
Evaluating approximate asymptotic distributions for fast neutrino flavor
conversions in a periodic 1D box

Zewei Xiong ,1,* Meng-Ru Wu ,2,3,4 Sajad Abbar,5 Soumya Bhattacharyya ,2 Manu George,2 and Chun-Yu Lin 6

1GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
2Institute of Physics, Academia Sinica, Taipei 11529, Taiwan

3Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan
4Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan

5Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),
Föhringer Ring 6, D-80805 München, Germany

6National Center for High-performance Computing, National Applied Research Laboratories,
Hsinchu 30076, Taiwan

(Received 20 July 2023; accepted 17 August 2023; published 5 September 2023)

The fast flavor conversions (FFCs) of neutrinos generally exist in core-collapse supernovae and binary
neutron-star merger remnants and can significantly change the flavor composition and affect the dynamics
and nucleosynthesis processes. Several analytical prescriptions were proposed recently to approximately
explain or predict the asymptotic outcome of FFCs for systems with different initial or boundary
conditions, with the aim for providing better understandings of FFCs and for practical implementation of
FFCs in hydrodynamic modeling. In this work, we obtain the asymptotic survival probability distributions
of FFCs in a survey over thousands of randomly sampled initial angular distributions by means of
numerical simulations in one-dimensional boxes with the periodic boundary condition. We also propose
improved prescriptions that guarantee the continuity of the angular distributions after FFCs. Detailed
comparisons and evaluation of all these prescriptions with our numerical survey results are performed. The
survey dataset is made publicly available to inspire the exploration and design for more effective methods
applicable to realistic hydrodynamic simulations.
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I. INTRODUCTION

A great amount of neutrinos are produced in dense
astrophysical environments such as core-collapse super-
novae (CCSNe) and the remnants of binary neutron-star
mergers (BNSMs). Their fluxes are so intense that the
coherent forward scattering among those neutrinos can lead
to significant changes in their flavor content through the
collective flavor instabilities, particularly the fast flavor
conversion (FFC; see, e.g., [1–6] for reviews) at the vicinity
of the cores of CCSNe and accretion disks of BNSMs,
which can play important roles in the dynamics and the
nucleosynthesis of those environments [7–17].
FFC happens when the angular distribution of the

neutrino lepton number between any two distinct flavors
takes both positive and negative values simultaneously
[18] with the transition points often dubbed as “zero
crossings.” Given that the multidimensional simulations
usually provide only the angular moments instead of the
full distributional information, various approximate or

parametric methods were adopted [19–26] and found the
existence of FFC near or even inside the neutrinosphere in
CCSNe [22,27–36] as well as ubiquitously in the post-
merger remnants of BNSMs [25,37].
The spatial and temporal scales associated with the

development of the fast flavor instability can be in sub-
centimeters and subnanoseconds, much shorter than the
typical scales considered in the hydrodynamical simula-
tions for CCSNe and BNSMs. This naturally brings up a
challenge to incorporate FFC into the hydrodynamical
simulations. To overcome this challenge, one possible
solution is to decompose this problem into two scale
hierarchies: performing the local dynamical simulations
at a small scale and summarizing with useful parametric
prescriptions that can be applied to the hydrodynamic
simulation more efficiently.
The outcome of FFCs has been extensively studied based

on local dynamical simulations in tiny boxes with a
periodic boundary condition [38–49] and may be affected
by adopting a different boundary condition [50]. These
studies suggest that the flavor conversions undergo the
kinematic decoherence in general [20,40,51–53] and reach
asymptotically to quasistationary states achieving complete*z.xiong@gsi.de

PHYSICAL REVIEW D 108, 063003 (2023)

2470-0010=2023=108(6)=063003(15) 063003-1 © 2023 American Physical Society

https://orcid.org/0000-0002-2385-6771
https://orcid.org/0000-0003-4960-8706
https://orcid.org/0000-0001-5331-4597
https://orcid.org/0000-0002-7489-7418
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.063003&domain=pdf&date_stamp=2023-09-05
https://doi.org/10.1103/PhysRevD.108.063003
https://doi.org/10.1103/PhysRevD.108.063003
https://doi.org/10.1103/PhysRevD.108.063003
https://doi.org/10.1103/PhysRevD.108.063003


or partially flavor equilibration as allowed by the con-
servation of neutrino lepton number [51,54], when coarse
grained over the box size.
An early attempt to obtain an analytical description on

the asymptotic distribution was made in a homogeneous
neutrino gas [55], and a growing number of schemes have
been recently proposed for the local simulations allowing
the advection of neutrinos inside the box [40,45,49]. Those
methods often contain an artificial discontinuity for the
survival probability distribution near the zero crossing,
which is further passed to the asymptotic angular distri-
butions of neutrino number densities. In this paper, we
propose new prescriptions by imposing a continuous
transition at the zero crossing and performed numerical
FFC simulations for ∼Oð8000Þ systems with randomly
sampled initial angular distributions that cover the major
parameter space for FFCs to occur near the neutrino
decoupling regions. For each prescription, we compare
the predicted asymptotic angular distributions after FFC
with those obtained by numerical simulations and evaluate
in detail their performance using different metrics of errors.
Our improved prescriptions of the asymptotic distributions
not only predict the angular moments in the asymptotic
state more accurately, but also can be directly implemented
in the discrete-ordinate neutrino transport with the advec-
tion on a large scale [56–60].
We describe the simulation setup over thousands of

parameter sets in Sec. II. We present various analytical
prescriptions to determine the asymptotic distributions
with and without continuous transitions at the zero cross-
ing in Sec. III. The results of the performance evaluation
for those asymptotic prescriptions are presented in Sec. IV.
Finally, we provide our discussions and conclusions in
Sec. V. We adopt natural units (ℏ ¼ c ¼ 1) throughout
the paper.

II. SURVEY OF SIMULATIONS

A. Equation of motion

We use the code COSEν [61] to evolve the FFCs in a
similar setup of one-dimensional (1D) box as described in
Ref. [41] assuming translation symmetry in the x and y
directions, axial symmetry around the z axis, and periodic
boundary condition in the z direction. We consider in the
simulation that the oscillations start from electron flavor
νe (ν̄e) initially and can be converted to one heavy-lepton
flavor νx (ν̄x).

