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Study of the hot and dense phases of QCD with a quark effective model, at
equilibrium, with a focus on the chiral transition.

% Dense phase: Very few experimental and theoretical knowledge (non-perturbative finite density
properties difficult to access in QCD or Lattice QCD) ; Different critical properties (first order) than zero
density ; Compact (neutron) star phenomenology.

¥ Equilibrium properties: First step before understanding out of equilibrium ; can be an input
for transport code based on local thermal equilibrium ; quark matter at equilibrium may exists in core of
compact stars.

¥ Chiral physics: Chiral symmetry governs important properties of hadronic physics (e.g. in the
low mass region pion <> nucleon-nucleon interaction, rho meson ; CEP, etc.)

¥ Effective models

e Basically, model provides an extrapolation (based on some QCD ingredients, not a polynomial
expansion) from known inputs to some predictions.

e calculation of phases and critical properties ; mesonic fluctuations description ; provide microscopic
predictions (cross sections, viscosity, etc) ; microscopic mechanism related to QCD (chiral symmetry
breaking, statistical confinement effect, etc.) ;

e can then be used as input for transport, compact star, etc.
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Predictive power of models, the case of the chiral CEP
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Different mechanisms, same output on the predictions
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CEP with varying strange quark sector properties (mass and t'Hooft flavor mixing): Two microscopic
mechanisms: strange quark propagation (mg) and U4 (1) anomaly (gp) (P.Costa et al).
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CEP position becomes very sensitive to m around the physical value of m ; also sensitive to the

ariation of the t'Hooft interaction and in the “same direction”. We must look for mechanism correlated
i
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Only hadrons in vacuum: Quark confinement in the non-perturbative regime and

asymptotic freedom (color deconfinement) at higher energy, related to breaking of Zy, at finite
temperature

% No Wigner realization of the chiral symmetry in vacuum: Spontaneous chiral
symmetry breaking of SUR(3) X SUL(3) to SU(3)v
= octet of (almost) Goldstone bosons, the off-scale light pseudoscalar octet.

¥ 1’ not of the Goldstone type: Adler—Jackiw—Bell U 4(1) anomaly breaks
Ur(Ny) X Ur(Ny) to Uy (1) X SUR(Ny) x SUL(Ny¢) ('t Hooft picture: interaction with
instantons changes chirality).

= the PNJL chiral model (¢ = (qu, g4, qs) are the light quark fields) :
Lonsr = G(iv,D* — m)q + %gs S l(@x*aq)” + (Gi‘y5>\aCI)2](>qm< — ><>
+ gp{det[@(1 + vs5)q] + det[@(1 — v5)q]} — U (B[A], P[A]; T) (ngm = mgm)

Rem: baryonic mass generation and chiral symmetry:
Even with zero bare quark mass, if the “quark condensate” (gqq) # O = generation of a dynamical

mass —2gs(gq) that breaks spontaneously the chiral symmetry.
—gs(qq) ~ 330 MeV ~ My /3.
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Sensitivity of the CEP prediction (exact inverse problem)

A. Biguet, H.H., T. Brugiere, P. Costa and P. Borgnat,
“Sensitivity of predictions in an effective model — application to the chiral critical end point position in the

Nambu—Jona-Lasinio model,”

Eur. Phys. J. A 51, no. 9, 121 (2015), [arXiv:1409.0990 [hep-ph]]




Parametrisation of the NJL model
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‘Toy model” two flavors NJL model with scalar interactions:
Ly = q(iv"0, — mo)g + G [(ciq)2 + ((iivsfq)Q] :

We have one “a priori”: the quark scalar-pseudo-scalar sector of the NJL model is relevant to study the
chiral properties of QCD. Every conclusions gathered from this model has to be evaluated with respect
to this hypothesis.

¥ Three dimension-full “free” parameters (or loosely constrained by phenomenology):

® my the quark mass around the v and d quark masses
e A the three-dimensional cutoff of the order of the Agcp
e G the coupling constant, G = g/A? g € [1,10].

