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We identify a geometric symmetry on the two-flavor Bloch sphere for collective flavor oscillations of a
homogeneous dense neutrino gas. Based on this symmetry, analytical solutions to the periodic bipolar
flavor evolution are derived. Using numerical calculations, we show that for configurations without this
symmetry, the flavor evolution displays deviations from the bipolar flavor motion or even exhibits
aperiodic patterns. We also discuss the implication of our finding for more general three-flavor and
inhomogeneous cases.
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I. INTRODUCTION

Neutrino flavor oscillations in vacuum and ordinary
matter are well established by solar, atmospheric, reactor,
and accelerator neutrino experiments [1]. In astrophysical
environments such as core-collapse supernovae and binary
neutron star mergers, where neutrinos are produced copi-
ously, coherent forward scattering couples neutrinos emit-
ted with different energies and directions. The nonlinear
nature of this neutrino self-coupling leads to a variety of
collective phenomena involving flavor instability and con-
version, which can impact the dynamics and nucleosyn-
thesis of those astrophysical environments [2–14].
Collective neutrino flavor evolution is in general a highly

complicated quantum problem that can be affected bymany-
body entanglements and correlations [15–24], nonforward
scatterings (collisions) of neutrinos [25–33], advection of
neutrinos in an inhomogeneous environment [34–44], and
participation of all three flavors [45–50]. Calculations
including all these aspects are practically infeasible at the
moment. Mean-field approximation, collisionless limit,
assumption of homogeneity, and two-flavor simplification
were often adopted (although not always all at the same time)
in order to elucidate different aspects of the nonlinear system
and make the treatment tractable. In particular, under all the
above assumptions, neutrino flavor evolution can be studied

in terms of the polarization vectors on a Bloch sphere under
the SUð2Þ algebra [51,52]. We follow this instructive
approach in this work.
Depending on the neutrino spectral and angular distribu-

tions,variousmodesofflavor instabilities including the“slow”
and “fast” types have been identified (see, e.g., [53–57] for
reviews). The slow mode requires “crossings” in the neutrino
energy spectrumwhile the fast mode demands the same in the
neutrino angular distributions [58–61].Dependingonwhether
the azimuthal symmetry is spontaneously broken or not, the
slow mode can be further subdivided into the multi-zenith-
angle (MZA)ormulti-azimuthal-angle (MAA) type,while the
fast mode can be subdivided into the axially symmetric (AS)
or axial-symmetry-breaking (SB) type1 [58,62–67].
Flavor evolution induced by some instabilities (e.g., the

single-angle slow and single-energy AS fast modes) shows
periodic and bipolar behavior, for which in each period
neutrinos undergo flavor conversion but soon return to
their initial state collectively. However, more complicated
patterns can arise for other instabilities, e.g., kinematic
decoherence in the MZA slow mode [63], relaxation
and cascades in the multi-energy AS fast mode [68], and
oscillation around a stationary state in the SB fast
mode [69]. Those modes either completely lack periodicity
or show aperiodic features that mimic periodic behavior
only over a short time.
The bipolar motion in the single-angle slow mode was

found as early as in Ref. [52] and can be understood by
making an analogy to a gyroscopic pendulum [70,71].
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1MZA and AS have the same meaning, and so do MAA and
SB. Here they are named differently to distinguish the slow from
the fast mode.
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Several efforts were recently made to probe the underlying
physics of the single-energy AS fast mode by counting
degrees of freedom or in terms of Gaudin invariants [72–74].
In this paper we provide an alternative and more visual
picture from the viewpoint of geometric symmetry.
The basic idea is as follows. Consider periodic motion of

neutrino polarization vectors on the surface of the Bloch
sphere. We refer to the geometric shape or distribution
formed by the tips of those vectors as a “configuration,”
which can expand or contract collectively during the
evolution. Because those vectors return to their initial state
after each oscillation period, one simple way is for them to
maintain their initial configuration throughout the evolu-
tion. This configuration can only be a circular distribution,
which is ensured by the single-angle slow or single-energy
AS fast mode. With this symmetry, we can derive the
analytical solution for the periodic bipolar system. More
importantly, this picture helps us understand the distinct
behaviors in other aperiodic evolution and makes a con-
nection to more general cases involving three flavors and an
inhomogeneous neutrino gas.
In Sec. II we present the mean-field equation of motion

(EOM) and its linearized stability analysis. We show the
existence of the geometric symmetry in the bipolar flavor
evolution in Sec. III. We use numerical examples to
demonstrate how the presence (absence) of this symmetry
leads to periodic (aperiodic) behaviors of neutrino flavor
evolution in Sec. IV. Implications for systems that break the
spatial homogeneity and that include three flavors are
discussed in Sec. V.