1 We neglect the vacuum mixing and
neutrino-matter forward scattering. Although it is reported
that the so-called collisional flavor instability induced by
neutrino emission and absorption may interplay with the
FFC [62–68], we neglect all collisional processes in the
1D-box setup that we consider. The equation of motion

(EOM) for the normalized neutrino (antineutrino) density
matrix ϱ (ϱ̄) is given by

ð∂t þ vz∂zÞϱðt; z; vzÞ ¼ −i½Hðt; z; vzÞ; ϱðt; z; vzÞ�;
ð∂t þ vz∂zÞϱ̄ðt; z; vzÞ ¼ i½H�ðt; z; vzÞ; ϱ̄ðt; z; vzÞ�; ð1Þ
with the Hamiltonian of coherent forward scattering at
specific t and z,

HðvzÞ ¼ μ

Z
1

−1
dv0zð1 − vzv0zÞ½gνðv0zÞϱðv0zÞ − gν̄ðv0zÞϱ̄�ðv0zÞ�;

ð2Þ

where μ ¼ ffiffiffi
2

p
GFnνe , GF is the Fermi constant, nνe is the

number density for νe, and gν (gν̄) is the initial angular
distribution for νe (ν̄e) as a function of the projected
velocity vz. The distribution gν for νe is normalized with
the zeroth moment Iν ¼

R
1
−1 dvzgνðvzÞ ¼ 1. The zeroth

moment for ν̄e, Iν̄ ¼
R
1
−1 dvzgν̄ðvzÞ ¼ nν̄e=nνe , indicates

whether the condition is νe- or ν̄e-dominant. The angular
distribution of neutrino electron lepton number (νELN),

GðvzÞ ¼ gνðvzÞ − gν̄ðvzÞ; ð3Þ
determines the existence of fast flavor instability.
Without explicitly including the vacuum mixing in the

EOM, we trigger the FFC by seeding random perturbations
in the initial condition

ϱeeðz; vzÞ ¼ ϱ̄eeðz; vzÞ ¼
h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2ðzÞ

q i
=2;

ϱxxðz; vzÞ ¼ ϱ̄xxðz; vzÞ ¼
h
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2ðzÞ

q i
=2;

ϱexðz; vzÞ ¼ ϱ̄exðz; vzÞ ¼ ϵðzÞ=2; ð4Þ
where a real number ϵ is randomly assigned for each z and
follows a uniform distribution between 0 and 10−2.

B. Setup and parameters

We consider two types of initial angular distributions.
The first one is described by a Gaussian function [69]

gνðν̄ÞðvzÞ ∝ exp
h
−ðvz − 1Þ2=ð2σ2νðν̄ÞÞ

i
; ð5Þ

and the second one is obtained from maximum-entropy
closure [25]

gνðν̄ÞðvzÞ ∝ exp½vz=σνðν̄Þ�: ð6Þ
For both types, σνðν̄Þ is a parameter associated with the
neutrino (antineutrino) flux factor, i.e., the ratio between
the first and zeroth angular moments,

Fνðν̄Þ ¼
Jνðν̄Þ
Iνðν̄Þ

; ð7Þ1The effects of heavy-lepton flavor neutrinos in the initial
condition will be discussed in Sec. IV D.
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where Jνðν̄Þ ¼
R
1
−1 dvzvzgνðν̄ÞðvzÞ. For both types, since the

zeroth moment of νe is normalized, the initial angular
distributions can be uniquely determined by three param-
eters: Iν̄, Fν, and Fν̄.
We choose these three parameters in the following way.

First we randomly assign Iν̄ and Fν̄ following uniform
distributions ranging from 0.5 to 1.6 and from 0.3 to 0.9,
respectively. We take the lower limit for Fν̄ as 0.3 for our
survey. This is because a smaller flux factor implies more
isotropic neutrino angular distribution generally obtained
near the neutrino optically thick region associated with
higher density and temperature. Under those conditions, the
highly degenerate electrons leads to a large neutrino
chemical potential of electron flavor so that gν dominates
over gν̄ in the whole vz range, i.e., the fast flavor instability
is less likely to occur for Fν̄ ≲ 0.3. We also do not consider
flux factor higher than 0.9 because neutrinos become
highly collimated toward one direction and may not be
well captured with the angular resolution in the current
setup. We then randomly assign Fν in a uniform distribu-
tion from ∼0.65Fν̄ to minð0.9; 1.6Fν̄Þ where “min” stands
for the minimum function. This constraint is to avoid the
situation where either νe or ν̄e has much larger flux factor
than the other, which usually does not occur in realistic
systems because the decoupling regions of νe or ν̄e are not
very far apart.
If a zero crossing at vc whereGðvcÞ ¼ 0 exists, we adopt

this parameter set and perform the simulation in a periodic
1D box using the corresponding initial angular distribu-
tions. Otherwise, this parameter set is rejected, and we
continue to generate new parameters. In all simulations,
the number of spatial grids is Nz ¼ 6000. The size of the
1D box is Lz ¼ 1200 μ−1. We adopt the finite volume
method as well as the seventh-order weighted essentially
nonoscillatory scheme.
We repeat the same procedure above until 8000 param-

eter sets are adopted for the Gaussian-type distributions
with zero crossings. In each parameter set we take two
different angular resolutions withNvz ¼ 50 andNvz ¼ 100.
For the maximum-entropy distributions we use the same
parameter sets of Iν̄, Fν, and Fν̄ as in the Gaussian type.
We further exclude those not having any zero crossings in
the maximum-entropy type, which reduces the size of the
sample to 7668 parameter sets for this case.

C. Determination of the asymptotic distributions

During the simulation of each set of initial angular
distributions, the space-averaged survival probabilities
for νe and ν̄e at each t are defined as

hϱeeizðvzÞ ¼
1

L

Z
dzϱeeðz; vzÞ;

hϱ̄eeizðvzÞ ¼
1

L

Z
dzϱ̄eeðz; vzÞ; ð8Þ

respectively. The overall space-averaged survival proba-
bilities are

hPeei ¼
Z

1

−1
dvzgνðvzÞhϱeeizðvzÞ

�Z
1

−1
dvzgνðvzÞ;

hPē ēi ¼
Z

1

−1
dvzgν̄ðvzÞhϱ̄eeizðvzÞ

�Z
1

−1
dvzgν̄ðvzÞ; ð9Þ

respectively.
In the presence of the initial perturbation, both hPeei

and hPē ēi start from values very close to 1 and decrease
under the fast flavor instability until reaching the
first minimum point. They bounce back, but do not
return to 1. Instead, they enter into a ringdown phase
with gradually damped oscillation amplitude and eventu-
ally approach asymptotic values [see, e.g., Fig. 5(b)
in Ref. [41]].
We take a practical approach to determine whether the

system has reached the asymptotic state as follows. For
each simulation, we record the times when hPeei reaches
the first and second minima as t1 and t2, respectively,
and define ΔT ¼ t2 − t1. Then, we end the simulation at
tf ¼ t2 þ NtΔT with Nt ¼ 20 to cover roughly Nt more
periods during the ringdown phase. Because hϱeeizðvzÞ
and hϱ̄eeizðvzÞ may still fluctuate in time at the end of
the simulation, we compute the time-averaged survival
probabilities,

PeeðvzÞ ¼
1

ΔT

Z
tf

tf−ΔT
dthϱeeizðt; vzÞ;

Pē ēðvzÞ ¼
1

ΔT

Z
tf

tf−ΔT
dthϱ̄eeizðt; vzÞ; ð10Þ

over the last time interval of ΔT as our final data outputs.
Since Eqs. (1) and (2) imply the relation that

ϱeeðt; z; vzÞ ¼ ϱ̄eeðt; z; vzÞ and PeeðvzÞ ¼ Pē ēðvzÞ, the
time- and space-averaged angular distributions after the
FFCs can be computed as g̃νeðvzÞ ¼ gνðvzÞPeeðvzÞ and
g̃ν̄eðvzÞ ¼ gν̄ðvzÞPeeðvzÞ accordingly. It follows that the
zeroth and first moments for νe (ν̄e) after the FFCs
are Ĩνeðν̄eÞ ¼

R
1
−1 dvzg̃νeðν̄eÞ and J̃νeðν̄eÞ ¼

R
1
−1 dvzvzg̃νeðν̄eÞ,

respectively. We store the time-averaged final distributions
for the survival probability as well as the first two angular
moments for νe and ν̄e described above for the entire sets
with 8000 and 7668 different initial conditions for the
Gaussian and maximum-entropy types, respectively. The
full dataset is available in [70].

