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We implement a multigroup and discrete-ordinate neutrino transport model in spherical symmetry
which allows to simulate collective neutrino oscillations by including realistic collisional rates in a self-
consistent way. We utilize this innovative model, based on strategic parameter rescaling, to study a recently
proposed collisional flavor instability caused by the asymmetry of emission and absorption rates between
νe and ν̄e for four different static backgrounds taken from different stages in a core-collapse supernova
simulation. Our results confirm that collisional instabilities generally exist around the neutrinosphere
during the supernova accretion and postaccretion phase, as suggested by Johns [arXiv:2104.11369.].
However, the growth and transport of flavor instabilities can only be fully captured by models with global
simulations as done in this work. With minimal ingredient to trigger collisional instabilities, we find that
the flavor oscillations and transport mainly affect (anti)neutrinos of heavy lepton flavors around their
decoupling sphere, which then leave imprints on their energy spectra in the free-streaming regime. For
electron (anti)neutrinos, their properties remain nearly intact. We also explore various effects due to the
decoherence from neutrino-nucleon scattering, artificially enhanced decoherence from emission and
absorption, neutrino vacuum mixing, and inhomogeneous matter profile, and discuss the implication of
our work.

DOI: 10.1103/PhysRevD.107.083016

I. INTRODUCTION

The phenomenology of neutrino flavor oscillations has
been established by experiments with solar, atmospheric,
reactor, and accelerator neutrinos [1]. From these experi-
ments, it is well understood that flavor oscillations depend
not only on the properties of neutrino mixing in vacuum,
but also the coherent forward scattering of neutrinos with
electrons in medium, e.g., the earth mantle or the solar
interior.
In astrophysical environments such as core-collapse

supernovae (CCSNe) and binary neutron star mergers
(BNSMs), neutrino fluxes are sufficiently intense so that
forward scattering among neutrinos is important and cannot
be ignored. The nonlinear interaction among neutrinos
themselves leads to various collective phenomena and flavor

instabilities in two main categories: the so-called “slow”
mode (e.g., Refs. [2–17]), and “fast” flavor conversion (e.g.,
Refs. [18–28]); see also review papers [29–33] and refer-
ences therein. Both categories require a crossing from
positive to negative values in the distribution of the neutrino
electron lepton numbers (νELN) [34,35]. The distinction is
that the slowmode relies on the crossing in energy spectrum
while the fast mode requires one in the angular distribution.
For the slowmode, it typically has a flavor conversion length
scale ofOð10–100Þ km and occurs far outside the neutrino-
sphere after neutrinos decouple from the medium. For the
fast mode, it converts neutrino flavors in a much shorter
length scale ∼ðGFnνÞ−1 ∼Oð1Þ cm with GF the Fermi
constant and nν the neutrino number density. Studies have
shown that fast instabilities generally exist in certain regions
near or even inside the neutrinosphere in CCSNe modeled
by multidimensional simulations [36–42], and are even
more ubiquitously present in the postmerger environments*z.xiong@gsi.de
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of BNSMs [43–50]. The potential importance and the
associated very short length scale of fast mode catalyzes
recent surges of local dynamical simulations in tiny
boxes [28,50–59].
The change of neutrino flavor content due to oscillations

can affect the matter composition and the energy exchange
of neutrinos with medium through collisional processes,
which can also lead to feedback effects on the flavor
evolution of the neutrino gas. A self-consistent treatment
including both coherent flavor evolution and collisions have
been formulated as the neutrino quantum kinetic equation
(QKE) [60–63]. Studies that solve simplified QKE by
including reduced set of collisions have been done in recent
years [64–70]. Among those, Refs. [66,67,69,70] examined
the impact of neutrino-nucleon scattering (NNS) on the
evolution of fast flavor oscillations under the condition that
fast instabilities exist a priori.
Recently, a novel kind of flavor instability caused by

the asymmetry of emission and absorption (EA) rates
between electron neutrinos νe and electron antineutrinos
ν̄e has been proposed [71]. Together with an additional
assumption that heavy lepton neutrinos may have a
smaller number density than that of ν̄e in regions where
neutrinos decouple, it was found that this collisional
flavor instability can trigger flavor conversion within
a length scale in the order of inverse mean free path
from EA processes, i.e., ∼Oð1Þ km near the neutrino
sphere. Although this length scale is much longer than
that of the fast mode, the required condition for the
collisional instability to occur completely differs from
that of fast instabilities such that both mechanisms
can work independently. In particular, it can potentially
trigger flavor conversions in regions with low elec-
tron number fraction (Ye) where neutrinos decouple in
CCSNe [71].
The pioneer works in Refs. [71,72] on the collisional

instability were based on the assumption of spatial homo-
geneity. One general question, however, can be raised; How
can a simulation including collisions near the neutrino
sphere be performed self-consistently without including
the global advection of neutrinos? This question is not
restricted to the collisional instability but applicable to all
long-term simulations including both collisions and aniso-
tropic angular νELN distribution. The fundamental reasons
that trigger the flavor instabilities such as the diluted heavy
lepton neutrino number flux due to diffusion or the
anisotropic angular distributions are consequences of
neutrino advection in the presence of collisional neutrino
processes and inhomogeneity in the length scale of astro-
physical environment [73]. Thus, when the advection of
neutrinos is neglected, those conditions for flavor insta-
bilities may not be maintained self-consistently such that
the outcome of the long-term neutrino flavor evolution
simulations can be inaccurate. To address this issue, several
simulations that aimed to examine flavor oscillations

triggered by fast and/or slow modes with the inclusion
of global advection in spherically symmetric geometry
under given hydrostatic radial profiles have been reported
lately [74–77].1
In thiswork,we extend previous analyses and consider for

the first time the collisional instability and its effects in
spherically symmetric hydrostatic core-collapse supernova
(CCSN) backgrounds. Therefore, we solve the quantum
kinetic transport equations using a multienergy and multi-
angle collective neutrino oscillation simulator, an extended
version of COSEν [79]. As spherically symmetric neutrino
transportwith realistic collisional rates do not lead to angular
spectrum crossing and hence no fast instability [80], it
provides a clean background for us to probe the consequence
of collisional flavor instability, which should exist in regions
where the fast instabilities do not exist. We consider several
radial profiles of thermal quantities at selected post-bounce
times, obtained from aCCSN simulation. For each snapshot,
we then simulate the evolution of neutrinos up to ∼1 ms in
our simulator including advection, collisions, and flavor
oscillations based on state-of-the-art weak rates determined
from the background CCSN profiles, however, without
feedback on the medium. We start with fiducial models
by including minimal but essential ingredients that are able
to trigger the collisional instability. Additional ingredients
are added case by case to explore their possible impact.
This paper is organized as follows. In Sec. II, we describe

our models and the adopted parameters. We present the
linear stability analyses for collisional instabilities in
Sec. III. We discuss our simulation results of fiducial
models in Sec. IV and those with additional parameters
in Sec. V. Further discussions and conclusions are given in
Sec. VI. We adopt natural units and ℏ ¼ c ¼ kB ¼ 1
throughout the paper.

II. MODELS

A. CCSN simulation and neutrino
collisional processes

We use AGILE-BOLTZTRAN to simulate a CCSN,
launched from a 18M⊙ progenitor star, based on general
relativistic neutrino radiation-hydrodynamics in spherical
symmetry [81–83]. A comoving baryon mass mesh is used
for 208 radial grid points [84,85], which features an
adaptive mesh refinement method [86] and implements
as coordinate the enclosed baryon mass instead of the
actual mass mesh location [87].
For the current study, we use the nuclear equation of state

of Ref. [88], which is based on the nuclear statistical

1Reference [78] implemented flavor oscillations in spherically
symmetric CCSN simulations, but taking the assumptions that
flavor oscillations only occur much above the region where
neutrinos decouple. Moreover, the flavor evolution history for all
radially outgoing neutrinos were assumed to be independent of
their propagation angles.
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equilibrium approach for the composition of nuclei based
on several 1000 species, in combination with the density
dependent DD2 relativistic mean-field model of Ref. [89].
For low temperatures, T < 0.45 MeV, the ideal silicon and
sulfur gas approximation is applied. Electron, positron,
photon, and Coulomb contributions are added following
the equation of state of [90]. Note that in the current study
muons are not included in the SN simulation.
The Boltzmann neutrino-transport module of AGILE-

BOLTZTRAN employs the discrete ordinate method, and
evolves four species of neutrinos, νe, ν̄e, νx (for νμ or ντ), and
ν̄x (for ν̄μ or ν̄τ) without coherent flavor oscillations.
Although several weak collisional processes associatedwith
muons were employed recently [91,92], we only include the
processes from (1a) to (4b) listed in Table I: EA [93],
NNS [81,94], neutrino-electron scattering (NES) [83], and
neutrino-pair reactions (NPR), including both leptonic
process [94] and nucleon-nucleon bremsstrahlung [95,96].
The roles of those collisional processes on the spectra of

various neutrino species are different. The energy spectra of
νe and ν̄e near the neutrino sphere of last inelastic collision
are predominantly determined by the EA processes.2 For νx
and ν̄x, they primarily interact with the medium through the
neutral-current NNS. The NNS are considered here in the
elastic approximation, known as isoenergetic NNS. In
particular near the νx and ν̄x sphere of last elastic scattering,
where the nucleonmass is much larger than neutrino energy,
little energy exchange between neutrinos and medium
happens. Thus, theNNSonly play important role in trapping
νx and ν̄x and define their “transport neutrino sphere”, which
locates outside the “energy sphere”, within which the NES
and NPR processes thermalize νx and ν̄x [94,98,99]. For
instance, whenNES are included, the mean energy of νx and
ν̄x outside their neutrino spheres can be as low as ∼60% of
the values obtained without including NES [99].