II. EQUATION OF MOTION
AND STABILITY ANALYSIS

For a two-flavor system including νe, νx (x ¼ μ or τ) and
their antineutrinos, the mean field for neutrinos of momen-
tum q⃗ can be described by the polarization vector Pðω; v⃗Þ,
where v⃗ ¼ q⃗=jq⃗j is the neutrino velocity,ω ¼ �δm2=ð2jq⃗jÞ
is the vacuum oscillation frequency, δm2 > 0 is the mass-
squared difference between the two mass eigenstates,
and the plus (minus) sign is for neutrinos (antineutrinos).
The polarization vector Pðω; v⃗Þ can be decomposed in the
flavor space with three unit basis vectors ê1, ê2, and ê3. The
vertical component P3 is directly related to the probability
of finding a νe or νx while the horizontal component P⊥ ¼
P1ê1 þ P2ê2 measures coherence of flavor evolution.
The time evolution for a collisionless and homogeneous

neutrino gas is governed by the EOM

∂tPðω; v⃗Þ ¼ Hðω; v⃗Þ × Pðω; v⃗Þ; ð1Þ

where the total Hamiltonian is Hðω; v⃗Þ ¼ HvacðωÞ þ
Hmatðv⃗Þ þHννðv⃗Þ. The first term HvacðωÞ ¼ ωB accounts
for vacuum mixing, where the unit vector B is
ðsin 2θV; 0;− cos 2θVÞ for the normal mass ordering and
ð− sin 2θV; 0; cos 2θVÞ for the inverted mass ordering, with

θV being the vacuum mixing angle. The second term
Hmatðv⃗Þ ¼ vρðv⃗Þλρê3 originates from coherent forward
scattering of neutrinos on ordinary matter particles, where
vρðv⃗Þ ¼ ð1; v⃗Þ is the four-velocity of neutrinos, λρ ¼ffiffiffi
2

p
GFnev

ρ
bulk, ne is the net electron number density, and

vρbulk is the four-velocity of matter. We use the spacetime
metric diagðþ1;−1;−1;−1Þ. Because a large Hmat effec-
tively suppresses θV , we assume a very small θV throughout
this paper. The last term Hννðv⃗Þ ¼ μvρðv⃗ÞJρ is due to ν–ν
interaction, where

Jρ ¼
Z

dv⃗vρðv⃗Þ
Z þ∞

−∞
dωFðω; v⃗ÞPðω; v⃗Þ ð2Þ

is the neutrino polarization current, μFðω; v⃗Þ ¼ffiffiffi
2

p
GFsgnðωÞ½Fνeðω; v⃗Þ − Fνxðω; v⃗Þ�, and Fνeðω; v⃗Þ with

ω > 0 (ω < 0) is the νe (ν̄e) spectral and angular distri-
bution function. The νe number density is given byR
dv⃗

Rþ∞
0 dωFνeðω; v⃗Þ. For convenience of presenting

numerical examples, we use μ−1 as a typical length scale
(in contrast to the usual definition μ ¼ ffiffiffi

2
p

GFnνe in
literature) and note that only the product μFðω; v⃗Þ matters.
Defining P⊥ ≡ P1 − iP2

2 and H⊥ ≡H1 − iH2, we
rewrite Eq. (1) as

i∂tP⊥ ¼ H3P⊥ − P3H⊥;
∂tP3 ¼ ImðH⊥P�⊥Þ: ð3Þ

In the limit where jP⊥j ≪ P3 ≈ 1 for all ω and v⃗, Eq. (3)
takes the linearized form

i∂tP⊥ ¼ H3P⊥ − H⊥: ð4Þ

A stability analysis can be performed using the above
linearized EOM and assuming that all neutrinos follow a
collective mode with P⊥ ¼ Qe−iΩt and H⊥ ¼ Te−iΩt,
where Q and T are time independent and Ω ¼ Ωr þ iΩi.
This procedure gives

Q ¼ T
H3 −Ω

; ð5Þ

from which the unstable eigenmode(s) with Ωi > 0 can be
found. For an unstable system, although the initial dis-
tribution of P⊥ can be different from that of Q, P⊥ quickly
take the same shape as Q following exponential growth of
the unstable mode in the linear regime.

2We use the sans serif font to denote the complex functions for
the horizontal components in order to distinguish e.g., P⊥ from
its vector form P⊥. The horizontal component P⊥ is often written
as S in literature. Note that the dependence on ω and v⃗ are often
suppressed to save space in this paragraph and Sec. III.
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III. SYMMETRY IN PERIODIC
BIPOLAR MOTION

The symmetry of the distribution of Q for the unstable
eigenmode plays a crucial role in driving the periodic
bipolar flavor evolution. In the linear regime, they grow
exponentially without being constrained by the curvature of
the Bloch sphere because the sphere is locally flat in this
limit. However, when the system transitions into the non-
linear regime, the fixed curvature of the Bloch sphere may
force the distribution of P⊥ to deform from the initial shape
of Q, unless Q initially lie on a circle. The circular
symmetry in the distribution of Q can arise if their
corresponding Hamiltonian vectors can be expressed in
the form of Xþ uY.3 The variable u can be any arbitrary
function of ω, vx, vy, and vz, as long as the Hamiltonian
vectors form a one-dimensional linear distribution in the
flavor space. For any such Hamiltonian vectors, Q in
Eq. (5) corresponds to