3¢ (At least) three phenomenological inputs: pion properties + condensate, in vacuum

Mo 137 MeV




The inverse problem
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NB: here, model = Lagrangian 4+ approximations 4 parametrisation procedure.

¥ Direct problem

A, mog, G = my, my, fr,c, CEP

¥ Inverse problem

My, fr,c = N, mo, G

For example one can minimize a merit function as a x2.
Remark: the value of the x? is important to quantify the quality of the fit but the shape of the function

(very flat or very narrow) is also an important information concerning the robustness of the fit. We will
indirectly get an access to this information.

(or other predictions)

% Here, exact inverse problem with Hartree + Ring + Quasi-Goldstone approximation.

Luckily, with physical values for the inputs = unique physical solution (inverse problem well posed).




Sensitivity and ill-posedness of a problem
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Concern in general: parametrisation in vacuum = prediction in medium (position of the CEP)

but how good is this extrapolation ?
Is the inverse problem ill-posed (no solution, no unique solution) ?

¥ Previous studies:

How different physical sectors qualitatively affect the CEP position 7
To do this = variation of the parameters (thus destroying the vacuum phenomenology).

* Goals: Systematic study of the variations of the whole parameter space compatible with the “true”
inputs of the model (m, fr, ¢) and assessment of the sensitivity of the extrapolation with a
quantitative criterium.

= introduction of a sensitivity coefficient with respect to the inputs.




Sensitivity definition

P-t*—.

nfinitesimal sensitivity of a prediction based on the (statistical) propagation of an
uncertainty:

Let X be a prediction depending on two inputs a and b.
Standard deviation of X (where o(a) and o(b) are deviations for the inputs with some distribution):

o’ (X) = (%%)202(@ + (%)202@) .

Sensitivity:

re X
S(X) = lim = ’I( )
o—0 el
where,

(1)




In the NJL model
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We choose vanishing relative dispersion of the inputs namely for I = a or b, o(I)/I = p and p — O:

5(X) = <8X>2 g+<ax>2fg+<ax>2c2
B om, ) X2 Ofr) X2 dc ) X2~
We choose a uniform distribution (no a priori) for the inputs (and check that the results does not

depend on this choice).

¥ Sensitivity meaning

Large (infinite) sensitivity = the extrapolation is very sensitive, the predictive power is low.
Any small but finite errors in the inputs (experimental errors as for the condensate or theoretical

systematic errors because of the approximations) will damaged the prediction.
Small sensitivity = the prediction is robust and can be trusted if the model itself can be trusted.




Temperature and chemical potential CEP sensitivities
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NB: parameter sensitivities small (around 3). At least the inverse problem is well-posed and one can use
the model to compute predictions.

Sensitivities | Values

A | 2.83 | 0.653 (GeV)
Parameters | mg | 4.11 | 0.0051 (GeV)
GA® | 3.32 | 2.11
In-medium | Tcgp | 71.5 | 0.0299 (GeV)
predictions | pucegp | 1.05 | 0.327 (GeV)

Table 1: Sensitivities of the parameters and in-medium predictions considering infinitesimal changes of the inputs. The
sensitivities of the parameters and of pcgp are close to 1. The sensitivity of the temperature coordinate of the CEP is very

large. These values were computed numerically with a Monte-Carlo.

e For Tcrp, 22 ~ 70: no consistent conclusion can be given within the model. Even the existence of
the CEP may be questioned.

e For pucgep, 2 >~ 1 (even lower than the parameters !).




Consequences of small but finite deviations of the inputs

Ft*_.

hy finite variations are relevant ?

Mainly for illustration of the effect, correlations, etc, but also:

e Obvious for observables not very well known experimentally (as for the quark condensate).

e For the pion: experimental value very well known but unknown systematic errors.