The numerical implementation of EA and NNS proc-
esses are very different from NES and NPR, because the
later two are inelastic in nature such that the scattering
kernels connect both the energies and angles of incoming
and outgoing neutrinos, which significantly increase the
computational cost. When more angular grids are used in,
e.g., the simulations by COSEν (see next subsection), the
computational complexity increases dramatically. This
prevents us from including NES and NPR unless approxi-
mated prescriptions for them are employed. However, since
these rates are subleading for νe and ν̄e whose rate differ-
ence is the key to trigger collisional instability, we expect
that the results would remain qualitatively true when the
NES and NPR rates are omitted. We note that for νμ and ν̄μ,
if we only include the elastic NNS, there is no other process
responsible for thermalizing them. To partly compensating
for this, we additionally include the muonic EA processes
of (5a)–(5b) in Table I in extended COSEν simulations
described in the next section, which can thermalize the
spectrum of muonic neutrinos with energy ≳65 MeV [92].

B. Neutrino transport including flavor
oscillations and collisions

1. Quantum kinetic equation

Although a full description of oscillation phenomena in
CCSNe may require to consider three active neutrino
flavors [100–103], we take the approximation by consid-
ering only electron and muon flavors. The general equa-
tions governing the spatial and temporal evolution of
Wigner transformed density matrices ϱ (for neutrinos)
and ϱ̄ (for antineutrinos), are given by

�
∂t þ vr∂r þ

1 − v2r
r

∂vr

�
ϱðE; vr; r; tÞ

¼ −i½HðE; vr; r; tÞ; ϱðE; vr; r; tÞ� þCðE; vr; r; tÞ; ð1Þ
�
∂t þ vr∂r þ

1 − v2r
r

∂vr

�
ϱ̄ðE; vr; r; tÞ

¼ −i½H̄ðE; vr; r; tÞ; ϱ̄ðE; vr; r; tÞ� þ C̄ðE; vr; r; tÞ; ð2Þ
with

ϱðE; vr; r; tÞ ¼
�
ϱeeðE; vr; r; tÞ ϱeμðE; vr; r; tÞ
ϱ�eμðE; vr; r; tÞ ϱμμðE; vr; r; tÞ

�
;

ϱ̄ðE; vr; r; tÞ ¼
�
ϱ̄eeðE; vr; r; tÞ ϱ̄eμðE; vr; r; tÞ
ϱ̄�eμðE; vr; r; tÞ ϱ̄μμðE; vr; r; tÞ

�
; ð3Þ

in the flavor basis and normalized by the neutrino number
density so that nνiðr; tÞ ¼

R
dEdvrϱiiðE; vr; r; tÞ where

i ¼ e, μ.3 Clearly, the diagonal elements ϱii relate to the

TABLE I. Set of weak processes considered in BOLTZTRAN
(short as B) or COSEν (C), where ν and ν̄ are for all neutrino
flavors and N ¼ n, p.

Label Weak process Abbreviation Adoption

(1a) νe þ n ⇆ pþ e− EA B,C
(1b) ν̄e þ p ⇆ nþ eþ EA B,C
(1c) ν̄e þ pþ e− ⇆ n EA B,C
(2a) νþ N ⇆ νþ N NNS B,C
(2b) ν̄þ N ⇆ ν̄þ N NNS B,C
(3) νþ e� ⇆ νþ e� NES B
(4a) νþ ν̄ ⇆ e− þ eþ NPR B
(4b) νþ ν̄þ N þ N ⇆ N þ N NPR B
(5a) νμ þ n ⇆ pþ μ− EA (muonic) C
(5b) ν̄μ þ p ⇆ nþ μþ EA (muonic) C

2Neutrinos with different energy decouple from matter at
different radii; for details, cf. Ref. [97].

3The dependence on spacial and temporal indices will not be
explicitly written unless emphasized in the following discussions.
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neutrino phase-space distribution function fνi by ϱii ¼
fνi × E2=ð2π2Þ while the off-diagonal elements character-
ize the degree of flavor mixing. In Eqs. (1) and (2), the
advection term ½vr∂r − ð1=rÞð1 − v2rÞ∂vr � takes a simplifi-
cation from the full QKE [63,104], and the second part
accounts for the aberration as the radial projection of
velocity vr (the cosine of the angle between the traveling
direction of neutrino and the radial direction) changes for
neutrinos propagating nonradially.
On the right-hand side, H and C are the coherent

propagation Hamiltonian and collisional term for neutrinos
respectively. Three different contributions to H include the
vacuum mixing term

HvacðEÞ ¼
δm2

4E

�− cos 2θV sin 2θV
sin 2θV cos 2θV

�
; ð4Þ

where δm2 is the vacuummass-squared difference and θV is
the mixing angle, the diagonal matrix of the matter term

Hmat ¼ diag½Vmat; 0�; ð5Þ
with Vmat ¼

ffiffiffi
2

p
GFρYe=mu corresponding to neutrino for-

ward scattering on e�, neutrons, and protons where mu is
the atomic mass, and the neutrino self-induced term

HννðvrÞ ¼
ffiffiffi
2

p
GF

Z
dE0 dv0r

× ð1 − vrv0rÞ½ϱðE0; v0rÞ − ϱ̄�ðE0; v0rÞ�; ð6Þ
corresponding to neutrino forward scattering on other
neutrinos.
For the collisional term C, we include the processes of

EA and NNS in our calculations. The contribution from EA
is given by

CEAðEÞ ¼
1

2
fdiag½jeðEÞ; jμðEÞ�; ϱFOðEÞ − ϱðEÞg

−
1

2
fdiag½χeðEÞ; χμðEÞ�; ϱðEÞg; ð7Þ

where jeðEÞ and jμðEÞ are the emissivities for the reactions
for processes of (1a)–(1c) and (5a)–(5b) in Table I, χeðEÞ
and χμðEÞ are the opacities for their inverse reactions,
ϱFOðEÞ ¼ I × E2=ð2π2Þ, with I being the identity matrix,
is the fully-occupied differential number density for a
specific E, and the curly bracket is the anticommutator.
For the process of NNS, we have

CNNSðE; vrÞ ¼
Z

dv0rRNNSðE; vr; v0rÞ

× ½ϱðE; v0rÞ − ϱðE; vrÞ�; ð8Þ

where RNNSðE; vr; v0rÞ is the scattering kernel transferring
neutrino of energy E with a radial velocity vr to the same
energy but a different velocity v0r. The special feature of the

scattering kernel in NNS, RNNSðE; vr; v0rÞ ¼ χNNSðEÞ=2þ
vrv0rχ̃NNSðEÞ=2, allows further simplification

CNNSðE; vrÞ ¼ −χNNSðEÞ
�
ϱðE; vrÞ −

Z
dv0r
2

ϱðE; v0rÞ
�

þ vrχ̃NNSðEÞ
Z

dv0r
2

v0rϱðE; v0rÞ; ð9Þ

where χNNSðEÞ and χ̃NNSðEÞ are the opacity in NNS. Notice
that the Pauli blocking in isoenergetic NNS has no impact
because RNNSðE; vr; v0rÞ ¼ RNNSðE; v0r; vrÞ as shown in
Appendix A.
For antineutrinos, H̄ and C̄ on the right-hand side are

defined similarly: H̄vacðEÞ ¼ HvacðEÞ, H̄mat ¼ −Hmat,
H̄ννðvrÞ ¼ −H�

ννðvrÞ,

C̄EAðEÞ ¼
1

2
fdiag½j̄eðEÞ; j̄μðEÞ�; ϱ̄FOðEÞ − ϱ̄ðEÞg

−
1

2
fdiag½χ̄eðEÞ; χ̄μðEÞ�; ϱ̄ðEÞg; ð10Þ

and

C̄NNSðE; vrÞ ¼
Z

dv0r R̄NNSðE; vr; v0rÞ

× ½ϱ̄ðE; v0rÞ − ϱ̄ðE; vrÞ�; ð11Þ

where j̄eðEÞ, j̄μðEÞ, χ̄eðEÞ, χ̄μðEÞ, and R̄NNSðE; vr; v0rÞ
are the emissivities, opacities, and scattering kernel for
antineutrinos.
We use emissivities and opacities from BOLTZTRAN

and calculate the kernel of NNS based on the method in
Refs. [94,105] for the simulations with COSEν (see
Appendix A for details).