P⊥ðuÞ ¼
X⊥ þ uY⊥

X3 þ uY3 −Ω
; ð6Þ

where P⊥, X⊥, and Y⊥ contain the same time-dependent
factor e−iΩt. For Y3 ≠ 0, the above configuration forms a
circular distribution centered at O ¼ iX⊥=ð2ΩiÞ þ ½Ωi þ
iðΩr − X3Þ�Y⊥=ð2ΩiY3Þ on the complex plane. Details of
the proof are given in Appendix.
The Hamiltonian vector in Eq. (1) may not be written in

the form of Xþ uY in general. We discuss two special
cases where this form applies. For the single-angle slow
mode with H ¼ ωBþ λtê3 þ μJt, we have u ¼ ω,
X ¼ λtê3 þ μJt, and Y ¼ B. For the single-energy AS
fast mode with H ¼ λtê3 þ μðJt − vzJzÞ, we have u ¼ vz,
X ¼ λtê3 þ μJt, and Y ¼ −μJz. A special and important
property of these two modes is that the distribution of P⊥ in
Eq. (6) forms a circle that passes through the origin of
the complex plane, which requires ImðX⊥Y�⊥Þ ≈ 0 (see
Appendix). This condition is satisfied because Y⊥¼B⊥≈0
for the single-angle slow mode and X⊥ ¼ μJt⊥ ≈ 0

4 for the
single-energy AS fast mode. Note that for the latter mode,
the circle for P⊥ passes through the origin at u ¼ 0.
How the periodic bipolar solution arises from the above

properties of the unstable eigenmode Q can be understood
by connecting the motion in the linear and nonlinear
regimes as follows. In the linear regime, the configuration
of P⊥ on the complex plane corresponds to that of vectors
P⊥ on the horizontal ê1-ê2 plane. Because jP⊥j ≪ P3 ≈ 1,
this circular configuration of P almost lies horizontally on
the Bloch sphere, which is locally flat. The origin of the

corresponding complex plane is at the point (0, 0, 1) in the
pmg:quad="40"full flavor space spanned by fê1; ê2; ê3g.
The time-dependent factor e−iΩt ¼ e−iΩrteΩit in P⊥ implies
that the polarization vectors are rotating around ê3 with the
angular speed Ωr while the radius of their circular con-
figuration is expanding exponentially with the rate constant
Ωi. Because the corresponding circle always passes
through the point (0, 0, 1), the overall motion can be
captured by the angle Θ between the vertical direction (ê3)
and the axis passing through the center of the circle
(hereafter the central axis). For definiteness, the axis points
upwards in the linear regime and its direction during
subsequent evolution is such that Θ changes continuously.
Because the tips of P are confined to the surface of the

Bloch sphere, their configuration can no longer lie in the
horizontal planewhen their horizontal componentsP⊥ grow
sufficiently large (i.e., when the curvature of the Bloch
sphere starts to matter). We propose the following solution
for the motion of P in the nonlinear regime. The configu-
ration of P still lies in a plane, which intersects the Bloch
sphere to form a circle. The circle also passes through the
point (0, 0, 1) and the angleΘ between its central axis and ê3
evolves continuously to large values [see Fig. 1(a)].
The general evolution of P can be elucidated with the

help of two frame transformations. Frame II rotates with the
angular velocity Ωrê3 with respect to the original frame,
and the central axis of the circle for PII lies in the êII1 -ê

II
3

plane (êII3 ¼ ê3). The EOM in Frame II is

∂tPII ¼ HII × PII; ð7Þ
where

HII ¼ XII þ uYII −ΩrêII3 : ð8Þ
Frame III rotates with the angular velocity ð∂tΘÞêII2 with
respect to Frame II, and the central axis of the circle for PIII

points in the direction of êIII3 . With êII3 ¼ cosΘêIII3 −
sinΘêIII1 and êIII2 ¼ êII2 [see Figs. 1(b) and 1(c)], the
EOM in Frame III is

∂tPIII ¼ HIII × PIII; ð9Þ

where

HIII ¼ XIII þ uYIII − Ωr cosΘêIII3
þ Ωr sinΘêIII1 − ð∂tΘÞêIII2 : ð10Þ

In terms of PIII⊥ , the EOM is

i∂tPIII⊥ ¼ ½XIII
3 þ uYIII

3 − Ωr cosΘ�PIII⊥
− PIII

3 ½XIII⊥ þ uYIII⊥ þ Ωr sinΘþ i∂tΘ�: ð11Þ

The evolution of PII and PIII is visualized in Figs. 1(b)
and 1(c), respectively. In Frame II, the circle for PII hangs

3We use the notation X and Y instead of the specific B or μJρ
to emphasize the generality of this Hamiltonian form here.