III. ANALYTICAL PRESCRIPTIONS

For both Gaussian and maximum-entropy types that we
consider, the initial νELN distribution GðvzÞ is ensured to
allow at most one zero crossing. Thanks to this feature,
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we can divide the vz range into two parts separated by the
zero crossing vc. The integrals over both parts are

Iþ ¼
����
Z

1

−1
dvzGðvzÞΘ½GðvzÞ�

����;
I− ¼

����
Z

1

−1
dvzGðvzÞΘ½−GðvzÞ�

����; ð11Þ

respectively, where Θ is the Heaviside theta function.
For the sake of convenience, in the rest of the paper we
call the vz range over which the above integral is smaller
(larger) as the “small” (“large”) side and use v<z (v>z ) to
denote that range.
Based on the observation from the numerical simula-

tions, a complete flavor equilibration is approximately
achieved on the small side on a coarse-grained sense. A
general description on the asymptotic survival probability
within two-flavor oscillations2 can be given as

P2f
eeðvzÞ ¼

(
1
2

for v<z ;

PeeðvzÞ for v>z ;
ð12Þ

where the distributions on the large side PeeðvzÞ can be
formulated by a chosen analytical prescription. Below,
based on the same assumption on the small side, we will
describe both previously formulated prescriptions and the
improved ones proposed in this paper.

A. Prescriptions with abrupt transition

It was suggested in Refs. [40,49] to use a boxlike
expression, whose spatially averaged survival probabilities
PeeðvzÞ are constant in v>z , to describe the asymptotic
distribution for neutrino survival probabilities. Assuming
that the small side undergoes a complete flavor equilibra-
tion, the conservation of total νELN requires on the large
side that

PeeðvzÞ ¼ 1 −
I<
2I>

; ð13Þ

where I< ¼ minðI−; IþÞ and I> ¼ maxðI−; IþÞ.
Another prescription assumes that PeeðvzÞ is linear in vz

on the large side [40,45],

PeeðvzÞ ¼
1

2
þ I> − I<

4I>

�
1 ∓ vc ∓ 3

2
ðv2c − 1Þvz

�
; ð14Þ

where the sign − (þ) denotes that vz ¼ 1 is on the large
(small) side. Furthermore, one can follow the same method
of Refs. [40,45] to include the second-order quadratic

Legendre polynomial so that PeeðvzÞ is quadratic in vz.
This adds an additional term to Eq. (14) and results in

PeeðvzÞ ¼
1

2
þ I> − I<

4I>

�
1 ∓ vc ∓ 3

2
ðv2c − 1Þvz

∓ 5

4
ðv3c − vcÞð3v2z − 1Þ

�
: ð15Þ

Both linear and quadratic prescriptions ensure PeeðvzÞ ≥
1=2 on the large side to avoid introducing an additional
zero crossing in the asymptotic state. However, it is
important to note that Eqs. (14) and (15) both do not
guarantee the conservation of total νELN or the constraint
that PeeðvzÞ ≤ 1 on the large side.

B. Prescriptions with continuous transition

None of the above prescriptions ensure a continuous
transition at the zero crossing vc, which can lead to an
artificial discontinuity in the final asymptotic angular dis-
tributions g̃νe and g̃ν̄e . To avoid this, we propose a new
prescription for the large side as

PeeðvzÞ ¼ 1 −
1

2
hðjvz − vcj=aÞ; ð16Þ

where hðxÞ is a vz-dependent function that monotonically
decreases from 1 to 0 when x increases from 0 to infinity.
We try three different double-power laws for hðxÞ as
ðx2 þ 1Þ−1=2, ðx2 þ 1Þ−1, and ðxþ 1Þ−2, denoted as
power-1=2, -1, and -2, respectively. In addition, we take
one more exponential function hðxÞ ¼ expð−xÞ. For any
choice of hðxÞ, the coefficient a can be numerically
solved using the Newton-Raphson method for the following
equation:

I< ¼
Z
v>z

dvzGðvzÞhðjvz − vcj=aÞ; ð17Þ

which can be derived based on the νELN conservation.
Because the right-hand side of Eq. (17) is monotonic in

a, an interpolation method can also be used to effectively
solve the coefficient a in practice. For a set of a, faig,
including several finite positive ai values as well as ai ¼ 0þ

and ai ¼ ∞, the corresponding values for ΓðaiÞ ¼
ðI>Þ−1

R
v>z
dvzGðvzÞhðjvz − vcj=aiÞ can be calculated cov-

ering a range from 0 to 1. For a given I<=I>, one can find
the interval defined by a pair of adjacent values ai and aiþ1

where I<=I> is sandwiched by ΓðaiÞ and Γðaiþ1Þ. Then,
the asymptotic distribution can be interpolated as

PeeðvzÞ ¼ 1 −
1

2
½γhðjvz − vcj=aiÞ

þ ð1 − γÞhðjvz − vcj=aiþ1Þ�; ð18Þ
2In the three-flavor case where νμ and ντ are indistinguishable,

the expression is P3f
eeðvzÞ ¼ 1–4½1 − P2f

eeðvzÞ�=3.
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with γ ¼ jΓðaiþ1Þ − I<=I>j=jΓðaiþ1Þ − ΓðaiÞj. We note
that the total νELN is also conserved in this practical
scheme. Although this procedure can be applied to any of
the four above schemes with continuous transitions, we
demonstrate its practicability in this work by taking ai ¼
f0þ; 0.04; 0.2; 1;∞g based on the power-1=2 prescription
and denote this practical scheme as power-1=2-i.
We elaborate further here on the above choice of the

monotonic function hðxÞ on the large side. Based on the
observation from simulation results, the unstable eigen-
mode that grows the fastest in the linear regime usually
has larger amplitude at the small side in vz. When evolving
into the nonlinear regime, it often results in more flavor
conversion closer to the small side. Since the unstable
eigenmode has a continuous distribution in vz, this implies
that, for a vz that is farther away from the small side, it
generally experiences less flavor conversion. As a result,
when the system relaxes to the quasistationary state through
kinematic decoherence, the spatially averaged survival
probability keeps the memory of the continuous transition,
which leads to a typically larger value of PeeðvzÞ closer to
the small side.