2. Attenuation factors used in simulations

The rates involved in the flavor evolution equation span a
wide range in magnitudes. Due to the nature of weak
interactions, the collisional rates are much lower than those
of coherent forward scatterings by a factor of ∼GFE2 that
can be ∼10−9–10−5 for relevant neutrino energies. For
example, Fig. 1 compares the scales of all rates for neutrino
energy E ¼ 21 MeV computed at a post-bounce time tpb ≈
247 ms of the simulated CCSN. The magnitude of neutrino
self-induced term Hνν can be evaluated by taking the
difference of its diagonal elements Vνν ¼ Hνν;ee −Hνν;μμ.
It varies from ∼109 km−1 at 10 km to ∼104 km−1 at 85 km,
while the opacities of νe or ν̄e are ∼10 km−1 at 10 km and
as low as ∼10−3 km−1 at 85 km. This huge gap poses a
computational challenge to properly handle all those rates.
One possible approach is to focus on a local simulation
within Oð10 mÞ or even smaller range [66], but it loses
the capability to account for global advection, and thus
cannot model the long-term evolution of the system
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self-consistently. Another constraint comes from the
minimal radial interval Δr. Simulating in a larger radial
range ∼Oð10 kmÞ implies that the number of uniformly-
distributed radial grids Nr ¼ L=Δr in a radial range
L ¼ 75 km must be ≳108 to properly resolve the length
scale of oscillating flavor wave imposed by Hνν developed
at ∼30 km (see Sec. IV). Taking such a large number
of radial grids together with other required resolutions in
angular and energy distributions is not feasible for our
extended version of COSEν at present. Therefore, for the
trilemma among self-consistency, advection, and exact
rates, at least one component must be compromised. For
this work, we take the approach of introducing artificial
attenuations to some of the rates as follows.
First, we scale down all elements in neutrino self-

induced term Hνν by multiplying them with an attenuating
factor [76],

aννðrÞ ¼
a1

1þ eða2−rÞ=a3
; ð12Þ

where a1, a2, and a3 are parameters, for which we take
different values for different snapshot models (see Table II).
For instance, adopting a1 ¼ 10−3, a2 ¼ 35 km, and a3 ¼
3.0 km for the snapshot shown in Fig. 1 results in
attenuated Vνν (black dotted curve) smaller than the value
of ðΔrÞ−1, when taking Nr ¼ 25 000 uniformly distributed
radial grids. This form attenuates Vνν more at smaller radii
as the neutrino number densities are significantly higher.
Notice that we also make sure our choice of aννðrÞ always
maintains the hierarchy between Vνν and other collisional
terms for most relevant neutrino energies. For example, the
attenuated Vνν shown in Fig. 1 remains larger than the
collisional rates by at least a factor of 10–100 for neutrino
energy of 21 MeV.
Second, for the matter potential, the high density around

the neutrino sphere also leads to too large value of Vmat to
be directly included in our simulation without modifica-
tions (see Fig. 1). Thus, for models that we include Hmat

and H̄mat, we instead adopt a parametrized function to
explore the effect due to the presence of an inhomogeneous
matter term (see Sec. V D).
Third, the collisional rates for neutrinos with high energy

E≳ 90 MeV can exceed ðΔrÞ−1. To avoid that, we also
apply attenuation functions

aEAðE; vrÞ ¼
�
1þ χ2EA;maxðEÞ

a24

�−1=2
; ð13Þ

to all emissivities and opacities in EA and

aNNSðE; vrÞ ¼
�
1þ χ2NNSðEÞ

a25

�−1=2
; ð14Þ

to the scattering kernels in NNS, where χEA;maxðEÞ is the
maximal between jeðEÞ þ χeðEÞ and jμðEÞ þ χμðEÞ, a4
and a5 are parametric saturation rates. We adopt values of
a4 and a5 close to ðΔrÞ−1 to make sure all rates are smaller
than ðΔrÞ−1 for all energies. Note that for neutrinos with
energy ≲90 MeV, their rates are practically not attenuated
since χEA;max=a4 and χNNS=a5 are much smaller than 1.
For those with E≳ 90 MeV, they remain strongly trapped
during our simulation duration.

3. Boundary and initial conditions

We numerically solve the QKE under spherical sym-
metry within a radial range between an inner boundary
ri:b: ¼ 10 km and an outer boundary ro:b: ¼ 85 km. Right
above the inner boundary, we set up a region with a length
∼li:b: and decaying width wi:b: wherein the EA rates for all
energies are artificially increased by the amounts ΔjiðEÞ
and ΔχiðEÞ as follows (i ¼ e, μ),

FIG. 1. Comparison of the scales of all the included collision
rates and different potentials in the Hamiltonian for neutrino
energyE ¼ 21 MeV in the transport equation [Eqs. (1) and (2)] for
the background snapshot at tpb ≈ 247 ms (our Model II) from the
CCSN simulation. Also shown is ðΔrÞ−1 with the radial grid size
Δr ¼ 3 m adopted in our simulations. The black dotted curve
shows the attenuated potential Vνν (see Sec. II B 2 and Table II)
while the blue dotted curve shows the parametrized matter
potential Vmat (see Sec. V D). We take δm2

atm ¼ 2.3 × 10−3 eV2

and δm2
⊙ ¼ 8 × 10−5 eV2 corresponding to the measured values

in atmospheric and solar neutrino experiments respectively.
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ΔjiðEÞ ¼
Nr=L

1þ eðr−ri:b:−li:b:Þ=wi:b:

ϱeq;iiðEÞ
ϱFOðEÞ þ ϱeq;iiðEÞ

;

ΔχiðEÞ ¼
Nr=L

1þ eðr−ri:b:−li:b:Þ=wi:b:

ϱFOðEÞ
ϱFOðEÞ þ ϱeq;iiðEÞ

; ð15Þ

before we apply the attenuation factor described in the
above subsection, such that neutrinos in this zone reach
equilibrium state ϱeq;ii determined by the local temperature

and the equilibrium neutrino chemical potential μðeqÞν ¼
μe þ μp − μn within ∼0.5 ms. The purpose of having this
equilibrium zone is mainly to prevent the artificially fast
leakage of ν̄e below ∼10 MeV and νμ below ∼20 MeV due
to the lack of their main production and opacity source of
(inverse) bremsstrahlung process that are not included
here [99,106]. At the outer boundary, we employ the
free-streaming boundary condition for forward propagating
neutrinos with vr ≥ 0, and force neutrino density matrices
to be zero for backpropagating ones. A different outer
boundary condition was used in Ref. [76] where neutrinos
with equilibrium number density multiplied by a dilution
factor are injected inward. We also tested this boundary
condition and found negligible impact to our results when
the dilution factor is < 10−4 given that we focus on the
transport near the neutrino sphere rather than the possible
halo effect [107] at large radii.
Since we evolve the neutrino density matrices over static

matter backgrounds provided by snapshots from AGILE-
BOLTZTRAN, but use a slightly different set of neutrino
reactions, we do not directly take the detailed neutrino
distributions from BOLTZTRAN and evolve them with
Eqs. (1) and (2). Instead, we adopt a two-step approach
as follows. First, we take the local thermal equilibrium state
ϱeq and ϱ̄eq at each radius (with nonzero values in diagonal
components only) as the initial condition, and evolve them
with extended COSEν by neglectingH and H̄. Typically, ϱ
and ϱ̄ reach a stationary state after a simulation time
t ∼ 1 ms. The stationary state derived in this way auto-
matically contains anisotropic angular distribution near and

outside the neutrino sphere due to the advection and
collisions. Note that the EA and NNS rates are all evaluated
based on a given background profile with the exception that
now we assume the condition of μνμ ¼ 0 in the beginning
instead of Yμ ¼ 0 (i.e., μμ ¼ 0). It is a good approximation
to have μνμ ≈ μμ ≈ 0 because initially νμ and ν̄μ are
produced by pair processes and the same for μþ and μ−.
After obtaining the stationary-state distribution of ϱ and

ϱ̄ without flavor oscillations, we take this as the initial
condition for simulations fully taking into account all terms
in Eqs. (1) and (2) for each snapshot.
When the vacuum term Hvac is ignored, we apply an

initial seed of neutrino flavor mixing using an Gaussian
perturbation for the off-diagonal elements of ϱν (ϱ̄ν) to
trigger the flavor instability

ϱperteμ ðE; vrÞ
ϱeeðE; vrÞ − ϱμμðE; vrÞ

¼ ϱ̄perteμ ðE; vrÞ
ϱ̄eeðE; vrÞ − ϱ̄μμðE; vrÞ

¼ 10−3 exp

�
−
�
r ½km� − 47.5

10

�
2
�
:

ð16Þ

We also examine several cases that include Hvac (see
Sec. V C). For those cases, because Hvac generates flavor
mixing automatically, no artificial perturbations are given
initially.