4From Eq. (1) it can be shown that ∂tJt ¼ λtê3 × Jt. For Jt
parallel to ê3 in the initial state, it remains so during subsequent
evolution.
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from the point (0, 0, 1) and swings clockwise (Θ increasing
from 0 to π) for a complete cycle. The radius of the circle
changes as it swings so that the circle passes ð0; 0;−1Þ
whenΘ ¼ π=2 and returns back to (0, 0, 1) whenΘ ¼ π. In
Frame III, the circle for PIII is always horizontal. It is
initially near the north pole of the Bloch sphere. As it drops
downwards, its radius first expands in the upper hemisphere
and then shrinks after crossing the equator.
It is clear from the above discussion (see also Fig. 1) that

jPIII⊥ j ¼ sinΘ and PIII
3 ¼ cosΘ. For both the single-angle

slow and single-energy AS fast modes, XIII
3 ¼ X̃3 cosΘ and

YIII
3 ¼ Ỹ3 cosΘ, where the tilde symbol denotes quantities

evaluated for P3 ¼ 1. In order to make the solution
complete, we set ∂tΘ ¼ Ωi sinΘ and rewrite Eq. (11) as

i∂tPIII⊥ ¼ cosΘf½X̃3 þ uỸ3 −Ωr�PIII⊥
− ½XIII⊥ þ uYIII⊥ þ ðΩr þ iΩiÞjPIII⊥ j�g: ð12Þ

The above choice of ∂tΘ can be justified by comparing
Eq. (12) to the EOM in the linear regime, which corre-
sponds to jPIII⊥ j ≈ Θ ≪ 1.
Recall that i∂tP⊥ ¼ ðΩr þ iΩiÞP⊥ in the linear regime.

With P⊥ ¼ PII⊥e−iΩrt, we obtain ∂tPII⊥ ¼ ΩiPII⊥ and there-
fore, ∂tOII ¼ ΩiOII for the center of the circle for PII⊥. The
EOM for PII⊥ is

i∂tPII⊥ ¼ HII
3P

II⊥ − HII⊥; ð13Þ

where HII
3 ¼ X̃3 þ uỸ3 −Ωr and HII⊥ ¼ XII⊥ þ uYII⊥. The

transformation from Frame II to III in the linear regime
(OII ≪ 1) is equivalent to PIII⊥ ¼ PII⊥ −OII, which along
with Eq. (13) gives5

i∂tPIII⊥ ¼ iΩiPIII⊥
¼ ½X̃3 þ uỸ3 − Ωr�PIII⊥
− ½XIII⊥ þ uYIII⊥ þ ðΩr þ iΩiÞOII�: ð14Þ

Because the circle for PII⊥ passes through the point (0, 0, 1)
in Frame II, jPIII⊥ j ¼ OII. Comparing Eqs. (12) and (14), we
not only see that they agree in the limit Θ ≪ 1, but also
obtain for the nonlinear regime

∂tPIII⊥ ¼ ΩiPIII⊥ cosΘ; ð15Þ

which agrees with our solution of expanding or contracting
circles for PIII⊥ . Note that the growth rate of these circles is
related to the angular speed ∂tΘ for rotation of Frame III
relative to Frame II.
From ∂tΘ ¼ Ωi sinΘ, we obtain

ΘðtÞ ¼ 2 arctan½eΩiðt−t0Þ�; ð16Þ

where t0 is a reference time. Therefore, the evolution of the
unstable eigenmode for periodic bipolar motion in the
nonlinear regime is analytically solvable, and the solution
for polarization vectors with different u can be readily
obtained from Eqs. (16) and (A3)–(A5).
If the circular distribution of the polarization vectors

does not go through the point (0, 0, 1) in Frame II, but
somehow corresponds to jPIII⊥ j ¼ sinΘ0 and PIII

3 ¼ cosΘ0
for all u in Frame III with Θ0 ≠ Θ, then terms associated
with polarization currents in the first term on the right-hand
side of Eq. (11) contain cosΘ0 but other terms such as BIII

and Ωr cosΘ contain cosΘ. Consequently, there is no
simple multiplicative relation between the EOM in the
nonlinear regime and that in the linear one, which would
most likely cause deviations of the flavor evolution from
the perfect periodic bipolar solution.
Note that our picture of circular symmetry is consistent

with the pendulum formalism constructed by using three
arbitrary vz [73]. Because at least three points are needed to

FIG. 1. Schematic diagrams for periodic bipolar motion on the Bloch sphere in three different frames. Brown dotted circles indicate the
distributions of polarization vectors at several different times. Green dotted arrows indicate the central axis of these distributions. See
text for details.

5For both the single-angle slow and single-energy AS fast
modes, XIII⊥ and YIII⊥ contain some terms proportional toOII due to
the transformation PIII⊥ ¼ PII⊥ −OII.
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form a unique circle, the circular distribution of all
polarization vectors can be specified using three different
values of vz. The evolution for other vz can then be
determined based on Eq. (A3).

