Dynamical description of partonic phase at finite chemical potential **Elena Bratkovskaya** (GSI Darmstadt & Uni. Frankfurt) Pierre Moreau, Olga Soloveva, Lucia Oliva, Taesoo Song, Wolfgang Cassing ## The ,holy grail of heavy-ion physics: ## Theory: lattice QCD data for $\mu_B = 0$ and finite $\mu_B > 0$ Deconfinement phase transition from hadron gas to QGP with increasing T and μ_B IQCD: J. Guenther et al., Nucl. Phys. A 967 (2017) 720 **→** Lattice QCD results: up to $\mu_B < 400 \, MeV$: **Crossover:** hadron gas → QGP ## **Degrees-of-freedom of QGP** IQCD gives QGP EoS at finite μ_B ! need to be interpreted in terms of degrees-of-freedom #### pQCD: - weakly interacting system - massless quarks and gluons Non-perturbative QCD \leftarrow pQCD **Thermal QCD** = QCD at high parton densities: - strongly interacting system - massive quarks and gluons - quasiparticles - = effective degrees-of-freedom - ❖ How to learn about degrees-of-freedom of QGP? → HIC experiments ## DQPM (T, μ_q) ## **Dynamical QuasiParticle Model (DQPM)** The QGP phase is described in terms of interacting quasiparticles: quarks and gluons with Lorentzian spectral functions: $$\rho_{j}(\omega, \mathbf{p}) = \frac{\gamma_{j}}{\tilde{E}_{j}} \left(\frac{1}{(\omega - \tilde{E}_{j})^{2} + \gamma_{j}^{2}} - \frac{1}{(\omega + \tilde{E}_{j})^{2} + \gamma_{j}^{2}} \right)$$ $$\equiv \frac{4\omega\gamma_{j}}{(\omega^{2} - \mathbf{p}^{2} - M_{j}^{2})^{2} + 4\gamma_{j}^{2}\omega^{2}}$$ Resummed properties of the quasiparticles are specified by scalar complex self-energies: gluon propagator: $\Delta^{-1} = P^2 - \Pi$ & quark propagator $S_q^{-1} = P^2 - \Sigma_q$ gluon self-energy: $\Pi = M_g^2 - i2g_g\omega$ & quark self-energy: $\Sigma_q = M_q^2 - i2g_g\omega$ - \square Real part of the self-energy: thermal mass (M_g, M_q) - \Box Imaginary part of the self-energy: interaction width of partons (γ_q, γ_q) ## **Parton properties** Modeling of the quark/gluon masses and widths (inspired by HTL calculations) #### **Masses:** $$M_{q(\bar{q})}^{2}(T, \mu_{B}) = \frac{N_{c}^{2} - 1}{8N_{c}} g^{2}(T, \mu_{B}) \left(T^{2} + \frac{\mu_{q}^{2}}{\pi^{2}}\right)$$ $$M_{g}^{2}(T, \mu_{B}) = \frac{g^{2}(T, \mu_{B})}{6} \left(\left(N_{c} + \frac{1}{2}N_{f}\right)T^{2} + \frac{N_{c}}{2}\sum_{q}\frac{\mu_{q}^{2}}{\pi^{2}}\right)$$ #### Widths: $$\gamma_{q(\bar{q})}(T, \mu_B) = \frac{1}{3} \frac{N_c^2 - 1}{2N_c} \frac{g^2(T, \mu_B)T}{8\pi} \ln\left(\frac{2c}{g^2(T, \mu_B)} + 1\right)$$ $$\frac{1}{3} \frac{g^2(T, \mu_B)T}{g^2(T, \mu_B)T} \left(\frac{2c}{g^2(T, \mu_B)} + 1\right)$$ $$\gamma_g(T, \mu_B) = \frac{1}{3} N_c \frac{g^2(T, \mu_B)T}{8\pi} \ln\left(\frac{2c}{g^2(T, \mu_B)} + 1\right)$$ - □ Coupling constant: input: IQCD entropy density