4. List of evolved models

We take four hydrodynamical snapshot profiles at differ-
ent post-bounce times tpb ¼ 144 ms, 247 ms, 503 ms, and
1000 ms from the BOLTZTRAN SN simulation, labeled by
Models I–IV in Table II. For all models, we evolve ϱ and ϱ̄
between ri:b: ¼ 10 km and ro:b: ¼ 85 km with the total
radial range L ¼ 75 km. For each snapshot, we perform
three simulations using different radial resolutions. Our
fiducial models listed in Table II are high-resolution ones
with Nr ¼ 25 000. Comparison to results obtained with
smaller Nr ¼ 10 000 and 2500 are given in Appendix B.

TABLE II. Parameters used in each model. For all models, the radial range is from 10 km to 85 km, li:b: ¼ 6 km,
wi:b: ¼ 0.2 km, Nr ¼ 25 000, Nvr ¼ 50, NE ¼ 20, a4 ¼ 1=Δr [km−1], a5 ¼ 1=ð2ΔrÞ [km−1], and θV ¼ 10−6.

Model tpb [ms] a1 a2 [km] a3 [km] bEA bNNS δm2 [eV2] Vmatðr½km�Þ [km−1]

I 144 10−3 45 4.5 1 0 0 0
II 247 10−3 35 3 1 0 0 0
III 503 10−3 25 1.5 1 0 0 0
IV 1000 10−3 21 1.1 1 0 0 0

IIn 247 10−3 35 3 1 1 0 0
IIe1 247 10−3 35 3 2 0 0 0
IIe2 247 10−3 35 3 4 0 0 0
IIv1 247 10−3 35 3 1 0 8 × 10−5 0
IIv2 247 10−3 35 3 1 0 2.3 × 10−3 0
IIm 247 10−3 35 3 1 0 0 ð500=3Þ · exp½−ðr − 10Þ4=184�

ZEWEI XIONG et al. PHYS. REV. D 107, 083016 (2023)

083016-6



For angular grids, we take vr uniformly between −1 and 1
with Nvr ¼ 50. We have also examined cases with Nvr ¼
200 for the lowest radial-resolution runs and found that the
results are nearly identical (see Appendix B). We take
NE ¼ 20 energy grids between 2 MeV to 160 MeV spaced
nearly uniformly in logarithmic scale.
Since our main goal is to examine the flavor conversions

triggered by the collisional instability without the interfer-
ence of other types of flavor instability, we first only include
in our fiducialmodels the neutrino self-induced term, the full
form of EA, and the diagonal elements ofCNNS for the NNS
collisions, which are the minimal ingredients to induce the
collisional instability. For Model II, we perform additional
simulations including Hvac and Hm separately and study
their effects. Moreover, we introduce two auxiliary param-
eters bEA and bNNS, which are multiplied to all off-diagonal
elements ofCEA andCNNS. Different values of bEA ¼ 1, 2, 4
and bNNS ¼ 0, 1 are taken to test possible impact of the size
of the off-diagonal elements inCEA andCNNS on the results.
Table II summarizes all models presented in this paper. Each
simulation takes ∼Oð30000Þ CPU hours for a duration of
simulation time t ∼ 1 ms.

III. LINEAR STABILITY ANALYSIS

We perform the linear stability analysis in the regime
where the off-diagonal elements of density matrices are
small and can be treated as perturbations compared
to the number densities, i.e., jϱeμj=jϱee − ϱμμj ≪ 1 and
jϱ̄eμj=jϱee − ϱμμj ≪ 1 [108,109]. Neglecting the vacuum
and matter Hamiltonian contribution as well as the aberra-
tion term, we further assume that a collective mode of
the perturbation ϱeμ ¼ QðΩ; Kr; E; r; vrÞe−i½Ωt−Krðr0−rÞ� and
ϱ̄�eμ ¼ Q̄ðΩ; Kr; E; r; vrÞe−i½Ωt−Krðr0−rÞ� can develop locally
near r. With these assumptions, the off-diagonal parts of
Eqs. (1) and (2) become

½Ω−Krvr−ΦðvrÞþ iCeμ;EAðEÞ�QðΩ;Kr;E;vrÞ

¼−
ffiffiffi
2

p
GF½ϱeeðE;vrÞ− ϱμμðE;vrÞ�

Z
dE0 dv0r

× ð1−vrv0rÞ½QðΩ;Kr;E0; v0rÞ− Q̄ðΩ;Kr;E0; v0rÞ�; ð17Þ

and

½Ω−Krvr−ΦðvrÞþ iC̄eμ;EAðEÞ�Q̄ðΩ;Kr;E;vrÞ

¼−
ffiffiffi
2

p
GF½ϱ̄eeðE;vrÞ− ϱ̄μμðE;vrÞ�

Z
dE0dv0r

× ð1−vrv0rÞ½QðΩ;Kr;E0;v0rÞ− Q̄ðΩ;Kr;E0;v0rÞ�; ð18Þ

where ΦðvrÞ¼
ffiffiffi
2

p
GF

R
dE0dv0rð1−vrv0rÞ½ϱeeðE0;v0rÞ−

ϱμμðE0;v0rÞ− ϱ̄eeðE0;v0rÞþ ϱ̄μμðE0;v0rÞ�, Ceμ;EAðEÞ¼½jeðEÞþ
χeðEÞþjμðEÞþχμðEÞ�=2, and C̄eμ;EAðEÞ¼½j̄eðEÞ þ
χ̄eðEÞþ j̄μðEÞþ χ̄μðEÞ�=2. The eigenvalues of Ω can be

numerically derived for a given wave number Kr using the
same discretization scheme for both E and vr as in the
simulations. Solutions derived in this way will be shown in
the next section to help understand the simulation outcome.
Another useful simplification that one can take is to

consider the limit where the environment is homogeneous
and all neutrinos are monochromatic. Taking these assump-
tions, the linearized equations above can be further sim-
plified into

ðΩþ iCeμ;EAÞQðΩÞ ¼ −
ffiffiffi
2

p
GF½Δnν̄QðΩÞ − ΔnνQ̄ðΩÞ�;

ðΩþ iC̄eμ;EAÞQ̄ðΩÞ ¼ −
ffiffiffi
2

p
GF½Δnν̄QðΩÞ − ΔnνQ̄ðΩÞ�:

ð19Þ

The corresponding eigenvalue of Ω therefore satisfies a
quadratic secular equation

Ω2þ½iðCeμ;EAþ C̄eμ;EAÞþ
ffiffiffi
2

p
GFðΔnν̄−ΔnνÞ�Ω

¼ i
ffiffiffi
2

p
GFðCeμ;EAΔnν− C̄eμ;EAΔnν̄ÞþCeμ;EAC̄eμ;EA; ð20Þ

where Δnν ¼ nνe − nνμ and Δnν̄ ¼ nν̄e − nν̄μ . The imagi-
nary part of analytical solutions can be obtained as