IV. FROM PERIODIC TO APERIODIC

We use eight representative models covering most of the
homogeneous models with a single spectral crossing in
recent years to illustrate the association between the
symmetry of the unstable eigenmode and the features of
flavor evolution. They are implemented numerically so that
all integrals are replaced by the sum over discretized beams
with respect to ω and v⃗. Equation (1) becomes

∂tPω;v⃗ ¼ Hω;v⃗ × Pω;v⃗; ð17Þ

where Hω;v⃗ ¼ ωBþ ðvρÞv⃗ðλρê3 þ μJρÞ, Jρ ¼ N−1
beam ×

PNbeam
ω;v⃗ ðvρÞv⃗Fω;v⃗Pω;v⃗, and Nbeam is the total number of

beams. We take Fω;v⃗ ¼ NbeamFðω; v⃗ÞΔωΔ2v⃗ with the grid
widths Δω and Δv⃗ so that the value of Fω;v⃗ is independent
of how many beams are discretized. The corresponding
linearized EOM is ΩQω;v⃗ ¼ ðH3Þω;v⃗Qω;v⃗ − Tω;v⃗, with

Tω;v⃗ ¼ μN−1
beamðvρÞv⃗

PNbeam
ω0;v⃗0 ðvρÞv⃗0Fω0;v⃗0Qω0;v⃗0 and the unsta-

ble eigenmode Qω;v⃗ ¼ Tω;v⃗=½ðH3Þω;v⃗ −Ω�.
Parameters and discretization schemes on ω, vz, and the

azimuthal angle ϕ in vx-vy plane for all eight models are
listed in Table I where

gðvz; αÞ ¼ 20
ffiffiffi
π

p ½σ−1ν e−ð
1−vz
σν

Þ2 − ασ−1ν̄ e−ð
1−vz
σν̄

Þ2 �; ð18Þ

σν ¼ 0.6
ffiffiffi
2

p
, and σν̄ ¼ 0.5

ffiffiffi
2

p
.

A. Breaking down of periodic bipolar motion

Figure 2 shows the distribution of Q of the unstable
eigenmode on the complex plane for the above eight
models. For each model we also calculate the flavor
evolution by solving Eq. (17) with an initial condition of
Pω;v⃗ perturbed from ê3 by a random deviation. The random
perturbation is implemented in the following way. For each
ω or v⃗, each of the three components in Pω;v⃗ is added by
δpertϵpert individually, where δpert ¼ 10−3 and ϵpert is a
random seed following a uniform distribution between
−1 and 1. After adding this random contribution, Pω;v⃗ is
normalized for each ω or v⃗ as the initial condition. Figure 3
shows the flavor evolution of several representative ω or v⃗.
The distribution of Q for the first three models all lie on a
circle that passes through the origin. As expected, they also
show clean bipolar flavor evolution. In particular, the first
model has only two beams so the distribution automatically
forms a circle together with the origin. Because the initial
condition is randomly perturbed rather than specified as the
exact unstable eigenmode, the evolution does not exactly
follow Eq. (16) that extends to infinite time. Every time
when the circular distribution contracts to a similar mag-
nitude as in the initial perturbation, those residuals inherited
from the initial random pattern prevent further contraction,
which in turn starts the next cycle of the bipolar motion.

TABLE I. Spectral and angular distributions Fω;v⃗ as well as discretization schemes on ω, vz, and the azimuthal angle ϕ in vx-vy plane
for all eight models. Letter “Y” (“N”) in the columns ofHvac orHmat indicates that these terms are (not) included. IfHmat is included we
take λρ ¼ ðμ; 0; 0; 0.5μÞ. For cases where Hvac is included, the neutrino mass ordering is taken to be inverted. For the discretization
schemes, unless specified by fixed values, ω, vz, and ϕ are discretized uniformly in a range by the given number of bins. The function
g is defined in Eq. (18).

Model Nbeam Hvac Hmat Discretization schemes Fω;v⃗

Two-beam slow 2 Y N vx ¼ vy ¼ vz ¼ 0 effectively;
ω is either 0.1μ or −0.1μ

Fω ¼ sgnðωÞ þ 0.5

Single-angle slow 10000 Y N vx ¼ vy ¼ vz ¼ 0 effectively;
10000 bins for −0.2μ < ω < 0.2μ

Fω ¼ sgnðωÞ þ 0.5

Single-energy AS fast 10000 N N vx ¼ vy ¼ 0 effectively;
10000 bins for −1 < vz < 1

Fvz ¼ gðvz; 0.9Þ

Four-beam coplanar
fast [75,76]

4 N N vz ¼ 0; ϕ takes π=6, 5π=6, 7π=6,
and 11π=6 respectively

Fvx;vy ¼ sgnðvyÞ

Eight-beam coplanar fast 8 N N vz ¼ 0; 8 bins for 0 < ϕ < 2π Fvx;vy ¼ sgnðvyÞ
AS fast with non-zero
matter bulk velocity [77]