as a function of temperature for μ_B - \rightarrow Fit to lattice data at μ_B =0 with $$g^{2}(s/s_{SB}) = d ((s/s_{SB})^{e} - 1)^{f}$$ $$s_{SB}^{QCD} = 19/9\pi^{2}T^{3}$$ #### → DQPM: only one parameter (c = 14.4) + (T, μ_B) - dependent coupling constant have to be determined from lattice results ## DQPM at finite (T, μ_{α}): scaling hypothesis ■ Scaling hypothesis for the effective temperature T* for $$N_f = N_c = 3$$ $$\mu_u = \mu_d = \mu_s = \mu_q$$ $$T^{*2} = T^2 + \frac{\mu_q^2}{\pi^2}$$ Coupling constant: $$g(T/T_c(\mu=0)) \longrightarrow g(T^*/T_c(\mu))$$ □ Critical temperature $T_c(\mu_q)$: obtained by requiring a constant energy density ε for the system at $T=T_c(\mu_q)$ where ε at $T_c(\mu_q=0)=156$ GeV is fixed by IQCD at $\mu_q=0$ $$\frac{T_c(\mu_q)}{T_c(\mu_q = 0)} = \sqrt{1 - \alpha \ \mu_q^2} \approx 1 - \alpha/2 \ \mu_q^2 + \cdots$$ $\begin{array}{c} 0.20 \\ 0.18 \\ 0.46 \\ \hline \\ 0.14 \\ \hline \\ 0.02 \\ \hline \\ 0.000 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.01 \\ 0.02 \\ 0.00 \\ 0.01 \\ 0.02 \\ 0.00 \\ 0.00 \\ 0.01 \\ 0.02 \\ 0.00 \\ 0.00 \\ 0.01 \\ 0.02 \\ 0.00 \\ 0.00 \\ 0.01 \\ 0.02 \\ 0.00 \\ 0.00 \\ 0.01 \\ 0.02 \\ 0.00 \\ 0.0$ $\alpha \approx 8.79 \text{ GeV}^{-2}$ #### ! Consistent with lattice QCD: IQCD: C. Bonati et al., PRC90 (2014) 114025 $$\frac{T_c(\mu_B)}{T_c} = 1 - \kappa \left(\frac{\mu_B}{T_c}\right)^2 + \cdots$$ **IQCD** $$\kappa = 0.013(2)$$ $$\kappa_{DQPM} \approx 0.0122$$ H. Berrehrah et al, PRC 93 (2016) 044914, Int.J.Mod.Phys. E25 (2016) 1642003, ## **DQPM:** parton properties #### Coupling constant as a function of (T, μ_B) #### → Lorentzian spectral function: #### Masses and widths as a function of (T, μ_B) P. Moreau et al., arXiv:1903.10257, PRC (2019) ## **DQPM Thermodynamics** #### Entropy and baryon density in the quasiparticle limit (G. Baym 1998): $$s^{dqp} =$$ $$-\int \frac{d\omega}{2\pi} \frac{d^{3}p}{(2\pi)^{3}} \left[d_{g} \frac{\partial n_{B}}{\partial T} \left(\operatorname{Im}(\ln{-\Delta^{-1}}) + \operatorname{Im} \underline{\Pi} \operatorname{Re} \underline{\Delta} \right) \right]$$ $$+ \sum_{q=u,d,s} d_{q} \frac{\partial n_{F}(\omega - \mu_{q})}{\partial T} \left(\operatorname{Im}(\ln{-S_{q}^{-1}}) + \operatorname{Im} \underline{\Sigma}_{q} \operatorname{Re} S_{q} \right)$$ $$+ \sum_{\bar{q}=\bar{u}.\bar{d}.