IV. RESULTS

In this section, we assess the performance of various
analytical prescriptions in predicting the asymptotic dis-
tributions of survival probabilities and the relevant angular
moments. We use superscripts “sim” and “pre” to distin-
guish those quantities from the simulations and prescrip-
tions, respectively. We will compare eight prescriptions
including boxlike, linear, quadratic, power-1=2, power-
1=2-i, power-1, power-2, and exponential ones described in
Sec. III in the following analysis.

A. Two representative conditions

To illustrate some general behaviors of those prescrip-
tions, we show in Fig. 1 the angular distributions and
asymptotic survival probabilities PeeðvzÞ for two represen-
tative conditions obtained with simulations as well as
those from the analytical prescriptions. For PeeðvzÞ, all
eight different prescriptions are shown in the plots, while
for the angular distribution, we only show analytical results
derived using the boxlike [Eq. (13)], quadratic [Eq. (15)],
and the power-1=2 of Eq. (16). The first typical condition

FIG. 1. Angular distributions (a),(d),(g) and survival probabilities (b)–(c),(e)–(f),(h)–(i) with the initial distributions parametrized by
the Gaussian type. (a)–(c) [(d)–(f)] Smaller (larger) initial ν̄e zeroth moment than νe as described in Sec. IVA. (g)–(i) Same νe-dominant
moments as in (a)–(c) but with distributions characterized by the maximum-entropy type. The gray vertical line marks the zero crossing
at vc. Note that (d)–(f) only show the vz range from 0 to 1 for clarity.
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represents a system dominated by electron neutrinos with
ðIν̄; Fν; Fν̄Þ ≈ ð0.87; 0.47; 0.65Þ, while the second one is
dominated by antineutrinos with ðIν̄; Fν; Fν̄Þ ≈ ð1.27; 0.79;
0.86Þ.3 Figures 1(a)–1(c) [1(d)–1(f)] show results obtained
in the νe (ν̄e)-dominant condition with the initial angular
distributions gν and gν̄ parametrized by the Gaussian-type
distribution. Because the chosen parameter in the
ν̄e-dominant condition indicates more forward-peaked
distributions than that in the νe-dominant condition, we
only show the vz range from 0 to 1 in Figs. 1(d)–1(f). For
the νe-dominant case, we also show in Figs. 1(g)–1(i)
results obtained with gν and gν̄ parametrized by the
maximum-entropy distribution.
For both conditions, GðvzÞ > 0 for v < vc because

Fν < Fν̄, i.e., gν is less forward peaked than gν̄. This
range is the large side when Iν̄ < 1 (νe-dominated case)
and only undergoes incomplete conversions toward flavor
equilibration as shown in Figs. 1(a)–1(c). When Iν̄ > 1,
this range becomes the small side and reaches approxi-
mate flavor equilibration shown in Figs. 1(d)–1(f).
Obviously, approximate flavor equilibration and incom-
plete flavor conversions are obtained in the range vz < vc
for cases with Iν̄ < 1 and Iν̄ > 1, correspondingly. In
addition, we also show that very similar results are
obtained with Nvz ¼ 50 when compared to those obtained
with Nz ¼ 100 in Figs. 1(b) and 1(e).
For the analytical prescriptions, Fig. 1 shows that

large differences on the large side exist between results
obtained using Eqs. (13)–(16). However, using Eq. (16)
with different double-power or exponential functions hðxÞ
generally gives rise to similar outcomes. For PeeðvzÞ with
the νe-dominant condition (Iν̄e < 1), both the boxlike
and linear prescriptions contain relatively large deviations
∼0.1–0.3 from simulation outcome near the zero
crossing vc. The quadratic prescription matches better with
the simulation result in the range of vz ≲ 0.1. However, the
deviation near vc is similarly large as with the linear
prescription because the second-order Legendre polyno-
mial has a small contribution near vz ¼

ffiffiffi
3

p
=3 ≈ 0.57.

As mentioned already in Sec. III, the large deviations
around vc are related to the inherit discontinuities in these
prescriptions.
Significant improvements are obtained near vc when

using prescriptions with continuous transitions. For all
continuously transitioning cases with either the double-
power law or the exponential function, the survival prob-
abilities increase from 0.5 at the small side to larger values
as vz decreases without any discontinuity. More specifi-
cally, the power-2 and exponential prescriptions contain
first-order discontinuity at vc, while the other two pre-
scriptions are first-order continuous at vc, which leads to
slightly more flat Pee at vz ≲ vc and therefore more flavor

conversions. All these prescriptions have small deviations
of ≲0.04 from the simulation result in the range of
0 < vz < vc, with both power-1=2 and power-1=2-i
schemes showing the best agreement. For vz < 0, larger
deviations up to ∼0.15 appear for all of them, particularly
for the power-1 and exponential prescriptions. However, in
terms of the angular distributions, because the initial gνðν̄Þ
are forward peaked, the deviations at negative vz only result
in negligible differences in the asymptotic angular distri-
bution g̃νeðvzÞ, as shown in Fig. 1(a). On the other hand, the
abrupt transition of Pee at vc for all discontinuous pre-
scriptions lead to artificial peaks in g̃νeðvzÞ with an obvious
discontinuity at vc. We note here that if one plots the
oscillated νELN distributions as in Ref. [49], these dis-
continuities at vc will disappear becauseGðvcÞ ¼ 0 and the
deviations around vc will appear small. Nevertheless, the
physical angular distributions gν and gν̄ are generally
nonzero there so that this feature of discontinuity can
hardly be avoided.
With the ν̄e-dominant condition (Iν̄ > 1), the large side

ranges from vz ¼ vc to vz ¼ 1 with the zero crossing
vc ≈ 0.72 as shown in Fig. 1(d). Similar to the νe-dominant
case, taking the boxlike, linear, or quadratic prescription
also results in larger deviations from simulation outcome
than taking the continuous prescriptions. Interestingly,
PeeðvzÞ with the quadratic prescription appears nearly
linear in this case. This is because the additional quadratic
Legendre contribution is derived based on the whole vz
range, which results in a large linear term compared to the
quadratic term for the narrower vz > vc range where we
apply the prescription. For all the continuous prescriptions,
the agreements in Pee with the simulation results appear to
be even better than the νe-dominant case.
For the νe-dominant case with the same parameter

set ðIν̄; Fν; Fν̄Þ ≈ ð0.87; 0.47; 0.65Þ but taking the initial
gνðν̄Þ given by the maximum-entropy distributions,
Figs. 1(g)–1(i) show that the resulting asymptotic distri-
butions are qualitatively similar to those obtained with the
Gaussian function discussed above. Compared to the
Gaussian case, the zero crossing vc is shifted from ≈0.6
to 0.7, but the small side remains at vz > vc. Here, different
analytical prescriptions for the large side with abrupt
transitions at vc also show similarly large differences in
PeeðvzÞ, while those formulated with continuous transitions
result in similar PeeðvzÞ that match better with the
numerical result. Note that here the asymptotic PeeðvzÞ
obtained with simulations do contain some noticeable
differences from the Gaussian case shown in Fig. 1(b).
This can affect the comparison of different analytical
prescriptions to simulation outcome. For instance, the
linear prescription now performs better than the quadratic
one in vz < 0 as shown in Fig. 1(h). Also, the region where
approximate flavor equilibration is achieved is extended to
vz ≈ 0.5 below vc, around which the power-1 prescription
fits the simulation result better.

