value slightly less than
∼ log2N, which is the maximal entropy with equal partition
in pmax þ 1 many-body states. Although the flavor fraction
is very close to one after each cycle, the entropy remains

FIG. 1. Evolution of averaged electron flavor fraction PA (solid
curves) for various δω=μ and nA=N when N ¼ 1000. The light
band of each color is plotted between PA � ffiffiffiffiffiffiffiffi

CAA
p

=2 to indicate
the many-body uncertainty.

FIG. 2. Evolution of PA (red curves),
ffiffiffiffiffiffiffiffi
CAA

p
(green curves), and

entanglement entropy S (blue curves) for different particle
numbers N ¼ 400–3 × 105 (solid curves from dark to light).
The minima and maxima of PA in the first three cycles and
maxima of

ffiffiffiffiffiffiffiffi
CAA

p
in the first two cycles for each case are labeled

by blue cross markers and linked by blue dotted lines.
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finite, and the system does not return back to its mean-field
initial state. The amount of disorder increases after
each cycle.
Another important characteristic is the timescale at

which flavor instability develops. We make function fitting
on the timescales to reach first minimum of flavor fraction
PA and first maximum of entanglement entropy S with
respect to the particle number in the system. Figure 3 shows
how the timescales grow as particle number N increases as
well as the fitting result. Three functions are used: f1¼
a

ffiffiffiffi
N

p þblogNþc, f2¼a
ffiffiffiffi
N

p þc, and f3¼blogNþc. The
fitting result is strongly in favor of logarithmic dependence,
consistent with the prediction from Ref. [44].
This logarithmic dependence is associated with the

quantum effect initiating the evolution in the absence of
vacuum mixing in Refs. [53,54]. We compare in Fig. 4 the
evolution histories from both mean-field and many-body
calculations for a large system of N ¼ 3 × 105. A corre-
lation band similar as in Fig. 1 is plotted around the many-
body result. In mean-field calculation, we assign initial
perturbations on the off-diagonal elements of density
matrix ϱex ¼ 10−3 for neutrinos in beam A and ϱex ¼ffiffiffi
3

p
× 10−3i in beam B to trigger the flavor conversion. The

diagonal elements of the density matrix are adjusted

accordingly for the normalization. No artificial perturbation
is assigned for the many-body case. Both many-body and
mean-field calculations show a similar exponential growth
in the linear regime and a bipolar motion later, but the
decoherence effects in the many-body calculation lead to a
decrease in the amplitude and a growth in the entanglement.
The many-body effect to initiate the evolution can also

be understood in terms of the quantum uncertainty of our
initial flavor isospin state jTA;mAi for beam A. This state
has well-defined total flavor isospin T2 ¼ nAðnA þ 2Þ=4
and its projection along the z direction in flavor space
Tz ¼ mA ¼ nA=2, but there resides uncertainty on the other
directionsΔTx ∼ ΔTy ∼

ffiffiffiffiffi
nA

p
, which can be mimicked by a

perturbation of ΔTx=Tz ∼ 1=
ffiffiffiffi
N

p
in the mean-field picture.

This uncertainty is not captured by the mean-field
solution, because the mean-field flavor isospin has a
well-defined orientation characterized by a three-compo-
nent vector analogous to a pendulum [17,18]. Once the
pendulum gets perturbed from pointing to the top of the
flavor isospin sphere, it undergoes bipolar motion periodi-
cally by swing down and returning back to the original level
in each cycle. A small shift on the azimuthal angle of the
initial state for the pendulum from W1 to W3 in Fig. 5 can
lead to completely different trajectories near the equatorial
region. Moreover, given the exponential increasing essence
of bipolar motion in the linear regime, a small differ-
entiation on the zenith angle between W1 and W5 can be
enhanced significantly from high to low latitude.
The quantum counterpart of flavor isospin can spread

over more orientations and many-body states so that the
system does not undergo the classical bipolar motion as
depicted by the archetypal pendulum. Although the uncer-
tainty of ΔTx=Tz in the initial state is suppressed with
increasing particle number N, it can result in a huge

FIG. 3. The particle number dependence of the time to reach the
first minimum of PA (black dots in the upper panel), the first peak
of S (black dots in the lower panel), and the second peak of S
(gray dots in the lower panel). Black points correspond to
N ¼ 16, 24, 32, 48, 64, 96, 128, 200, 400, 800, 2000, 4000,
8000, 1.2 × 104, 2 × 104, 3 × 104, 4 × 104, 6 × 104, 105,
1.4 × 105, 2 × 105, and 3 × 105, respectively. Three functions
of logN (green curves),

ffiffiffiffi
N

p
(blue curves), and their mixture (red

curves) are used to fit the black dots in both panels. Best-fitted
coefficients as well as the coefficient of determination R2 are
listed in the legend.