1. NJL is an effective (uncontroled) model of QCD. Only our “a priori” of the correctness of the
model (symmetries for example) tells us we can use it.

2. Approximations within the NJL model:
Quasi-Goldstone approximation = 1% of variation without it.
Next order in 1/N. (meson loop approximation) = 5%.

Hence it seems unreasonable to expect than the inverse problem as an accuracy better than 1%.
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We allow finite variation with relative dispersion p = 1% to compute the sensitivities:

TcEp 0.0303 (GeV)
1384 ] o(Tcgp) 0.0107 (GeV) (biased)
93.93 ] = o(Tcepr)/TcEP 35.25 (%)
~311.8 | LCEP 0.3280 (GeV)
O'(,LLCEP) 0.0018 (GeV)
o(ucEP)/HECEP 0.54 (%)
e Striking dispersion in the T°
direction.
o e With only a 1% variation of
nO%Ee the inputs, in 10% of the
00372 case there is no CEP !
T There is no mechanism in
0.0064 this model that ensures the

-0.009

0.322 0.324 0.328 0.33

0.326
K (GeV)

CEP must exists.

e Very stable chemical
potential prediction.

NeD-2019



- o

Correlation of the temperature (left) or the chemical potential (right) with the inputs. Uniform distribution, P — 1% and
N = 203. To represent the correlations we have done a scatter plot of the two datasets then reconstructed the density of

points with the KDE algorithm. The color coded z-axis is then in GeV ™2,
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0.01 0005 002 0035 005 0.065 0.321 0.3232 0.3254 0.3276 0.3298 0.332
T (GeV) i (GeV)
Correlations of Toep | HCEP
M 0.033 | 0.098
Correlation coefficients between the inputs or the model cr
P with inputs fr 0.725 | 0.985

parameters with the temperature and the chemical potential

at CEP with uniform distribution, P — 0.25% (qqg) | 0.677 | 0.117
(converged), and n = 203. ™mo 0.845 | 0.629

with parameters A 0.960 | 0.612
GA® | 0.998 | 0.792
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Sensitivity with finite temperature constraints

,... — More constraints helps.
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Parametrisation of the NJL model based on vacuum data

Nicolas Baillot, HH, Rainer Stiele, Pedro Costa
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For the moment: parametrisation from vacuum observables (and effect on the CEP prediction) for an
exact inverse problem (same number of inputs and parameters) in a toy model (but interesting for
the understanding of chiral physics).

= Now more inputs than parameters (over-constrained inverse problem). Requires minimizing a

merit function (e.g. x*) and we use Monte-Carlo with Markov chain (MCMC — we get the posterior

probabilities).

The inputs may be:

e mesonic mass spectrum only (NJL or QM at this approximation and without diquarks does not really
describe well the hadronic spectrum)

® mesonic decay constants

e the quark condensate

Our main knowledge about the NJL model is that it is good at reproducing pseudo-scalar
pseudo-Golsdtone boson properties and also generate the correct chiral physics.

= we must have as inputs pseudo-scalar Goldstone bosons but also some quantities related to the chiral
condensates scale (pseudo-Goldstone bosons masses << quark masses so they cannot constraint well this
scale).

This prior will be reflected in the choice of our inputs. For example in the exact inverse problem we
directly take as an input the chiral condensate (the sigma and scalar mesons could do but not really well

described by the NJL model).
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What can we learn from data: Bayes theorem

L

Very schematically:
e On the one hand: theory (ab initio calculation): theory = predictions.
e On the other hand: data = observables, hopefully mostly model independant (e.g. hadronic spectrum

=> condensate via sum rules, extraction of the temperature from HIC data, etc).

Meeting in the middle ?