3Those two conditions are provided as ID 58 and 32,
respectively, in the dataset [70].
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Looking at the small side, although all schemes assume
the same flavor equilibration with Pee ¼ 0.5 as an approxi-
mation, we observe an interesting phenomenon that slight
overconversions are possible for some parameter sets with
either types of initial distributions. For example, Pee can be
∼0.4 for vz ≳ 0.8 for the νe-dominant case with the initial
maximum-entropy distribution, and 0.5≲ vz ≲ 0.6 for the
ν̄e-dominant case with the initial Gaussian distribution,
independent of the choice of angular resolutions. The
overconversions may result from some specific unstable
eigenmodes when fast instability develops from the linear
to nonlinear regime (see, e.g., [41,45]). Although it leads to
nonzero asymptotic νELN on the small side, it does not
lead to an additional spectrum crossing and fast flavor
instability in the asymptotic state, because the nonzero
νELN there has the same sign as in the large side. However,
the presence of the overconversions can result in systematic
biases in the predictions of the boxlike prescription as well
as those continuous ones due to the imposed constraint
from the conservation of νELN. Since there are more flavor
conversions than the equilibration on the small side due to
the overconversions, the νELN conservation then implies
that there will also be more flavor conversions on the large
side obtained by simulations than results derived with those
analytical prescriptions, as shown in Fig. 1.

B. Overall performance

Going beyond the explicit comparisons based on only a
few examples, we further evaluate the overall performance
of each analytical prescription for all parameter sets by
calculating several useful error quantities, including the
root mean square errors for g̃νeðvzÞ over the entire vz range
as well as over the large side only and the differences for the
first two angular moments. We write those error quantities
in terms of νe explicitly as

Eðg̃νeÞ ¼
1

2

�Z
1

−1
dvzjg̃preνe ðvzÞ − g̃simνe ðvzÞj2

�
1=2

;

Eðg̃>νeÞ ¼
hR

v>z
dvzjg̃preνe ðvzÞ − g̃simνe ðvzÞj2

i
1=2

R
v>z
dvz

;

EðĨνeÞ ¼
���Ĩpreνe − Ĩsimνe

���;
EðJ̃νeÞ ¼

���J̃preνe − J̃simνe

���: ð19Þ

The error Eðg̃>νeÞ is evaluated excluding the contribution
from the small side because the same flavor equilibration
is assumed in all prescriptions. One can replace all sub-
scripts of νe by ν̄e for the corresponding errors in the
antineutrino sector.
We notice that some νELN distributions in our sample

have very “shallow” zero crossings, i.e., small ratios of
ðI<=I>Þ ≪ 1. For these cases, their zero crossings are close

to vz ¼ −1 or 1. As a result, nearly no flavor conversion
occurs on the large side due to the νELN conservation,
similar to the conditions found in large radii of a core-
collapse supernova [47]. These cases can be empirically
classified as with no flavor conversion and hence are not
included in the performance comparison. After excluding
these shallow distributions with the ratio ðI<=I>Þ < 10−2,
the numbers of parameter sets are reduced to Nset ¼ 7479
and 7162 for the Gaussian and maximum-entropy types,
respectively.
Figure 2 shows the error quantities for all nonshallow

distributions of the Gaussian type with the boxlike,
quadratic, and power-1=2 prescriptions for all parameter
sets. The indices for each panel are numbered such that the
corresponding error quantities obtained with the power-1=2
prescription decrease with increasing index numbers for the
sake of clearer presentation. The top panels show that the
power-1=2 prescriptions clearly outperform the boxlike and
quadratic predictions for the distributional errors Eðg̃νeÞ,
Eðg̃ν̄eÞ, and Eðg̃>νeÞ. Most of the Eðg̃νeÞ and Eðg̃ν̄eÞ with the
boxlike prescription sit around ∼0.08. Comparatively, the
power-1=2 scheme provide improvement for these two
errors by up to ∼75% for parameter sets with indices
∼5000. When taking the quadratic prescription, although it
generally gives rise to smaller errors compared to the
boxlike scheme, these two errors have larger variations
with errors as large as 0.5 for some parameter sets. For
Eðg̃>νeÞ, similar features hold except that now there exist
large variations in errors for all three prescriptions. The
underlying reason is that the common contribution from the
small side is not included when computing Eðg̃>νeÞ.
The distributions of errors in moments EðĨνeÞ, EðJ̃νeÞ,

and EðJ̃ν̄eÞ show somewhat different and interesting
behaviors. Both the boxlike and quadratic prescriptions
show large variations. For some cases, they can perform
better than the power-1=2 one in moments despite their
worse performance in distributional errors discussed above.
The seemly contradictory result is related to the cancella-
tion of positive and negative contributions of errors in
Eq. (19) as well as the overconversions and systematic
biases discussed in Sec. IVA. For example, the asymptotic
zeroth moments Ĩνe in the antineutrino-dominant case
presented in Figs. 1(d)–1(f) are ≈0.673, 0.681, and 0.707
for the simulation, quadratic, and power-1=2 prescriptions,
respectively. Although clearly the g̃ðνeÞ obtained with the
power-1=2 prescription resembles better the gðνeÞ from the
simulation than with the quadratic scheme, the latter results
in smaller EðĨνeÞ due to the cancellation of contributions
from the integration range of 0.7 < vz < 0.85 and from
vz > 0.85. Such a cancellation does not happen with the
power-1=2 prescription where the νELN conservation is
imposed, because it predicts larger values of PeeðvzÞ and
g̃νe than simulation values on both the small side and the
large side due to the overconversions on the small side
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(see discussions in Sec. IVA). If we have taken the amount
of overconversion contribution