10000 N Y vx ¼ vy ¼ 0 effectively;
10000 bins for −1 < vz < 1

Fvz ¼ gðvz; 0.9Þ

MZA slow 40000 Y N vx ¼ vy ¼ 0 effectively;
200 bins for −0.2μ < ω < 0.2μ;

200 bins for −1 < vz < 1

Fω;vz ¼½sgnðωÞþ0.5�×ð1þ0.5vzÞ

SB fast [69] 38400 N N 300 bins for −1 < vz < 1;
128 bins for 0 < ϕ < 2π

Fvx;vy;vz ¼ gðvz; 1.1Þ
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(a)

(e) (f) (g) (h)

(b) (c) (d)

FIG. 2. Distributions of unstable eigenmodes Q on complex planes for all eight models. Gray dashed circles are shown in
panels (a)–(g) to illustrate how close they are to circular distributions. The cross at the center of each panel marks the origin of the
complex plane. Because unstable eigenmodes can be rescaled arbitrarily, we do not show numerical values on the axes except for ticks
marking equal intervals.

(a)

(e) (f) (g) (h)

(b) (c) (d)

FIG. 3. Time evolution of P3 in several representative beams for all eight models. Colors show different beams with descriptions in the
legend of each panel.
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The four-beam coplanar model in Refs. [75,76] provides
an interesting insight. It does not follow the previous
patterns where the unstable eigenmode is a circle going
through the origin. Instead, the symmetry among those four
beams in their vx and vy distribution forces the unstable
eigenmode to have the same jQvx;vy j given that jQvx;vy j ¼
jQ−vx;vy j and jQvx;vy j ¼ jQvx;−vy j. In this case, they lie
directly on a circle centered at the origin in the absence
of vacuum and matter terms so that when transitioning into
the nonlinear regime the transformation between Frame II
and III discussed in Sec. III is not needed, or, equivalently,
Θ0 ¼ Θ ¼ 0. As a result, the solution in Frame II simply
expands and contracts in the upper and lower Bloch
hemispheres, which leads to the symmetric and “boxlike”
shape for P3 that looks different from the bipolar pattern
exhibited in the first three models.
Of course, this four-beam coplanar model is very special

and highly relies on the discrete symmetry in the vx–vy

distribution. Slightly relaxing this symmetry, e.g., doubling
the number of beams as in the eight-beam coplanar model
leads to an unstable eigenmode whose Q are distributed on
two concentric circles with different jQvx;vy j. Those two
concentric circles grow with the same speed in the linear
regime. However, once evolving to the nonlinear regime,
the outer circle gets more curved than the inner one on the
Bloch sphere, which makes them unable to keep the same
distribution of the unstable eigenmode as in the linear
regime. Hence, the evolution does not follow any bipolar
shape at all, as shown in Fig. 3(e). It is interesting to note
that although the unstable eigenmodes in four-beam and
eight-beam coplanar models both break the spatial reflec-
tion symmetry along vx, it does not lead to different
evolution of P3 in the four-beam coplanar model, but does
so in the eight-beam model.
For the next three models, we discuss other cases with

“continuous” neutrino spectrum. Beyond the simple slow
and AS fast models above, there can be more ways to break
the geometric symmetry required for the bipolar motion. As
discussed in Sec. III, a key condition for the bipolar motion
is that the growing speed of the unstable circle needs to
match the rotating speed of its central axis. This condition
can be easily broken down by shifting the circular unstable
eigenmode away from the origin. This shift can be achieved
even for the AS fast mode that is commonly thought as the
paradigm of bipolar pendulum. For example, in the
presence of a flowing bulk matter, neutrinos moving in
different directions experience different effective matter
potentials. From Eq. (1), we have ∂tJt ¼ λρê3 × Jρ instead
of ∂tJt ¼ λtê3 × Jt. It cannot be assumed that jJt⊥j is
negligible as the system grows in the linear regime because
it is not conserved now. The horizontal component Jt⊥
enters into Eq. (6), and ImðJt⊥Jz�⊥ Þ is not necessarily zero.
As a result, the circular unstable eigenmode does not go
through the origin. After a few cycles, it eventually deviates
from bipolar motion through kinematic decoherence.

Another way of breaking the requirement for bipolar
motion is to have more than one variable dependence on ω
and v⃗ so that the distribution of Q of the unstable
eigenmode no longer forms a simple one-dimensional
arc. The MZA slow mode is a good example as it explicitly
contains the ω and vz dependence that cannot be removed.
The unstable eigenmode in Fig. 2(g) occupies a two-
dimensional area in the complex plane. Thus, it is impos-
sible to embed this shape onto the curved surface of
Bloch sphere when transitioning into the nonlinear regime.
Unless other hidden geometric symmetry exists, which is
perhaps possible but very rare, the distribution will be
distorted on the Bloch sphere during the evolution. For
this case, the evolution of polarization vectors then under-
goes the kinematic decoherence [63], or dubbed differ-
ently as the relaxation and cascades in multi-energy fast
mode [68].
The same way of breaking the symmetry of the eigen-