= build posterior probability from data and model i.e. constraints on the model based on a prior
estimate. The uncertainty in the constraints propagate to uncertainty in the prediction.




lllustration of the method: SU(2) exactly constrained

Exact inverse problem phenomenologic inputs:

Constraint central | standard deviation
fr (GeV) 0.093 0.01
m. (GeV) 0.137 0.01

< qq > (GeV) | 0.316 0.02
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Main features:

data expected obtained X Xi@m
fr (GeV) 0.093+0.01% [0.09 : 0.09] [0.04 : 2.14] 0.0
m. (GeV) 0.137+£0.01% [0.14 : 0.14] [0.04 : 1.95] 0.0
< qq > (GeV) 0.315+0.01% [0.31 : 0.32] [0.04 : 2.13] 0.0
my (GeV) 0.6+0.01% [0.67 : 1.31] [147.15 : 13946.43] 0.0
Do 6.04+3.0% [6.1:12.17] [0.0 : 0.12] 0.0
mg (MeV) 0.3134364+0.1%  [0.33: 0.65] [0.44 : 115.77] 0.0

e The x“ is perfectly converged (diagonal plots inputs / x?)

e \We see that the inverse problem is exact. We have a prior on the inputs (1%) and the MCMC find

x> = 0. The standard deviation of the parameter is in fact zero.

e There is two minimum of the x?. The MCMC has found a problem in the model: there is an
unphysical solution with m ~ A (m should be ~ A /2).

e Correlations can be seen and understood e.g. xy with m, (mg fixes the mass of the approximate
Goldstone boson ).

The non-unicity of minimum of the x? is a problem because it means a bifurcation of the prediction of
the model that looses its predictive power.

Either the model really have two parametrisations giving sensible, physical results or ...
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lllustration of the method: SU(2) with a physical constraint

In fact the two sets of solution to the inverse problem is known (one is unstable) and more prior can

remove this solution.

We add to our prior knowledge that albeit the sigma is not well describe by the model, it should be
around 600 MeV but with a large uncertainty ~ 100 MeV (or it is equivalent to ask for the mass m to

be around My /3 ~ 300 MeV).
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lllustration of the method: SU(2) with a physical constraint
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parameter prior posterior
GA? [0.0:15.0] [2.05:2.16]
x [0.0 : 0.1] [0.01 : 0.01]

A (GeV) [03:20] [0.64:0.67]

data expected obtained X Xoin
fr (GeV) 0.093+0.01%  [0.09:0.09] [0.03:1.59] 0.0
m, (GeV) 0.137+£0.01%  [0.14:0.14] [0.05:2.06] 0.0
< qq > (GeV) 0315+£0.01%  [0.31:0.32] [0.04:1.69] 0.0
me (GeV) 0.6£0.1% [0.61:0.67] [0.04:1.36] 0.0
Jrqq 6.0£3.0% [5.54 : 6.08] [0.0 : 0.0] 0.0

mg (MeV) 0.313436+0.1% [0.3:0.33] [0.01:0.55] 0.0
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lllustration of the method: SU(2) CEP prediction
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Parametrisation based on vacuum SU(3) full mesonic spectrum

G 0 W

lambda = 609.99880+23313%

Preliminary N
parameter prior posterior :{J _u\h S
lambda [300.0: 2000.0]  [603.79 : 616.19] /¢ /\
mu [2.0 : 10.0] [8.15 : 8.81] K i
md [2.0 : 10.0] [2.05 : 2.54] e» e
ms [100.0 : 180.0]  [129.79 :134.5] :
gs [0.0 : 3.0] [2.1:2.14]
gd [10.0 : 15.0] [10.81:11.47] -

Parametrisation seems fine but in fact large x? all
over the place.

Globally bad fit but pseudoscalars are better than 7o I 4 o

the scalar and this information was not given to the ~ - S | bl b of st
MCMC. The MCMC discovers (as we know) that _ . 2 i | Sae, |, I8!