R
v<z
dvzgνð1=2 − Psim

ee Þ ≈
0.014 into account for the power-1=2 scheme, it will lead
to a reduced Ĩνe ¼ 0.679, which will be better than 0.681
obtained with the quadratic scheme.
We further calculate the arithmetic mean error for each

prescription,

E ¼ 1

Nset

XNset

i

Ei; ð20Þ

where i sums over the whole ensemble of parameter sets.
Those mean errors are shown by the horizontal lines in
Fig. 2 with values listed in Table I. The prescriptions
with abrupt and continuous transitions at vc are repre-
sented by the dashed and solid lines, respectively. In
addition, to prevent PeeðvzÞ from exceeding the unity
in the linear and quadratic prescriptions as discussed in
Sec. III A, both Eqs. (14) and (15) are replaced by
min½1; PeeðvzÞ�, and the corresponding arithmetic errors
are shown in Figs. 2(a)–2(c) as the yellow and green
dashed lines. Statistically, the truncation at Pee ¼ 1
presents negligible improvement on the mean error.
Both the boxlike and linear prescriptions yield the largest

errors for all measures. Comparatively, the quadratic
prescription provides visible improvements while all other
prescriptions with continuous transition at vc further
reduce the mean errors and show similar performances
in general. It is noteworthy that the power-1=2-i scheme
interpolating with five points for the coefficient a in
Eq. (17) has errors merely ∼5%–20% greater than those
with the power-1=2 prescription.
To further check whether the ranking of the arithmetic

averages may be affected by specific outlier parameter sets
with large error, we calculate one more metric R, which is

TABLE I. Arithmetic mean errors E=10−2 for all eight pre-
scriptions. The Gaussian type is adopted for the initial angular
distributions.

Prescriptions g̃νe g̃ν̄e g̃>νe g̃>ν̄e Ĩνe Ĩν̄e J̃νe J̃ν̄e

Boxlike 6.89 7.30 11.4 12.4 4.14 4.14 2.34 2.38
Linear 6.97 7.86 13.2 15.3 3.01 3.46 2.74 3.18
Quadratic 4.65 4.99 7.81 8.70 2.15 2.12 1.39 1.46
Power-1=2 2.44 2.55 3.04 3.46 1.52 1.52 0.87 0.91
Power-1=2-i 2.62 2.72 3.47 3.87 1.82 1.82 1.04 1.07
Power-1 2.83 3.01 3.56 4.11 1.25 1.25 0.81 0.86
Power-2 2.46 2.55 3.21 3.57 1.71 1.71 0.98 1.01
Exponential 2.57 2.65 3.15 3.50 1.55 1.55 0.95 0.99

FIG. 2. Error quantities of distributions (a)–(c) and angular moments (d)–(f) defined in Eq. (19) for the boxlike (black dots), quadratic
(cyan dots), and power-1=2 (red dots) prescriptions. For each panel, the indices of the parameter sets are sorted so that the errors obtained
with the power-1=2 scheme follow a descending order, so that the red dots form a red curve. The Gaussian type is adopted for the initial
angular distributions. The horizontal lines show the arithmetic mean errors E over the whole sets as defined in Eq. (20) for the boxlike
(black dashed), linear (magenta dashed), quadratic (blue dashed), power-1=2 (red solid), power-1=2-i (magenta solid), power-1 (green
solid), power-2 (yellow solid), and exponential (blue solid) prescriptions, respectively. Note that additional cases where the truncation of
Pee ¼ 1 is implemented for the linear and quadratic prescriptions are shown in (a)–(c) by the yellow and green dashed lines, respectively.
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the fraction of the best performance for each type of errors
E in a subset of prescriptions. As the average errors from
prescriptions with abrupt and continuous transitions are
clearly separated into two groups, we use two subsets:
subset A includes boxlike, linear, quadratic, and power-1=2
prescriptions, and subset B includes four prescriptions with
continuous transition at vc. They are compared in Table II
for cases with initial Gaussian angular distributions.
Consistent with the previous analysis, the power-1=2
prescription has the best performance predominantly in
≈98% of all samples among the prescription subset A. In
terms of the predictions for first two moments, the linear
and quadratic schemes can perform better for ≈10%–30%
of the parameter sets, while the power-1=2 prescription
performs better for ≈45%–60% of all samples. In subset B,
the power-1=2 and power-2 prescriptions share similar best
performance percentages ≈30% for g̃νe and g̃ν̄e , while the
power-1=2 and exponential ones are slightly worse. With
regards to the first two moments, the power-1 prescription
dominates and give rises to best values of R ≈ 63%–73%.
Most of the results discussed above do not change when

taking the maximum-entropy type of presumed angular
distributions. To avoid repetition, we only show in Table III
the corresponding best performance fraction R obtained
here for the maximum-entropy type. There, the power-1=2
prescription still performs best in subset A, and the power-1
prescription has the largest R ∼ 80% for the angular
moments in subset B. The minor difference is that the
power-1 prescription also outperforms the power-1=2 and
power-2 schemes in g̃νe and g̃ν̄e .

C. Dependence in parameter space

The errors in Fig. 2 are ranked regardless of the shape of
the distributions or the moments. To gain a better under-
standing on how a specific prescription works better in a
certain range of the explored parameter space, we examine
the dependence of the simulation outcome and the errors

associated with each analytical prescription in this section.
For this purpose, we show the qualitative features of the
asymptotic values of moments from the simulations, and
the evaluated errors with different prescriptions in the
parameter space of Iν̄, Fν, and Fν̄ in Figs. 3 and 4,
respectively. In both figures, the empty diagonal region
in each panel indicates where the fast flavor instability does
not exist. It is more likely to have fast instabilities when the
flux factors are significantly different from each other or
when Iν̄ is closer to Iν ¼ 1.
When Iν̄ ≈ 1, and Fν greatly deviates from Fν̄, the

zero crossing typically appears in a rather central part
of the vz range. As a result, near flavor equilibration
(Ĩsimνe ≃ J̃simνe =Jν ≃ 0.5) for both zeroth and first moments

TABLE III. Same as in Table II except that the maximum-
entropy type is adopted for the initial angular distributions. The
total number of parameter sets is Nset ¼ 7162.

Subset A g̃νe g̃ν̄e Ĩνe Ĩν̄e J̃νe J̃ν̄e

Boxlike 0.3 0.3 3.5 3.4 3.9 3.8
Linear 0.2 0.3 19.0 16.4 7.1 6.5
Quadratic 1.0 0.8 16.8 17.0 18.1 17.2
Power-1=2 98.5 98.7 60.6 63.1 70.8 72.5

Subset B g̃νe g̃ν̄e Ĩνe Ĩν̄e J̃νe J̃ν̄e

Power-1=2 25.2 25.1 1.1 1.1 2.2 2.3
Power-1 55.0 54.6 80.0 80.0 78.9 78.4
Power-2 9.8 10.4 7.3 7.3 7.6 7.7
Exponential 10.0 9.9 11.6 11.6 11.3 11.6

TABLE II. Best performance fraction R in percentage in two
subsets of prescriptions. The Gaussian type is adopted for the
initial angular distributions. The total number of parameter sets is
Nset ¼ 7479.