FIG. 4. Comparison of PA from mean-field evolution with the
many-body result for N ¼ 3 × 105, nA ¼ N=2, and δω=μ ¼ 1=4.
Mean-field calculation is started with an initial perturbation of
∼10−3 on ϱex. The light band is similar to that in Fig. 1.
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uncertainty with respect to the azimuthal angle in
flavor space especially when the state is closer to the
top of the flavor isospin sphere. It also results in an
uncertainty for the zenith angle of the relative orientation
between the flavor isospin in beam A and that in beam B.
Therefore, the evolution of many-body state does
not follow any specific trajectory in mean-field approxi-
mation but in a more spreading and entangled way. This
spreading purely originated from the many-body aspect
leads to the deviation of flavor evolution and eventually the
decoherence.

IV. SUMMARY AND OUTLOOK

We have developed a numerical scheme to implement the
slow flavor instability in a two-beam model with zero
vacuum mixing. This method can be generalized in the
applications with several more angular beams for fast flavor
conversion [55] or including a nonzero vacuum mixing in
the case of matter-neutrino resonance. It can be inferred that
the total number of many-body bases goes dominantly in a
power law, Nbases ∼ ðN=NbeamÞNbeam−1, of the number of
beams Nbeam. A nonzero vacuum mixing brings in an extra
degree of freedom and effectively increases Nbeam by one.
ForNbases ¼ 107 with a zero vacuummixing angle, the total
number of neutrinos in models with three beams, four
beams, and five beams are ∼104, 900, and 300, respec-
tively, much higher than the system of ≈23 neutrinos that
has the same size of state space.
This many-body decoherence is sensitive to assumptions

on the initial states. A nonzero vacuum mixing can
attenuate the distinction between the mean-field and
many-body solutions when the uncertainty of flavor isospin
1=

ffiffiffiffi
N

p
is less than the angle of initial state to the mass

eigenstate [56]. In this case, the azimuthal uncertainty goes

to zero in the limit of infinite flavor isospins, and this
neutrino quantum system reduces back to classical. On the
other hand, this attenuation also depends on the specific
astrophysical conditions such as the effective mixing angle
in the presence of matter density, the number of neutrinos
overlapping in wave packets, and collisions that relax them
to approach back to a flavor eigenstate. In addition, the
initial state we use in this paper is a mean-field state, but
neutrinos that propagate in almost the same velocity can
have a relatively longer time to overlap on the wave packets
and build up entanglement even before reaching into a
region where the flavor instability can be triggered. The
pre-existing entanglement potentially promotes many-body
decoherence and changes the outcome from the mean-field
prescription. Although the consequence for a more realistic
neutrino energy and angular distribution remains uncertain
and requires more following studies, any nonvanishing pair
correlations and entanglements due to this decoherence
may bring in non-negligible corrections to the neutrino
flavor content in astrophysical environments.
The many-body effect for neutrino oscillations can be

potentially linked to other physics systems with dynamic
phase transition. Similar features of bipolar evolution and a
rapid decoherence associated with the quantum pendulum
in our results have also been observed in a spin-1 Bose-
Einstein condensate [57]. These resemblances indicate a
fundamental connection in physics and open the possibility
of studying collective neutrino flavor phenomena in the
laboratory.
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Note added.—A two-beam model including nonzero flavor
mixing was recently reported in Ref. [56]. While they find
that in the limit of infinite flavor isospins the mean-field
and many-body solutions from an initial mean-field state
(product state) coincide for simple observables, they also
observe deviations when the mixing angle and system size
meet certain requirements.

FIG. 5. Schematic diagrams for bipolar motions in the upper
hemisphere of flavor isospin at mean-field approximation and
with many-body uncertainty. In the left panel, the mean-field
flavor isospin starting from point W1, W3, or W5 will end up
being at pointW2,W4, orW6, respectively. In the right panel, the
many-body uncertainty near the top (upper gray ring) leads to
decoherence in both the azimuthal and zenith directions (lower
gray ring).
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