mode in principle should apply to the multi-energy fast
unstable eigenmode since it involves both ω and vz.
However, as Hνν dominates over the energy-dependent
Hvac, its eigenmode distribution mainly depends on vz and
the dependence on ω can be treated perturbatively.
Consequently, the flavor evolution still follows closely
the bipolar motion in short timescale defined by the fast
instability. For the SB fast mode, the azimuthal symmetry
in the vx-vy plane can be broken so that the distribution of
the unstable eigenmode in complex plane depends on both
vz and the azimuthal angle ϕ as shown in Fig. 2(h). This
distribution covers a much wider region than the MZA slow
mode and obviously deviates the most from a single
circular shape. As a result, the distribution gets distorted
in the nonlinear regime. The flavor evolution quickly
cascades into the quasistationary state and exhibits aperi-
odic behaviors at later times as shown in Fig. 3(h).
From the last four models discussed above, we find an

overall trend that the more deviated from the circular
distribution the unstable eigenmode is, the more aperiodic
the behavior of the flavor evolution will be, particularly in
eight-beam coplanar and SB fast models. The unstable
eigenmode in the AS fast model with bulk velocity is the
least deviated among those four models so that nearly
bipolar motions at the very first few oscillation periods
were obtained.
The same trend also applies to the components of the

polarization currents. The red curves in Fig. 4 show Jz3 as
a function of time for the pure AS fast mode, AS fast
mode with bulk velocity, MZA slow mode, and SB fast
mode. In the single-angle AS fast model, Jz3 evolves in the
bipolar manner. The AS fast model with bulk velocity
shows a bipolar pattern in the first several cycles but
gradually deviates from that pattern. Both MZA slow and
SB fast modes cascade into aperiodic patterns due to
the more complicated distribution of their unstable
eigenmodes.
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B. Dependence on the initial perturbation

For the mean-field EOM with negligible θV , an initial
perturbation away from ê3 is needed in order to trigger the
collective flavor oscillations. For cases where the initial
perturbations are generated randomly, we check whether
the conclusion derived above may sensitively depend on
the initial condition. Moreover, it may not be guaranteed
that these cases will evolve in a way that their evolution
paths remain close to each other, which is related to the
chaoticity of a nonlinear system [78].
Motivated by these considerations, for each model, we

take another three randomly generated perturbations, i.e.,
with different seed ϵpert. Their evolutions are shown with
different colors in Fig. 4. As expected, whether or not a
system behaves as bipolar (AS fast mode) or nonbipolar
(the other three cases), is not related to the randomness of
the initial perturbation, which is consistent with our argu-
ments based on the geometric symmetry.
For aperiodic models without simple geometric sym-

metry, one may wonder whether the kinematic decoherence
and relaxation can result in a very different flavor evolution
history for systems with slightly different initial conditions.
Interestingly, we find that the outcomes in the AS fast
mode with bulk velocity and MZA slow mode are highly
deterministic and repetitive. Taking a slightly different
initial condition only leads to an overall time offset for
these two modes. On the other hand, the SB fast model
shows significant differences of flavor evolution in the
nonlinear regime when taking different initial conditions. It
seems to suggest that this case exhibits chaotic features,
which are not present in the other models. In addition, this
dependence on the initial conditions could be linked to the
many-body decoherence [20,24]. Since in the many-body
description there is always uncertainty to some extent for

the polarization vectors in flavor space, the outcome for
neutrino flavor evolution may need to be given as the
average over the whole ensemble of all possible mean-field
evolution trajectories. Conclusions regarding the chaoticity
of these systems requires further dedicated studies, which
we defer to the future.

V. DISCUSSION AND CONCLUSIONS

We have provided a picture to understand the periodic
bipolar flavor evolution for collective neutrino oscillations,
which relates to a geometric symmetry of the unstable
eigenmode on the two-flavor Bloch sphere. This symmetry
requires a one-dimensional circular distribution of the
unstable eigenmode in linear regime so that the shape
can be maintained on the Bloch spherical surface when the
system transitions to the nonlinear regime. An additional
constraint on the position of the circular unstable mode is
that it should either be overlapping with the origin on the
complex plane, or centered at the origin in the absence of
vacuum and matter terms. When both requirements are
satisfied, the EOMs that govern the growth of the unstable
mode in the linear and nonlinear regimes take a similar
form up to a scaling factor, which accounts for the spherical
bending on the Bloch sphere for the nonlinear case. Given
that, all polarization vectors can synchronously move on
the Bloch sphere while retaining their initial circular
distribution in a corotating frame. We have derived the
analytical solutions to the bipolar motion based on this
geometric symmetry.
On the other hand, we have found that this geometric

symmetry shared by single-angle slow mode, single-energy
fast mode, and four-beam coplanar model is very unusual
and strongly depends on the assumptions made for the
spectral and angular distributions of the neutrino gas.