Subset A g̃νe g̃ν̄e Ĩνe Ĩν̄e J̃νe J̃ν̄e

Boxlike 0.5 0.5 6.3 6.4 7.4 7.8
Linear 0.5 0.4 28.0 25.0 10.3 9.7
Quadratic 1.4 1.6 22.2 24.3 22.2 22.9
Power-1=2 97.7 97.5 43.5 44.3 60.1 59.6

Subset B g̃νe g̃ν̄e Ĩνe Ĩν̄e J̃νe J̃ν̄e

Power-1=2 30.5 29.2 5.5 5.5 10.3 12.1
Power-1 15.8 14.2 72.9 72.9 66.2 63.3
Power-2 30.6 31.9 15.2 15.2 17.6 17.9
Exponential 23.1 24.8 6.4 6.4 6.0 6.7

FIG. 3. Parameter dependence of the asymptotic values of
the zeroth (a)–(c) and first (d)–(f) moments obtained by simu-
lations. The regions between the two red lines are where we
generate our parameter sets. The Gaussian-type initial angular
distributions are adopted for this figure.
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is achieved in most parameter sets as shown by the darker
regions in Figs. 3(b) and 3(e). When Fν ≈ Fν̄, the initial
shape of distributions for νe and ν̄e are so similar that the
zero crossing of the νELN is close to either vz ¼ −1 or
vz ¼ 1, which leads to incomplete flavor conversion on
the large side even with Iν̄ ≈ 1. Such a similar trend also
applies to the cases with a large asymmetry of zeroth
moments between νe and ν̄e for larger or smaller Iν̄e shown
in Figs. 3(a), 3(c), 3(d), and 3(f). Closer to the central blank
regions of these panels, both the Ĩsimνe and J̃simνe =Jν deviate
from 0.5 systematically. Nearly complete flavor conversion
can only happen when Fν and Fν̄ differ significantly.
For most of the parameter sets, the changes of the zeroth

and first moments are correlated. However, unlike the
zeroth moment of electron flavor neutrinos that can
only decrease assuming no νx in the initial state, the first
moment after the FFC can be larger than the initial value.
For example, at the bottom-left corner of Fig. 3(f)
(1.3 ≤ Iν̄ ≤ 1.6) where Fν ∼ 0.25 and Fν̄ ∼ 0.35, the ratio
J̃simνe =Jν can be ≈1.2. This is because the flavor conversion
occurs mostly in the range of the backpropagating neu-
trinos with vz < 0, which contribute a non-negligible
amount to the moments.
Let us now look at how different analytical prescriptions

work in different regions of the moment space.
Figures 4(a)–4(c) show that, independent of Iν̄, Fν, and
Fν̄, the power-1=2 prescription has universally the best
performance in the subset A in predicting the asymptotic
distribution g̃νe ; see also Table II. When considering the
subset B shown in Figs. 4(d)–4(f), different prescriptions
occupy visibly different parameter space for 0.5 ≤ Iν̄ ≤ 0.8
and 1.3 ≤ Iν̄ ≤ 1.6 for providing least errors in Eðg̃νeÞ.
For instance, Fig. 4(f) shows that with the antineutrino-
dominant condition 1.3 ≤ Iν̄ ≤ 1.6 and Fν < Fν̄, the best
prescription gradually transitions from the power-2 to the
exponential followed by the power-1 and then power-1=2
types, as the flux factors increase. In the same plot but at
the corner with Fν > Fν̄, the best prescription transitions
from the power-1=2 type to the power-2 type followed by
the exponential one. Interestingly, there does not appear to
be any specific prescription that predominately provides
the least distributional error Eðg̃νeÞ in any part of the
parameter space with 0.9 ≤ Iν̄ ≤ 1.2, indicated by the
mixed colors in Fig. 4(e).
Figures 4(g)–4(l) display the best performance

prescriptions for EðĨνeÞ and EðJ̃νeÞ within the subset A.
Figures 4(g)–4(i) show somewhat similar domainlike
patterns regarding the best performing prescription for
EðĨνeÞ. Although the power-1=2 scheme still outperforms
other abrupt prescriptions in a large fraction of the
parameter space as indicated by Table II, the linear and
quadratic prescriptions can outperform the power-1=2 in
some particular parameter regions. For example, the linear
prescription has the best performance when 0.5 ≤ Iν̄ ≤ 0.8,

Fν ∼ 0.6, and Fν̄ ∼ 0.5, or when 1.3 ≤ Iν̄ ≤ 1.6,
Fν ∼ 0.4–0.6, and Fν̄ ∼ 0.7–0.8. The quadratic prescription
has the best performance when 0.5 ≤ Iν̄ ≤ 0.8, Fν ∼ 0.8,
and Fν̄ ∼ 0.6, or when 1.3 ≤ Iν̄ ≤ 1.6, Fν ∼ 0.7, and
Fν̄ ∼ 0.8. As for the boxlike prescription, it only provides
better performance for certain parameter sets that are
sparsely distributed in Fig. 4(h) with 0.9 ≤ Iν̄ ≤ 1.2.

FIG. 4. Parameter dependence of the best performed prescrip-
tions for Eðg̃νeÞ with the prescription subset A in (a)–(c), Eðg̃νeÞ
with the prescription subset B in (d)–(f), EðĨνeÞ with subset A in
(g)–(i), and EðJ̃νeÞ with subset A in (j)–(l). Colors of the dots
represent different types of prescriptions including the boxlike
(black), linear (magenta), quadratic (cyan), power-1=2 (gray),
power-1 (green), power-2 (yellow), and exponential (blue) ones.
The two red lines delineate the region where we generate our
parameter sets as in Fig. 3. The Gaussian type is adopted for the
initial angular distributions.
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Comparing Figs. 4(j)–4(l) showing the best prescription
distribution for EðJ̃νeÞ to Figs. 4(g)–4(i), it shows that the
distribution of the best performance domains can vary when
considering different moments. For instance, although
for the quadratic prescription it performs the best in similar
parameter space for both EðĨνeÞ and EðJ̃νeÞ, in the region
with 1.3 ≤ Iν̄ ≤ 1.6, Fν ∼ 0.4–0.6, and Fν̄ ∼ 0.7–0.8, the
power-1=2 replaces the linear prescription as the best
prescription in subset A for EðJ̃νeÞ.