\bar{s}} d_{\bar{q}} \frac{\partial n_{F}(\omega + \mu_{q})}{\partial T} \left(\operatorname{Im}(\ln{-S_{\bar{q}}^{-1}}) + \operatorname{Im} \underline{\Sigma}_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right) \right]$$ $$n^{dqp} = -\int \frac{d\omega}{2\pi} \frac{d^{3}p}{(2\pi)^{3}}$$ $$\left[\sum_{q=u,d,s} d_{q} \frac{\partial n_{F}(\omega - \mu_{q})}{\partial \mu_{q}} \left(\operatorname{Im}(\ln -\underline{S_{q}^{-1}}) + \operatorname{Im} \underline{\Sigma_{q}} \operatorname{Re} \underline{S_{q}} \right) + \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_{F}(\omega + \mu_{q})}{\partial \mu_{q}} \left(\operatorname{Im}(\ln -\underline{S_{\bar{q}}^{-1}}) + \operatorname{Im} \underline{\Sigma_{\bar{q}}} \operatorname{Re} \underline{S_{\bar{q}}} \right) \right]$$ Blaizot, Iancu, Rebhan, Phys. Rev. D 63 (2001) 065003 ## DQPM EoS at finite (T, μ_B) Taylor series of thermodynamic quantities in terms of (μ_B/T) For the pressure: $$\frac{P(T, \mu_B)}{T^4} = \sum_{n=0}^{\infty} \frac{1}{n!} \chi_B^n \left(\frac{\mu_B}{T}\right)^n$$ with the baryon number susceptibilities defined as: $$\chi_B^n = \frac{\partial^n P}{\partial \mu_B^n} \bigg|_{\mu_B = 0}$$ Cf. talk by Claudia Ratti ■ Recent IQCD results - with the 6th order susceptibility $$\frac{P}{T^4} = c_0(T) + c_2(T) \left(\frac{\mu_B}{T}\right)^2 + c_4(T) \left(\frac{\mu_B}{T}\right)^4 + c_6(T) \left(\frac{\mu_B}{T}\right)^6 + \mathcal{O}\left(\mu_B^8\right)$$ WB IQCD: J. Günther, R. Bellwied, S. Borsanyi, Z. Fodor, S. D. Katz, A. Pasztor, C. Ratti, EPJ Web Conf. 137, 07008 (2017) 158 ## DQPM: Isentropic trajectories for (T, μ_B) □ Correspondance $s/n_B \leftrightarrow$ collisional energy $$s/n_B = 420 \leftrightarrow 200 \text{ GeV}$$ = 144 ↔ 62.4 GeV **DQPM** = 94 ↔ 39 GeV = 70 ↔ 27 GeV = 51 ↔ 19.6 GeV = 30 ↔ 14.5 GeV \Box Safe for $(\mu_B/T) < 2$ P. Moreau et al., arXiv:1903.10257, PRC (2019) IQCD: WB, PoS CPOD2017 (2018) 032 ## QGP in DQPM: partonic interactions ### Partonic interactions #### Reminder (2013): DQPM(T) in PHSD 4.0 DQPM provides the total width Γ of the dynamical quasiparticles $$\Gamma_{total} = \Gamma_{elastic} + \Gamma_{inelastic}$$ - obtain the partial widths (i.e. cross sections) for different channels from the PHSD simulations in the box: transition rates $\leftarrow \rightarrow$ DQPM width - (quasi-) elastic collisions: $$q+q \rightarrow q+q$$ $g+q \rightarrow g+q$ $q+\overline{q} \rightarrow q+\overline{q}$ $g+\overline{q} \rightarrow g+\overline{q}$ \Rightarrow σ_{i} (ϵ) $\overline{q}+\overline{q} \rightarrow \overline{q}+\overline{q}$ $g+g \rightarrow g+g$ V. Ozvenchuk et al., PRC 87 (2013) 024901, PRC 87 (2013) 064903 inelastic collisions: $$q + \overline{q} \rightarrow g$$ $q + \overline{q} \rightarrow g + g$ $g \rightarrow q + \overline{q}$ $g \rightarrow g + g$ $$\sigma_{q\bar{q}\to g}(s,\varepsilon,M_q,M_{\bar{q}}) = \frac{2}{4} \frac{4\pi s \Gamma_g^2(\varepsilon)}{\left[s - M_g^2(\varepsilon)\right]^2 + s \Gamma_g^2(\varepsilon)} \frac{1}{P_{\text{rel}}^2}$$ To improve the description of QGP dynamics in PHSD we need: off-shell differential and total cross sections σ_i (s,m₁,m₂,T, μ_α) for all combinations i = (flavor, spin, color) ### Partonic interactions: matrix elements #### DQPM partonic cross sections → leading order diagrams **Propagators** for massive bosons and fermions: $$\frac{i}{q} = i\delta_{ij} \frac{q + M_q}{q^2 - M_q^2 + 2i\gamma_q q_0}$$ gq → gq scattering #### qq' → qq' scattering #### gg→ gg scattering s — channel H. Berrehrah et al, PRC 93 (2016) 044914, Int.J.Mod.Phys. E25 (2016) 1642003, P. Moreau et al., arXiv:1903.10257, PRC (2019) ## **Differential cross section** Initial masses: pole masses Final masses: pole masses Initial masses: pole masses Final masses: integrated over spectral functions Description At lower s: off-shell σ < on -shell σ since $\omega_3+\omega_4<\sqrt{s}$ ## DQPM (T, μ_q): transport properties at finite (T, μ_q) ## Off-shell collision rate $$\Gamma_i^{\text{off}}(T, \mu_q) = \frac{d_i}{n_i^{\text{off}}(T, \mu_q)} \int \frac{d^4 p_i}{(2\pi)^4} \; \theta(\omega_i) \; \tilde{\rho}_i \; f_i(\omega_i, T, \mu_q)$$ $$\times \sum_{j=a,\bar{a},q} \int \frac{d^4 p_j}{(2\pi)^4} \; \theta(\omega_j) \; d_j \; \tilde{\rho}_j \; f_j$$ $$\times \int \frac{d^4 p_3}{(2\pi)^4} \; \theta(\omega_3) \; \tilde{\rho}_3 \int \frac{d^4 p_4}{(2\pi)^4} \; \theta(\omega_4) \; \tilde{\rho}_4(1 \pm f_3)(1 \pm f_4)$$ $$\times (\mathcal{M}|^2(p_i, p_j, p_3, p_4))(2\pi)^4 \delta^{(4)}(p_i + p_j - p_3 - p_4),$$ off-shell density $$n_i^{\text{off}}(T, \mu_q) = d_i \int \frac{d^4 p_i}{(2\pi)^4} \ \theta(\omega_i) \ 2\omega_i \ \tilde{\rho}_i \ f_i(T, \mu_q)$$ renormalized spectral-function for the time-like sector $$\tilde{\rho}_j(\omega_j, \mathbf{p}_j) = \frac{\rho(\omega_j, \mathbf{p}_j) \ \theta(p_j^2)}{\int_0^\infty \frac{d\omega_j}{(2\pi)} \ 2\omega_j \ \rho(\omega_j, \mathbf{p}_j) \ \theta(p_j^2)}$$ #### normalized to 1 and $$\lim_{\gamma_j \to 0} \rho_j(\omega, \mathbf{p}) = 2\pi \ \delta(\omega^2 - \mathbf{p}^2 - M_j^2)$$ ## **Transport coefficients: shear viscosity** #### Kubo formalism $$\eta^{\text{Kubo}}(T, \mu_q) = -\int \frac{d^4p}{(2\pi)^4} p_x^2 p_y^2 \sum_{i=q,\bar{q},g} d_i \frac{\partial f_i(\omega)}{\partial \omega} \rho_i(\omega, \mathbf{p})^2$$ $$= \frac{1}{15T} \int \frac{d^4p}{(2\pi)^4} \mathbf{p}^4 \sum_{i=q,\bar{q},g} d_i \left((1 \pm f_i(\omega)) f_i(\omega) \right) \rho_i(\omega, \mathbf{p})^2$$ #### Relaxation Time Approximation $$\eta^{\text{RTA}}(T, \mu_q) = \frac{1}{15T} \int \frac{d^3 p}{(2\pi)^3} \sum_{i=q,\bar{q},g} \left(\frac{\mathbf{p}^4}{E_i^2 \Gamma_i(\mathbf{p}_i, T, \mu_q)} d_i \left((1 \pm f_i(E_i)) f_i(E_i) \right) \right) + \mathcal{O}(\Gamma_i)$$ Rate Γ (all diagrams for M in the pole mass) For on-shell case $(\rho \rightarrow \delta)$ $\Gamma = 2\gamma$, $\gamma -$ collisional width ## **Transport coefficients: shear viscosity** \triangleright Very weak μ_B dependence ## Transport coefficients: bulk viscosity #### Relaxation Time Approximation $$\zeta^{\text{RTA}}(T,\mu_q) = \frac{1}{9T} \int \frac{d^3p}{(2\pi)^3} \sum_{i=q,\bar{q}} \text{from DQPM parametrization} \\ \left(\frac{\mathbf{p}^4}{E_i^2 \ \underline{\Gamma_i(\mathbf{p}_i,T,\mu_q)}} \ d_i \left((1 \pm f_i(E_i)) f_i(E_i) \right) \right) [\mathbf{p}^2 - 3c_s^2 (E_i^2 - T^2 \frac{dm_q^2}{dT^2})]^2$$ ## QGP: in-equilibrium -> off-equilibrium ## Parton-Hadron-String-Dynamics (PHSD) PHSD is a non-equilibrium microscopic transport approach for the description of strongly-interacting hadronic and partonic matter created in heavy-ion collisions Initial A+A collision Dynamics: based on the solution of generalized off-shell transport equations derived from Kadanoff-Baym many-body theory ■ Initial A+A collisions: N+N → string formation → decay to pre-hadrons + leading hadrons **Solution** If **QGP Stage** if local $ε > ε_{critical}$: dissolution of pre-hadrons → partons Partonic phase - QGP: QGP is described by the Dynamical QuasiParticle Model (DQPM) matched to reproduce lattice QCD EoS for finite T and μ_B (crossover) - Degrees-of-freedom: strongly interacting quasiparticles: massive quarks and gluons (g,q,q_{bar}) with sizeable collisional widths in a self-generated mean-field potential - Interactions: (quasi-)elastic and inelastic collisions of partons ☐ Hadronization to colorless off-shell mesons and baryons: Strict 4-momentum and quantum number conservation Hadronic phase: hadron-hadron interactions - off-shell HSD **Hadronization** ## Extraction of (T, μ_B) in PHSD - In each space-time cell of the PHSD, the energy-momentum tensor is calculated by $T^{\mu\nu} = \sum \frac{p_i^{\mu} p_i^{\nu}}{E_i}$ the formula: - Diagonalization of the energy-momentum tensor to get the energy density and pressure components expressed in the local rest frame (LRF) $$T^{\mu\nu} = \begin{pmatrix} T^{00} & T^{01} & T^{02} & T^{03} \\ T^{10} & T^{11} & T^{12} & T^{13} \\ T^{20} & T^{21} & T^{22} & T^{23} \\ T^{30} & T^{31} & T^{32} & T^{33} \end{pmatrix} \longrightarrow \begin{pmatrix} \epsilon^{LRF} & 0 & 0 & 0 \\ 0 & P_x^{LRF} & 0 & 0 \\ 0 & 0 & P_y^{LRF} & 0 \\ 0 & 0 & 0 & P_z^{LRF} \end{pmatrix}$$ For each space-time cell of the PHSD: - Calculate the local energy density ε^{PHSD} and baryon density n_RPHSD use IQCD relations (up to 4th order): $$\frac{n_B}{T^3} \approx \chi_2^B(T) \left(\frac{\mu_B}{T}\right) + \dots \\ \Delta \epsilon / T^4 \approx \frac{1}{2} \left(T \frac{\partial \chi_2^B(T)}{\partial T} + 3\chi_2^B(T)\right) \left(\frac{\mu_B}{T}\right)^2 + \dots$$ obtain (T, μ_B) by solving the system of coupled