ImðΩÞ≈−
jCeμ;EAþ C̄eμ;EAj

2
�jCeμ;EA− C̄eμ;EAj

2

×
jΔnνþΔnν̄j
jΔnν−Δnν̄j

�
1−

1

4G2
F

�
Ceμ;EA− C̄eμ;EA

Δnν−Δnν̄

�
2
�

ð21Þ

to the order of O½C3
eμ;EA=ðGFΔnνÞ2�. When

ffiffiffi
2

p
GFðΔnν −

Δnν̄Þ, i.e.Vνν, becomesmuch larger than the collisional rates,
the high-order term is negligible and approaches to an
asymptotic value. Although this simplified expression
cannot replace Eqs. (17) and (18) to precisely predict the
growth rates, it can help us quantitatively understand the
general feature of the neutrino system. Whether there exists
a runaway solution roughly depends on the relation
between the asymmetry factor of EA rates αC ≡ jCeμ;EA −
C̄eμ;EAj=jCeμ;EA þ C̄eμ;EAj and that of neutrino number den-
sities αn ≡ jΔnν − Δnν̄j=jΔnν þ Δnν̄j [71]. Clearly, when
ignoring higher-order terms in Eq. (21), larger asymmetry in
the EA rates and smaller asymmetry in neutrino number
densities can result in a positive imaginary value of Ω,
which leads to an instability. The criteria of having the
instability is usually satisfied near the neutrino sphere. The
reason is twofold. First, around the neutrino sphere the Ye is
usually low (Ye ≲ 0.15) such that the νe EA rates can be
much larger than that of ν̄e by a factor of≈5–10. Second, the
νμ and ν̄μ number densities are usually higher than that of ν̄e
well inside the neutrino sphere but become smaller around
the sphere, due to the diffusion of νμ. At radii where
nνμ ≃ nν̄μ ≲ nν̄e , the asymmetry factor in neutrino number
densities becomes the largest. Thus, a combination of these
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two facts allows the instability generally exist around the
neutrino sphere.
We caution that the factors discussed above are not

necessarily the only ones determining how the collisional
instability to induce flavor conversions. This is because in
the stability analysis presented above, we ignored the
aberration term and assume the neutrino number density
is locally homogeneous. To understand the role of these
dynamical properties, it requires a complete simulation as
we will discuss in the next two sections. However, the
linear stability analysis still provides some insights to the
underlying mechanism that drives the flavor instability as
will be discussed further below.

IV. RESULTS OF COLLISIONAL INSTABILITY

For all four fiducial models (I) that represent different
evolution stages of the CCSN model, we observe the
occurrence of collisional instability. The features in
Model II, III, and IV are qualitatively similar while
Model I shows a unique behavior. Below, we begin by
discussing results obtained inModel II. We then address the
similarities and differences of the models.
For this section, we define energy-integrated density

matrices hϱiEðvrÞ ¼
R
dEϱðE; vrÞ, angle-integrated den-

sity matrices hϱiAðEÞ ¼
R
dvrϱðE; vrÞ, and neutrino mean

energy

hEνii ¼
R
dEdvrEϱiiðE; vrÞR
dEdvrϱiiðE; vrÞ

; ð22Þ

where i ¼ e, μ for analysis.

A. Model II

We first show in Fig. 2 the energy-integrated diagonal
and off-diagonal elements of neutrino density matrices
hϱμμiE (left panels) and jhϱeμiEj (middle panels), as well as
the dimensionless ratio seμ ≡ jhϱeμiEj=jhϱeeiE − hϱμμiEj
(right panels), as functions of r and vr taken at different
times from the COSEν simulation for Model II. Both the left
and middle panels show the anisotropic shape of hϱμμi and
jhϱeμij at larger radii due to the nature of neutrino free
streaming. However, the ratio seμ in right panels reveals that
the development and evolution of the flavor off-diagonal
elements in fact depend on vr rather weakly. Clearly,
the flavor instability existing around r ¼ 25–30 km in the
beginning leads to the rapid growth of jhϱeμiEj to the
nonlinear regime within ∼0.008 ms, indicated by seμ ≳ 0.1.
Afterwards, seμ stops growing in magnitude and splits into
two branches that move in two opposite directions. The
inward moving one gets damped by the interaction with
denser medium and eventually disappears at ∼0.04 ms. The
outward going branch propagates with a group velocity of
∼0.4 and further bifurcates into another two sub-branches

FIG. 2. Evolution of energy-integrated number density hϱμμiE (left panel), flavor mixing jhϱeμiEj (middle panel), and the
dimensionless ratio seμ ≡ jhϱeμiEj=jhϱeeiE − hϱμμiEj (right panel) for Model II.
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at ∼36 km around t ∼ 0.08 ms. The inner sub-branch
moves at a similar group velocity of ∼0.4 and disappears
at t ∼ 0.5 ms. On the other hand, the outer one propagates
with a group velocity of ∼0.9, quick enough to reach
the free-streaming region where flavor mixing gets trans-
ported away from our simulation domain for positive vr
modes. Afterwards, the neutrino fields remain stable
(against oscillations) for a duration of ∼0.2 ms during
0.5 ms≲ t≲ 0.7 ms. At t ≈ 0.7 ms, the collisional insta-
bility appears once again around r ∼ 28 km after the
neutrino field self-regulates its distributions near the
decoupling region. Unlike the first instability discussed
above, the flavor mixing due to the second collisional
instability does not get transported away this time and
eventually freezes into a stationary state until the end of our
simulation at t ∼ 1 ms.
Figure 3 shows the maximum growth rates of flavor

instabilities among all Kr modes, ImðΩÞ, as a function of
radius for Model II at different times. These ImðΩÞ are
derived by numerically solving the linearized Eqs. (17) and
(18). At t ¼ 0 ms, ImðΩÞ peaks at r ≃ 27 km. The growth
of this instability thus dominates the evolution of the
system initially, consistent with results shown in Fig. 2.
When t ¼ 0.024 ms after flavor transformation occurs,
ImðΩÞ in 25 km≲ r≲ 32 km becomes smaller than
∼0.1 km−1, while its value maintain roughly the same
for r≳ 32 km. For t ¼ 0.42 ms when flavor mixings
around r ∼ 30 km gets suppressed, ImðΩÞ < 0.1 km−1

for all radii. At an even later time t ¼ 0.66 ms when flavor
conversion reappears (see Fig. 2), larger ImðΩÞ are found in
27 km≲ r≲ 31 km again.

We compare the maximum growth rates obtained from
the stability analysis at 0 ms with the numerical evolution
for Model II at four different radii. Figure 4 shows that the
time evolution of seμ of radial velocity vr ¼ 1 in the linear
regime perfectly agree with the prediction determined by
seμðt ¼ 0Þ exp½ImðΩÞt� at 28 km, 30 km, and 32 km,
respectively, which is expected since the growth of colli-
sional instability dominates over the disturbance from
advection.
Although positive ImðΩÞ are found for nearly all radii

larger than 20 km at all times, not all of them lead to the
growth of jhϱeμij in the simulation. This is because the
stability analyses can only tell how a perturbation evolves
around where the local condition can be maintained.
However, in realistic simulations where advection occurs
in the presence of inhomogenous neutrino number density,
the instability growth rate needs to compete with advection
for a perturbation to grow before it being transported away.
To illustrate this, we show in Fig. 2 a characteristic value of
advection rate as 5=r for Model II by the red solid line. We
take this function in an empirical way motivated by the
advection term in Eqs. (1) and (2) being generally propor-
tional to 1=r. Comparing Figs. 2 and 3, it seems to suggest
that when ImðΩÞ is roughly less than 5=r, the growth rate of
the instability is too small against the advection, such that
no significant flavor conversion can develop. For example,
although the stability analysis yields a positive ImðΩÞ at
r ¼ 40 km and t ¼ 0 ms, seμ decreases in the simulation as
shown in Fig. 4. In addition, ImðΩÞ are positive from
0.024 ms to 0.42 ms at r ¼ 27 km in Fig. 3, while seμ
decreases in Fig. 2.
Next, we examine the impact of flavor conversion due to

collisional instability on the property of neutrinos of all

FIG. 3. Growth rates ImðΩÞ from linear stability analysis as
functions of radius r for four simulation times in Model II. We
sample 31 values of Kr from −2 km−1 to 2 km−1 and show the
maximal values for each radius. The red curve indicates 5=r as an
empirical criteria to determine the growth of instability against
advection.