D. Effects of heavy-lepton flavor neutrinos

In the previous discussions the heavy-lepton flavor
neutrinos are not taken into consideration in the initial
angular distributions because the νELN distribution is
unchanged if the same amount of νx and ν̄x distributions
are assumed. As a result, the evolution and asymptotic
distribution for survival probabilities are expected to be the
same, although the asymptotic angular distributions g̃νe
and g̃ν̄e can be affected.
Because the inclusion of heavy-lepton flavor neutrinos

introduces more dimensions in the parameter space, we do
not perform detailed analysis here for the performance
evaluation. Instead, we provide a specific example below to
illustrate how to evaluate its impact on the errors obtained
in earlier sections, which can be generally applied by
postprocessing the dataset that we released. Assuming both
νx and ν̄x have the same flux factor as ν̄e initially for
simplicity, their angular distributions can be characterized
by the zeroth moment Iνx as

gνxðvzÞ ¼ gν̄xðvzÞ ¼
Iνx
Iν̄

gν̄ðvzÞ: ð21Þ

With the asymptotic survival probability unaffected, the
final distribution for νe now becomes

g̃νeðvzÞ ¼ gνðvzÞPeeðvzÞ þ
Iνx
Iν̄

gν̄ðvzÞ½1 − PeeðvzÞ�; ð22Þ

for both the simulated g̃simνe and predicted g̃preνe . In Fig. 5, we
show the distributional errors Eðg̃νeÞ as a function of Iνx=Iν̄
computed based on Eq. (22) for the two conditions
considered in Sec. IVA with the initial distributions para-
metrized by the Gaussian and maximum-entropy functions.
The errors Eðg̃νeÞ for all prescriptions start to decrease

as Iνx increases at the beginning. They reach the minimum
at Iνx=Iν̄ ∼ 0.6–1 and eventually increase again. The
reduction of errors for Iνx ∼ Iν̄ is because, for more similar
distributions of νe and νx, less changes to the νe distribution
can occur due to the conversion of νx to νe. Specifically,
the minimum locates at Iνx=Iν̄ slightly less than 1 where
the crossing between angular distributions of gν and gνx
happens at the small side, as this allows one to minimize the

systematic error contribution due to the observed over-
conversions seen in simulations discussed earlier.
Comparing different analytical prescriptions,

Figs. 5(a)–5(c) show that those with the continuous
transitions at vc again provide similar errors with different
Iνx=Iν̄ and generally perform better than the abrupt pre-
scriptions. For the abrupt ones, the quadratic prescription
still has better performance than the boxlike and linear
ones, but can be slightly outperformed, e.g., by the linear
scheme at Iνx=Iν̄ ∼ 0.6 or the boxlike scheme at Iνx=Iν̄ ∼
0.9 in the antineutrino-dominant condition with the initial
Gaussian type shown in Fig. 5(b).

V. DISCUSSION AND CONCLUSIONS

In this paper, we conducted a comprehensive survey over
a large sample of initial neutrino angular distributions to
investigate the outcome of the asymptotic state of FFC in
the periodic 1D-box setup. Several thousands of simula-
tions for initial νe and ν̄e angular distributions parametrized
by the Gaussian and the maximum-entropy functions that
can also be specified by the initial zeroth moment of ν̄e, Iν̄,

FIG. 5. Distributional errors Eðg̃νeÞ as functions of Iνx=Iν̄ for
eight prescriptions in the initial conditions of Gaussian (a),(c) and
maximum-entropy (b) distributions.
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and flux factors Fν and Fν̄ were performed to times when
the systems reach close to the asymptotic states. These
results provide a database for the design of effective
treatments so that FFCs can be approximately incorporated
into realistic hydrodynamic simulations that include
classical neutrino transport.
We found that, in the asymptotic state, flavor conversions

on one side of the νELN (defined as the small side in this
work) happen in a way that the system evolves toward
flavor equilibration to eliminate the zero crossing when
averaging over the entire box, as pointed out in several
earlier works [40,41,42]. Interestingly, we also found that
slight overconversions on the small side in the asymptotic
state can happen as a general final outcome of the system,
which however, does not introduce new zero crossings.
Assuming flavor equilibration on the small side, we

formulated several new analytical prescriptions that aim to
improve the existing formulations including the boxlike
and the linear prescriptions proposed in Refs. [40,45,49],
which provided analytical formulas to characterize the
asymptotic state on the large side of the νELN. One of
our new proposals extends these existing ones and includes
the second-order Legendre polynomial correction, resulting
in a quadratic velocity dependence on the large side.
More importantly, to overcome the artificial discontinuity
encountered at the zero crossing when using the boxlike,
linear, and quadratic expressions, we provided several new
prescriptions that continuously connect the flavor conver-
sion probabilities on the small and the large sides while
respecting the νELN conservation.
Based on our simulation data, we first compared in detail

the asymptotic states predicted by these analytical pre-
scriptions with those obtained numerically for two repre-
sentative examples. We then evaluated the overall
performance for the entire datasets using several error
measures, including the distributional errors, net
differences of the first two angular moments, and the
fraction of best performance. We found that despite the
fact that all prescriptions provide reasonable predictions
with small distributional errors ≲0.15 and angular moment
differences ≲0.05, the prescriptions with continuous tran-
sitions at zero crossings systematically outperform those
with abrupt transitions. Specifically, the quadratic prescrip-
tion reduces the average errors by ∼30%–50% from the
boxlike and linear schemes, while all the continuous
prescriptions give rise to another factor of ∼30%–60%
improvement from the quadratic scheme mainly due to the
imposed condition continuity around vc.
There exist certain advantages and disadvantages asso-

ciated with these prescriptions. The evaluation of the
boxlike, linear, and quadratic schemes can be directly done
with the explicit formulas given in Sec. III A. For the linear
and the extended quadratic schemes, they were derived
by adding corrections upon the boxlike prescription;
neither the νELN conservation nor non-negative transition

probability is ensured unless some additional truncation is
imposed. For the continuous prescriptions, it in principle
requires extra computational efforts to solve the width
coefficient a iteratively. However, we also demonstrated
that one can use the interpolation method to obtain the
asymptotic distributions efficiently without sacrificing
much the accuracy of their predictive power. Moreover,
if one wants to directly implement these prescriptions with
neutrino transport solvers that adopt the discrete-ordinate
schemes, taking the abrupt prescriptions will introduce
large errors associated with angular distribution disconti-
nuity when numerically evaluating the angular advection,
which can be avoided with continuous prescriptions.
We have also discussed the dependence of the outcome

on the parameter space and the impact when including non-
negligible heavy-lepton neutrinos in the initial condition.
We found that similar conclusions discussed above gen-
erally hold for cases including the heavy-lepton flavors—
the continuous prescriptions perform better than those
abrupt schemes. However, we also noted for some param-
eter space, the linear and quadratic schemes (without νELN
conservation constraint) in fact give rise to smaller errors in
individual angular moment differences than all the con-
tinuous prescriptions, due to the accidental cancellation
effect when integrating over the distributions. For the
continuous prescriptions with νELN conservation being
imposed, the generally obtained flavor overconversions
prevent the accidental cancellation to occur and causes a
larger systematic bias.
Several questions remain to be addressed beyond this

work and we list a few below. Do the overconversions on
the small side depend on the periodic boundary conditions?
Will they be suppressed in the presence of collisions? If not,
how can we improve the formulation of the asymptotic state
to account for the overconversions? Can these prescriptions
be applicable to more general scenarios, e.g., cases where
the azimuthal symmetry is broken? Answering all those
questions certainly requires many follow-up studies and
will help achieve the ultimate goal of implementing flavor
conversions of neutrinos in hydrodynamical simulations of
supernovae and neutron-star mergers.

The survey dataset for this paper is publicly available
from the Zenodo repository [70].
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