(a) (b)

(c) (d)

FIG. 4. Time evolution of Jz3 for four models. Colors show cases with different initial perturbations in each panel.
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We show with numerical examples that other modes such as
MZA slow mode and SB fast mode do not share the
same bipolar feature but exhibit behavior of kinematic
decoherence in flavor evolution because their eigenmodes
do not follow a circular distribution on the Bloch sphere.
We have also examined the dependence of our result on the
initial random perturbations and found that the connection
described above remains. Based on this finding, one may
expect that for systems that impose less symmetry in the
neutrino spectral and angular distributions, e.g., neutrino
flux and matter flux not flowing in the same direction as
well as the possible existence of quadruple moment in
neutrino angular distribution, the bipolar flavor evolution is
less likely to occur even for a homogeneous model.
In the absence of bulk velocity of matter, the property

that the Hamiltonian is linear in the parameter u is the same
as that guarantees the conservation of the Gaudin invariants
and exact integrability, as identified in Ref. [74]. Note that
the bipolar motion can break down in the presence of bulk
velocity of matter. We further caution that our picture is not
equivalent to the pendulum formalism [73,74] in all
aspects. For example, we mainly focus on the nutation
that starts from near the pure flavor state in the linear
regime, while the pendulum picture provides a broader
description of both nutation and precession. On the other
hand, our picture is applicable to more general spectral and
angular distributions, while the pendulum picture focuses
on more specific unstable eigenmodes that exhibit the
bipolar flavor evolution.
For a configuration with two or more coexisting unstable

modes, the above picturemay fail even if eachmodematches
the above geometric symmetry and can undergo bipolar
motion individually. With the superposition of more modes,
the choice of the corotating frame becomes ambiguous with
different precession frequencies Ωr, linear growth rates Ωi,
and dropping-down directions for O. The interference
between each mode may make the multiplicative relation
between Eq. (14) and Eq. (11) no longer valid.
In more general situations where unstable modes are

allowed to develop inhomogeneously as P⊥¼Qe−iðΩt−K⃗·r⃗Þ,
periodic bipolar motion can hardly exist since the symmetry
is not fulfilled in a way similar to the AS fast mode with
nonzero bulk velocity. Even in the absence of the vacuum
term, Eq. (1) yields ∂ρJρ ¼ λtê3 × Jt so that Jt⊥ is not
necessarily negligible. The circular unstable mode does
not go through the origin of the complex plane. Moreover,
the extents of deviation also depends on the K⃗ mode that
dominates the growth in the linear regime. Note that unstable
modes can arise in a continuous range of K⃗ instead of just
K⃗ ¼ 0, which makes inhomogeneous flavor evolution very
different from the bipolar behavior.
In addition, the symmetry governing the bipolar

motion relies on geometry of the Bloch sphere in a two-
flavor oscillation system. A three-flavor system has more
complicated adjoint representation, which also enables more

than onemode to develop by distinguishing νμ and ντ sectors
in spite of the assumed homogeneity. The growth of the
circular unstable eigenmode in, e.g., the νe–νμ subspacemay
be interfered by the unstable mode growing in νe–ντ sub-
space in the nonlinear regime, which deforms the periodic
bipolar motion. Similarly, the dynamic decoherence brought
by incoherent collisions violates the conservation of the
length of neutrino polarization vectors so that each of them
does not move on a Bloch sphere of fixed size. Many further
studies are needed for collective neutrino oscillations in all
those more general situations.
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APPENDIX: CIRCULAR DISTRIBUTION
IN CONFORMAL MAPPING

Consider a complex conformal mapping function of a
real variable u in the form

QðuÞ ¼ Aþ BhðuÞ
Cþ DhðuÞ ; ðA1Þ

where A, B, C, and D are arbitrary complex numbers and
hðuÞ is an arbitrary real function. Its distribution is either a
straight line or an arc of circle on the complex plane.
Notice that here B is in sans serif and indicates an arbitrary
complex number (not necessarily related to B in Hvac).
Clearly, the distribution of QðuÞ is a line for D ¼ 0. More
generally, whenD ≠ 0 but ImðCD�Þ ¼ 0,C andD have the
same argument, and

DQðuÞ ¼ A − jC=DjB
jC=Dj þ hðuÞ þ B ðA2Þ

represents a line that goes through the point of B in the
direction of A − jC=DjB.
In all the other cases, the distribution of QðuÞ is circular,

which can be seen by rewriting Eq. (A1) as

QðuÞ ¼ Oþ R
C� þ D�hðuÞ
Cþ DhðuÞ : ðA3Þ
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In the above equation,

R ¼ AD − BC
2iImðC�DÞ ; ðA4Þ

O ¼ AD� − BC�

2iImðCD�Þ : ðA5Þ

As jC� þ D�hðuÞj=jCþ DhðuÞj ¼ 1, Eq. (A3) represents a
circle of radius jRj centered at the point of O. In particular,
the circle goes through the origin for jOj ¼ jRj, which
implies ReðA�BCD�Þ ¼ ReðAB�CD�Þ or, equivalently,

ImðAB�Þ ¼ 0: ðA6Þ
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