FIG. 4. Time evolution of the dimensionless ratio seμ of radial
velocity vr ¼ 1 for four different radii in Model II. Each of them
is compared with a black dashed line determined by seμðt ¼
0Þ exp½ImðΩÞt� with the growth rate ImðΩÞ in Fig. 3 at t ¼ 0 ms.
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flavors. Figure 5 shows the angular-integrated neutrino
energy spectra hϱνiA for two radii r ¼ 32 and 55 km at
three different simulation times t ¼ 0.0, 0.02, and 0.16 ms.
For r ¼ 32 km close to where the initial flavor instability
occurs, the maximum amount of flavor conversion happens
when t ∼ 0.02 ms. At this time, the νμ spectrum is
significantly shifted towards low energy compared to the
one at t ¼ 0, because high-energy νμ are converted to νe
while low-energy νμ receive contribution from flavor
conversion of νe in return. However, the spectra of both
νe and ν̄e are only affected marginally (reduced by
∼5%–8% near 15 MeV). This is mainly because the
relatively large EA processes [(1a)–(1c) in Table I] that
act on νe and ν̄e quickly bring them to a state close to
thermal equilibrium. At later times after the flavor mixing
gets transported to outer radii, e.g., t ¼ 0.16 ms shown in
Fig. 5, the EA processes restore the νe and ν̄e spectra fully
back to the equilibrium state, while the advection of νμ from
denser region gradually shifts the peak of its spectrum to

higher energy again. For spectra at a larger radius of
r ¼ 55 km, the νμ spectrum remains identical as the initial
one in the beginning (e.g., at t ¼ 0.02 ms) since there is no
flavor instability at this radius. Differences only show up at
later times (e.g., at t ¼ 0.16 ms) when the νμ affected by
collisional instability propagate here from inner radii,
leading to a clearly visible shift of νμ spectra to low energy.
For νe and ν̄e, EA collisions wipe out all the effects due to
flavor conversions such that their spectra remain unaffected
by collisional instability at all.
Our results here suggest that there exists a fundamental

difference in models assuming spatial homogeneity (e.g.,
Ref. [71]) and more realistic ones including advection. For
a model where spatial homogeneity is assumed and
advection is neglected, flavor conversion due to collisional
instability can lead to νμ spectrum identical to that of νe or
ν̄e given enough time. This is because in homogeneous
models, νμ (decoupled from medium collisionally) con-
tinuously acquires supply from electron neutrinos due to
flavor conversion while electron flavors can be repopulated
by EA processes, so that their spectra becomes identical
given long enough time. However, similar to what argued
above regarding the growth of instability, in a realistic
environment, the advection introduces another timescale so
that the transport of νμ away from where the insta-
bility occurs can prevent their spectra become identical
to that of νe.
In addition to the energy spectra, we examine two

energy-integrated quantities, the neutrino number density
and mean energy, to characterize the transport of collision-
induced neutrino flavor conversion. Figure 6 shows the
radial profile of these two quantities at different times. The
νe and ν̄e number densities are barely affected except for
the tiny dip in νe around 31 km at t ¼ 0.02 ms. For νμ,
slight changes of nνμ due to flavor conversion around 32 km
are present. More clearly visible is the larger enhancement
of nνμ at t ¼ 0.16 ms for r≳ 35 km due to the extra
contribution from the converted ones at the low energy
part of the spectrum discussed above. Although the impact
on the number densities seem to be small, flavor conversion
and transport due to collisional instability does lead
to significant changes to the mean neutrino energies,
particularly for νμ. Figure 6(b) shows that a large decrease
of hEνμi from≃40 MeV locally around r ≃ 30 km to as low
as ≲30 MeV at 0.02 ms due to flavor conversion. Once
again, this effect gets transported outward and leaves
behind a lowered hEνμi for r≳ 25 km at e.g., t ¼ 0.16 ms.

B. Models I, III, and IV

After examining the simulation results in Model II, we
now discuss the similarity and differences obtained in
Model I, III, and IV, based on different background SN
profiles taken from the BOLTZTRAN simulation. Figure 7
shows the evolution of seμ for these three models. For

(a)

(b)

FIG. 5. Angle-integrated energy spectrum for νeðsolidÞ, ν̄e
(dashed), and νμ (dash-dotted) at two radii [32 km in panel (a)
and 55 km in panel (b)]. Blue, orange, and green colors
correspond to three different simulation times 0.0 ms,
0.02 ms, and 0.16 ms, respectively. Note that in panel (b), the
blue curve of overlaps with the orange curve for νμ, while the blue
and orange curves overlap with the green curve for νe and ν̄e.
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Model I, the collisional instabilities are not strong enough
at the beginning so the Gaussian perturbation simply gets
transported outward. At t ∼ 0.2 ms, an unstable mode
grows around r ∼ 38 km. The growth rate is significantly
lower than that in Model II since the dimensionless
ratio reaches at maximum ∼5 × 10−3 at t ¼ 0.5 ms and
∼5 × 10−2 at t ¼ 0.74 ms.
For Models III and IV, the flavor conversion and

transport behave similarly to Model II. Collisional
instabilities develop immediately around 20–25 km and
18–22 km in these two models, respectively. Afterwards,
they grow to a nonlinear regime and bifurcate. Once again,
the inward going mode gets suppressed and the outward
going mode sustains and propagate to larger radii. Also,
second onsets of flavor instability happen in both models at
t ≃ 0.36 ms and t ≃ 0.2 ms and seem to reach stationary
states without propagating outwards at the end of our
simulations.
As in Model II, the effect of flavor conversions on radial

profile of number densities in all three models are limited
and we do not present them explicitly. For the neutrino
mean energies, we show results from Model III and IV in

Fig. 8. Similar to Fig. 6, the collisional instabilities lead to
significant reductions of hEνμi by ∼Oð10Þ MeV and
slightly increases hEνei and hEν̄ei at where the instabilities
occur. The changes in νμ are carried to large radii, while
strong EA collisions of νe and ν̄e refrains their local
changes from propagating outwards.
The general behaviors in those four models can be

understood with the simple criteria of asymmetries in
neutrino number densities and the collision rates in
Eq. (21). Given that Ceμ;EA=C̄eμ;EA≈χe=χ̄e≈ð1−YeÞ=Ye,
the asymmetry factor of EA rate is αC ≃ j1 − 2Yej.
Neglecting the higher-order correction, Eq. (21) predicts a
local instability when αC > αn with a growth rate propor-
tional to jCeμ;EA þ C̄eμ;EAj × ðαC=αn − 1Þ.
Figure 9 compares j1 − 2Yej ≃ αC (dashed curves) to αn

(solid curves) and shows the corresponding Ye profiles in
the bottom panel. The deleptonization in CCSN leads to
more neutron-rich condition near the neutrinosphere at the
later time so that the maximal value of j1 − 2Yej ≃ αC
increases with time. For αn, it is larger than 1 in denser
region where nνe > nνμ > nν̄e but decreases with radius and
asymptotic to a value smaller than 1 for all four snapshots.
More importantly, the asymptotic αn < 1 is lower at a later
SN snapshot considered. This is because the SN evolves
from the initial stage of neutronization burst dominated by
νe emission toward the accretion phase where the difference
between νe and ν̄e becomes smaller, thus leading to smaller
values of the asymptotic αn. Consequently, αC=αn > 1
become larger around the neutrinosphere in a later SN
profile. Moreover, the collision rates also increases as the
matter density around the neutrinosphere increases over
time. Combining all these factors described above, it is
clear that later SN stages contain more favorable conditions
for the collisional instabilities to grow against advection,
consistent with our simulation results.
Our results obtained above in Models I–IV tend to

suggest that the collisional instability in spherically sym-
metric SN models can affect the properties of heavy lepton
flavor neutrinos at and beyond their decoupling region, but
does not lead to major impact on νe and ν̄e spectra above
their neutrinospheres. Thus, the effect of collisional insta-
bility are more likely to manifest in the CCSN dynamics
and the emitted neutrino signals, and may moderately affect
neutrino (induced) nucleosynthetic processes that are
sensitive to the spectra of heavy-lepton neutrino flavors.
For the condition of nucleosynthesis in the neutrino-driven
wind, the impact of collisional instability may be minor
since the outcome depend more on the properties of νe
and ν̄e.

V. EFFECTS OF OTHER TERMS ON
COLLISIONAL INSTABILITY

As mentioned earlier, the typical timescale for collisional
instability is in similar order as the inverse of collisional rates.

(a)

(b)

FIG. 6. Radial profiles of neutrino number densities [panel (a)]
and mean energies [panel (b)] for νe ðsolidÞ, ν̄e (dashed), and νμ
(dash-dotted) at two radii (32 km and 55 km). Blue, orange, and
green colors correspond to three different simulation times
0.0 ms, 0.02 ms, and 0.16 ms, respectively.
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This makes this problem different from e.g., the fast flavor
conversion forwhich effects from thevacuummixing,matter
inhomogeneity, and collisions may be ignored to a good
approximation for local simulations [28,51,52,54,56,57].
In the previous section, we ignored the vacuum term Hvac,
the matter termHmat, and the impact of the NNS collision on
the off-diagonal elements of the neutrino density matrices,
for the purpose of purely investigating the outcome of
collision instability. In this section, we explore consequences

of including these terms eachbyeach, aswell as effects due to
the artificially enhanced decoherence in EA based on the SN
background used for Model II. These six additional models
are listed in the second part of Table II. The simulation results
for all of them are summarized in Figs. 10 and 11: The former
shows the radial profile of jhϱeμiEj for the angular mode
vr ¼ 1 at different times, while the latter shows the mean
energies of νμ as a function of radius at the same simulation
times. Below, we discuss the results of the impact due to the

FIG. 7. Evolution of the dimensionless ratio log10ðseμÞ in models I (left panel), III (middle panel), and IV (right panel) at different
simulation times. The lower-right corners in the middle and right panels have too small values of jhϱeeiE − hϱμμiEj < 1029 cm−3 and
hence are not shown.