equations using ϵ^{PHSD} and n_R^{PHSD} ## Extraction of (T, μ_B) in PHSD #### For each space-time cell of the PHSD: Correction for the medium anisotropy to extract values for (T, μ_B) $$\epsilon^{\text{anis}} = \epsilon^{\text{EoS}} \quad r(x)$$ $$P_{\perp} = P^{\text{EoS}} \quad [r(x) + 3xr'(x)]$$ $$P_{\parallel} = P^{\text{EoS}} \quad [r(x) - 6xr'(x)]$$ $$r(x) = \begin{cases} \frac{x^{-1/3}}{2} \left[1 + \frac{x \operatorname{arctanh}\sqrt{1-x}}{\sqrt{1-x}} \right] & \text{for } x \le 1 \\ \frac{x^{-1/3}}{2} \left[1 + \frac{x \operatorname{arctanh}\sqrt{x-1}}{\sqrt{x-1}} \right] & \text{for } x \ge 1 \end{cases}$$ Ryblewski, Florkowski, Phys.Rev. C85 (2012) 064901 We have to solve the following system in PHSD: **Done by Newton-Raphson method** $$\begin{cases} \epsilon^{\text{EoS}}(T, \mu_B) = \epsilon^{\text{PHSD}}/r(x) \\ n_B^{\text{EoS}}(T, \mu_B) = n_B^{\text{PHSD}} \end{cases}$$ ## T, P in HIC ($\sqrt{s_{NN}}=200$ GeV) Cf. talk by Takeshi Kodama ## T, P in HIC ($\sqrt{s_{NN}}=200$ GeV) Milne coordinates (τ, x, y, η) : temperature profile - almost boost-invariant P. Moreau et al., arXiv:1903.10257, PRC (2019) ## Illustration for HIC ($\sqrt{s_{NN}} = 19.6$ GeV) ### Au + Au $\sqrt{s_{NN}}$ = 19.6 GeV - b = 2 fm - Section view ## Illustration for HIC ($\sqrt{s_{NN}} = 17$ GeV) The temperature profile in (x; y) Baryon chemical potential profile in (x; y) at midrapidity $(|y_{cell}| < 1)$ at 1 and 4 fm/c P. Moreau et al., arXiv:1903.10257, PRC (2019) ## Illustration for HIC ($\sqrt{s_{NN}} = 17 \text{ GeV}$) P. Moreau et al., arXiv:1903.10257, PRC (2019) # Traces of the QGP at finite μ_q in observables in high energy heavy-ion collisions ## **Results for HIC** Comparison between three different results: - 1) PHSD 4.0 : only $\sigma(T)$ and $\rho(T)$ - 2) PHSD 5.0 : with $\sigma(\sqrt{s}, T, \mu_B = 0)$ and $\rho(T, \mu_B = 0)$ - 3) PHSD 5.0 : with $\sigma(\sqrt{s}, T, \mu_B)$ and $\rho(T, \mu_B)$ ρ-spectral function → (mass and width) ## Results for HIC ($\sqrt{s_{NN}} = 200 \text{ GeV}$) ## Results for HIC ($\sqrt{s_{NN}} = 17$ GeV) ## Results for HIC ($\sqrt{s_{NN}} = 7.6$ GeV) ## Results for HIC ($\sqrt{s_{NN}} = 4.86$ GeV) ## Results for assymetric systems ## **Summary / Outlook** - \Box (T, μ_B) -dependent cross sections and masses/widths of quarks and gluons have been implemented in PHSD - \square High- μ_B regions are probed at low $\sqrt{s_{NN}}$ or high rapidity regions - $lue{}$ But, QGP fraction is small at low $\sqrt{s_{NN}}$: - no effects seen in bulk observables #### Outlook: - \triangleright Study more sensitive probes to finite- μ_B dynamics - \blacktriangleright More precise EoS finite/large μ_B - \triangleright Possible 1st order phase transition at large μ_B ?!