(a) (b)

FIG. 8. Radial profiles of neutrino mean energies for νe ðsolidÞ, ν̄e (dashed), and νμ (dash-dotted) in model III [panel (a)] and model IV
[panel (b)]. Blue, orange, and green colors correspond to three different simulation times 0.0 ms, 0.02 ms, and 0.08 ms, respectively.
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NNS induced decoherence, the artificially enhanced EA
decoherence, thematter term, and thevacuum term in each of
the subsections.

A. NNS decoherence

We investigate the decoherence effect due to the NNS by
setting the parameter bNNS ¼ 1 in Model IIn, which allows
nonzero off-diagonal elements in CNNS and C̄NNS that were
artificially suppressed in Model I–IV. Figure 10(a) shows
that the evolution during the initial phase of t≲ 0.16 ms is
extremely insensitive to the decoherence of NNS as the
curves from Model II and Model IIn overlap. Deviations
start to appear at r≳ 36 km after t≳ 0.04 ms when the
flavor mixing propagate outwards. The NNS decoherence
effect in Model IIn suppresses the amount of flavor mixing
by a factor of ∼10 for all velocity modes than the result
obtained in Model II. The main reason that the NNS
decoherence effect only shows up at later times at larger
radii is related to the angular distribution of neutrinos at
locations where flavor mixing occurs. At r ∼ 30 km (inside
the neutrinosphere) where initially the instability grows, ϱeμ
are nearly isotropic (see Fig. 2) such that the NNS does not
affect their evolution [see Eq. (9)]. However, at larger radii
where ϱeμ becomes anisotropic in vr, the NNS decoherence
term not only isotropizes ϱeμ, but also leads to damping of
ϱeμ due to the interplay with Hνν. Since the NNS
decoherence term mainly affects ϱeμ, including this term
does not lead to any changes to the averaged neutrino
energy shown in Fig. 11(a).

B. Enhanced EA decoherence

The next models (IIe1 and IIe2) assume artificially
enhanced off-diagonal elements in CEA and C̄EA to
examine how the results depend on the size of these terms,
which are the major source of the collisional instability. We
take the enhancement factors bEA ¼ 2 in Model IIe1 and
bEA ¼ 4 in Model IIe2. Panel (b) and (c) in Fig. 10 show
that for most radii, seμ at 0.004 ms in Models IIe1 and IIe2
are similar to the values at 0.008 ms and 0.016 ms in
Model II, respectively. This is consistent with the con-
clusion obtained with the LSA in Sec. III, because only the
off-diagonal elements of Ceμ;EA and C̄eμ;EA enter the
linearized equation.
After the instability grows to the linear regime and

propagate outwards, the evolution of flavor mixing are also
clearly affected by the enhancement. Overall, the mixing
propagates faster with larger values of bEA but also gets
damped earlier (see e.g., the curves at 0.08 ms and
0.16 ms). The effect of faster propagation is also clearly
shown in the evolution of hEνμi shown in panels (b) and (c)
of Fig. 11.

C. Vacuum term

Models IIv1 and IIv2 include the vacuum Hamiltonian
Hvac. In both models, we assume an effectively reduced
mixing θV ¼ 10−6. For δm2, we take different values of
δm2 ¼ δm2

⊙ ¼ 8 × 10−5 eV2 for Model IIv1 and δm2 ¼
δm2

atm ¼ 2.3 × 10−3 eV2 for Model IIv2, which correspond
to the measured values in solar and atmospheric neutrino
experiments, respectively. For these models, we do not
apply any initial perturbation in the off-diagonal terms of ϱ
and ϱ̄ as flavor mixing is directly generated by Hvac.
Panels (d) and (e) of Fig. 10 show that the collisional

instabilities develop in both models and reach the nonlinear
regime within a similar timescale ∼Oð0.01 msÞ, similar to
the case using artificial initial Gaussian perturbation.
Because Model IIv2 has larger δm2 than Model IIv1,
which generates larger flavor mixing seed, seμ grows faster
in Model IIv2 in the linear regime.
For both models, we find that the inclusion ofHvac tends

to help amplify flavor mixing when they propagate out-
wards, as shown by the larger value of seμ around r ≃
38 km at t ¼ 0.048 ms (purple line). As a result, the
corresponding hEνμi in these models also become smaller;
see panels (d) and (e) in Fig. 11.
In Model IIv2 with a larger δm2, another instability

occurs at r ∼ 45 km at 0.032 ms, which later grows to the
nonlinear regime. This flavor conversion is not triggered by
the collisional instability, but due to the well-studied slow
mode (see Sec. I). However, we note that this onset of slow
mode in our simulation domain is related to the fact that we
have attenuated Hνν and neglected Hmat. Unlike the colli-
sional instability which is not sensitive to these assump-
tions, the slow mode instability can be suppressed by large

FIG. 9. Profiles for the asymmetry factor αn (solid), j1 − 2Yej ≃
αC (dashed) in the upper panel, and Ye in the lower panel at four
CCSN snapshots. An approximate condition for collisional
instability is αC > αn.
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values of Vνν and Vmat [110–112], and should only appear
at much larger radii if we had used Vνν and Vmat from the
corresponding SN simulation snapshot.

D. Matter term

An ingredient commonly ignored in the flavor evolution
equation of homogeneous oscillation models is the matter
term. In those models, the medium density is assumed to be
homogeneous such that it effectively introduces a global
phase to all considered neutrinos, which can be rotated
away [3]. However, since the length scale of collisional
instability is ∼Oð1Þ km, comparable to the scale length of
varying matter profile, the contribution of Hmat at different
locations varies, which may modify the dispersion relation
of the flavor wave.
Since the original Vmat from SN simulation snapshot has

the largest values in our simulation domain (see Fig. 1),

whose corresponding length scale of oscillations cannot be
resolved by our simulation setup, we take a parametric
function

Vmat ¼ ð2ΔrÞ−1 exp ½−ðr − 10 kmÞ4=ð18 kmÞ4� ð23Þ

shown by the blue dotted curve in Fig. 1 to probe the effect of
inhomogeneousmatter profile on the evolution of collisional
instability. This parametric function is taken in a way that it
mainly varies between 20 km and 50 km where the colli-
sional instability occurs. It becomes a constant when
r < 20 km and vanishes to zero when r > 50 km.
Figure 10(f) shows that although this inhomogeneous

matter term does not affect the initial evolution of flavor
instability for t ≤ 0.016 ms, it does affect the later transport
of flavor mixing by mainly reducing the group velocity of
the propagating flavor waves than that obtained in Model II

(a) IIn

(b) IIe1

(c) IIe2

(d) IIv1

(e) IIv2

(f) IIm

FIG. 10. Radial profiles of dimensionless ratio seμ of radial velocity vr ¼ 1 in exploratory Models IIn, IIe1, IIe2, IIv1, IIv2, and IIm
[from panel (a) to (f), respectively]. The simulation times are indicated by different colors as listed in the legend. Results from Model II
for each simulation time are presented by transparent and dashed curves for comparison.
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without any matter term, which is clearly demonstrated by
the red and purple curves at t ¼ 0.08 and 0.16 ms shown in
the same panel. Once again, this effect is also reflected
in hEνμi shown in Fig. 11(f), where the reduction of
the average energy spreads to larger radii more gradually
compared to Model II.

VI. DISCUSSION AND CONCLUSIONS

We have implemented a multigroup and discrete-
ordinate collective neutrino oscillation simulator, and
solved the neutrino QKE in a spherically symmetric
geometry, including global advection as well as realistic
collisional rates in a self-consistent way. We used this
simulator to study the occurrence and transport of

collisional instability in the absence of fast flavor con-
version. Our simulations were performed within the radial
range of 10 km to 85 km under hydrostatic backgrounds
taken at different stages from a CCSN simulation. We
confirmed the existence of collisional instability near the
neutrinosphere, and found that the strength of instability
increases in later SN stages which have more asymmetric
EA rates due to the deleptonization of the matter and less
differences between νe and ν̄e number densities.
We found that the collisional instability can lead to

significant flavor conversions in three fiducial models that
we examined (Models II–IV), which included minimal
ingredients to trigger the instability. Flavor mixing devel-
oped at the location of the initial instability can be trans-
ported both inwards and outwards. The inner branch gets

(a) IIn

(b) IIe1

(c) IIe2

(d) IIv1

(e) IIv2

(f) IIm

FIG. 11. Radial profiles of neutrino mean energies for νe ðsolidÞ, ν̄e (dashed), and νμ (dash-dotted) in exploratory Models IIn, IIe1,
IIe2, IIv1, IIv2, and IIm [from panel (a) to (f) respectively]. The simulation times are indicated by different colors as listed in the legend.
Results from Model II are presented in more transparent colors for each simulation time for comparison.
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damped and reset by collisions, while the outer branch
transports to the free-streaming regime. For electron (anti)
neutrinos, although their distributions are affected at the
onset of the flavor conversion, the relatively large EA rates
quickly reset their spectra close to the equilibrium ones. For
heavy lepton (anti)neutrinos, flavor conversions not only
affect their distributions near their decoupling region, but
also leave imprints in their spectra at the free-streaming
regime. Overall, their neutrino number densities are slightly
increased and their mean energy are significantly reduced.
In one of the four models (Model I), we found that the
growth rate of the flavor instability is too small against
advection so that flavor mixing does not reach the nonlinear
regime at the end of our simulation time ∼1 ms.
The results derived in this work suggest a major differ-

ence from Ref. [71]. Although (anti)neutrinos of heavy
lepton flavors are affected, their number densities do not
converge to those of electron (anti)neutrinos as predicted in
the homogeneous model wherein global advection is absent
and therefore flavor conversion runs to completion. Our
results also imply that although the collisional instability
may not directly affect the νe and ν̄e heating rates behind
the accretion shock, the altered emission of heavy lepton
flavors from region around neutrinosphere may still have
potential impact on supernova dynamics. In addition, the
changes of the energy spectra of heavy lepton flavors can
be probed by the future detection of nearby CCSNe with
high statistics.
Beyond the fiducial models, we have also examined

impacts from different terms in the QKE, including the
effects due to the NNS decoherence, artificially enhanced
EA decoherence, neutrino vacuum mixing, and inhomo-
geneous matter profile for Model II. Including the off-
diagonal element of the NNS-collisional term introduces
little changes to inner regions where neutrino distributions
are nearly isotropic, but damps flavor mixing at larger radii.
The artificially enhanced EA decoherence leads to higher
growth rates of flavor instability. With nonzero vacuum
mixing, the flavor instability reaches the nonlinear regime
earlier. It also results in further decreased mean energy of
heavy lepton flavor neutrinos. The inhomogeneous matter
potential mainly changes the group velocity of the flavor-
mixing wave by alternating the dispersion relation. We note
that although each of these terms affects the quantitative
behavior of the system, the qualitative features demon-
strated by our fiducial models remain robust.
Although our results confirmed and provided important

insights to understand the collisional flavor instability in
SN environment, some cautions should be noted. First, our
simulations are restricted by the trilemma among self-
consistency, advection, and exact rates and hence rely on
the strategical attenuation and parametrization of coherence
scattering potentials that may give rise to inaccurate results

when the vacuum mixing and matter potential are included.
Second, due to the computational limitation, we did not
include the NES contribution to collisions, which are
important in determining the exact mean energy of heavy
lepton flavors despite their subdominant role in trapping
them. It will be crucial to include these rates in future to
assess the actual impact of collisional flavor instabilities on
heavy lepton flavors. Moreover, our models are based on
static SN backgrounds and assume spherical symmetry,
thus neglects the potential impacts due to dynamic evolu-
tion of background profiles and the anisotropy, as well as
the feedback of flavor instability on SN evolution. It
remains to be seen how the conclusion derived in this
work holds in a more complete SN model where these
simplifications and assumptions are addressed.
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APPENDIX A: RATES OF COLLISIONS

The emissivity and opacity for EA processes are taken
from BOLTZTRAN using relativistic dispersion relations for
nucleons in the nuclear medium and including weak
magnetism, pseudoscalar term, and form factor effects [91].
NNS is almost elastic and commonly treated as iso-

energetic so that
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CNNSðE;vrÞ

¼1

2

Z
dv0r

�
−RNNSðE;vr;v0rÞ

�
ϱðE;vrÞ;I−

4π2

E2
ϱðE;v0rÞ

�

þRNNSðE;v0r;vrÞ
�
ϱðE;v0rÞ;I−

4π2

E2
ϱðE;vrÞ

��
; ðA1Þ

where, e.g., 4π2ϱeeðE; vrÞ=E2 inside the anticommutator is
the distribution function of νe accounting for the Pauli
blocking. This isoenergetic scattering kernel has the
symmetry RNNSðE; vr; v0rÞ ¼ RNNSðE; v0r; vrÞ so that the
blocking in the gain and loss terms cancels as
fϱðE; vrÞ; ϱðE; v0rÞg ¼ fϱðE; v0rÞ; ϱðE; vrÞg and effectively
has no impacts.
The two moments of NNS opacities in Eq. (9) without

weak-magnetism and recoil correction are given as below

χNNSðEÞ¼
G2

FE
2

π
½ðc2V;nþ3c2A;nÞηnþðc2V;pþ3c2A;pÞηp�;

χ̃NNSðEÞ¼
G2

FE
2

π
½ðc2V;n−c2A;nÞηnþðc2V;p−c2A;pÞηp�; ðA2Þ

with weak coupling constants cV;p ¼ 1=2 − 2sin2θW,
cV;n ¼ −1=2, cA;p ¼ gA=2, cA;n ¼ −gA=2, gA ≈ 1.27, and
sin2 θW ≈ 0.23. The effective number densities

ηN ¼ 3TnNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E2

F;N þ 9T2
q ðA3Þ

account for the nucleon final state blocking with Fermi
energies EF;N ¼ ð3π2nNÞ2=3=ð2muÞ, and number densities
nN ¼ ρYN=mu for N ¼ n, p, respectively.

APPENDIX B: RESOLUTION

In this section we discuss the dependence of our results
on the adopted simulation resolutions for Model II. In
addition to the fiducial models with highest radial reso-
lution Nr ¼ 25 000, we examine the other two different
radial resolutions with Nr ¼ 10 000 and 2500. For models
with lower radial resolutions, we use the same parameters
for Model II listed in Table II, except a1 ¼ 4 × 10−4 for
Nr ¼ 10 000 and a1 ¼ 10−4 for Nr ¼ 2500. The different
choice of a1 here is to satisfy the requirement that the
length scale of oscillations can be resolved by Δr. We
have also examined cases with Nvr ¼ 200 for the lowest
radial-resolution runs. The evolution histories are shown in
Fig. 12. The case with Nvr ¼ 200 undergoes almost
identical evolution as the one with Nvr ¼ 50 which shows
that 50 angular grids are sufficient.
With the same number of angular grids Nvr ¼ 50, the

lowest radial-resolution run (Nr ¼ 2500) shows clearly

FIG. 12. Evolution of the dimensionless ratio log10ðseμÞ in Model II at tpb ¼ 247 ms with three resolutions: Nr ¼ 10 000, Nvr ¼ 50
(left panel), Nr ¼ 2500, Nvr ¼ 50 (middle panel), and Nr ¼ 2500, Nvr ¼ 200 (right panel).
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visible differences from results obtained with intermediate
(Nr ¼ 10 000) and high (Nr ¼ 25 000) resolutions. First of
all, the grow rate in the initial linear regime is reduced while
the onset radius of instability shifts from r ≈ 29 km to
32 km. Similar to runs with higher resolutions, after the
flavor mixing reaches nonlinear regime between t ¼ 0.02
and 0.04 ms, it bifurcates. However, the inward-moving
branch does not get damped completely, regrows around
t ∼ 0.2 ms, and eventually reaches the stationary state
much earlier than the high resolution runs by ≈0.5 ms.
On the other hand, results obtained with Nr ¼ 10 000 and
Nr ¼ 25 000 (see Fig. 2) are qualitatively more similar,
although slight differences exist.
The smaller growth rates in the initial linear regime with

Nr ¼ 2500 is related to the imposed larger attenuation on
Hνν. As indicated from Eq. (21), if Vνν and collisional rates
are in similarmagnitude, the high-order term can reduces the
growth rate of the instability. On the other hand, if Vνν is
much larger than the collisional rates, the growth rate of
collisional instability converges to an asymptotic value. The
LSA analysis results obtained by solving Eqs. (17) and (18)
also support this conclusion. Figure 13 shows the growth
rates as functions of radius for all three radial resolution runs
at t ¼ 0. The peak of growth rates with Nr ¼ 2500 has
ImðΩÞ ≈ 1.6 km−1 at ∼30 km, lower than other two cases
with peak values ≈5–6 km−1 at ∼26–27 km.
For the resolution in the energy grid, in addition to

NE ¼ 20, we have also used NE ¼ 8. However, we find

that in this case each grid has too wide width to
accurately model the sharp dependence of the muonic
EA rates at ∼65 MeV. This insufficient resolution then
leads to the artificial amplification of number density nνμ
near the decoupling region and affects our simulation
results.
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