NJL model do not handle well the large splitting of
mass in the scalar sector.
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data expected obtained X Xomin
My, 367.0+0.01% [458.91 : 466.28] [627.21 : 731.73] 389.39
My 367.0£0.01% [450.18 : 457.42] [513.72 : 607.08] 310.71
M 549.0+0.01% [620.87 : 628.94] [171.4 : 212.05] 99.15
uu 241.0£0.01% [252.03 : 256.44] [20.94 : 41.04] 4.51
dd 241.0+0.01% [251.26 : 255.63] [18.13 : 36.86] 3.22
ss 257.0£0.01% [262.28 : 267.02] [4.22 : 15.2] 0.0
myx  134.97+0.01% [134.52 : 137.12] [0.06 : 2.67] 0.0
fpix 93.0+£0.01% [95.92 : 97.62] [9.85 : 24.65] 0.27
Mo * 475.04+0.2% [903.52 : 919.05] [20.35 : 21.85] 16.87
05 16.0£0.01% [16.85 : 17.92] [28.02 : 143.71] 0.0
mg*x  497.6+0.01% [495.3 : 503.13] [0.03 : 1.42] 0.0
frc* 113.04+0.02% [97.47 : 99.38] [36.34 : 47.24] 22.48
me*x  1430.0£0.01%  [1183.45:1194.32] [271.63 : 297.26] 250.48
My * 547.940.01% [515.01 : 520.57] [24.87 : 36.04] 12.31
Gyq 2.0+0.01% [2.99 : 3.08] [2433.65 : 2920.74]  1565.37
Gss -3.0£0.01% [-4.84 : -4.69] [3163.76 : 3750.87] 2402.41
O -5.74+0.01% [-7.26 : -6.18] [71.55 : 744.74] 0.0




Parametrisation based on vacuum SU(3) pseudoscalar only

G W o

Preliminary

parameter prior posterior
lambda [300.0 : 2000.0] [683.93 : 708.87]
Moud [2.0 : 10.0] [4.57 : 4.806]
Mg [100.0 : 180.0] [129.95 : 135.78]
Js [0.0 : 3.0] [1.52 : 1.57]
gd [10.0 : 15.0] [13.86 : 14.75]

Concerning the x° the extra-diagonal plot show some interesting correlations as the f. with the three
condensates, the fo with My, the n with 0, the n’ with M.

We can confirm or learn new features of the model by examining these correlations. For example for the
last one, without the i’ that is not a quasi-Golsdtone boson there would be (almost) nothing to fix the
strange mass since the strange mass scale in the other pseudo-scalar is mixed with light quark
condensate.
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data expected obtained X Xoin
My 367.0+0.01% [299.62 : 309.64] [244.29 : 337.07] 20.3
My 367.0+0.01% [299.62 : 309.64] [244.29 : 337.07] 20.3
M 549.04+0.01% [482.03 : 494.56] [98.34 : 148.82] 4.14
uu 241.0+0.01% [257.88 : 264.04] [49.04 : 91.39] 8.86
dd 241.04+0.01% [257.88 : 264.04] [49.04 : 91.39] 8.86
ss 257.0+0.01% [282.67 : 290.58] [99.79 : 170.77] 22.58
myx  134.97+£0.01% [133.8 : 136.4] [0.04 : 1.9] 0.0
fpix 93.04+0.01% [94.79 : 96.4] [3.69 : 13.4] 0.0
Mg 475.0+£0.2% [720.0 : 720.0] [6.65 : 6.65] 1.24
0 16.0+£0.01% [16.71 : 17.59] [19.92 : 98.53] 0.0
mr*x  497.6+0.01% [503.64 : 511.51] [1.47 : 7.82] 0.0
fr* 113.0£0.02% [101.68 : 103.81] [16.54 : 25.11] 7.91
My 1430.0+0.01%  [1000.49 : 1012.68] [851.66 : 902.14] 694.77
My * 547.940.01% [526.42 : 531.97] [8.45 : 15.37] 1.28
Gyq 2.0+0.01% [1.59 : 1.71] [207.59 : 410.09] 0.0
Gss -3.040.01% [-3.04 : -2.85] [1.03 : 28.9] 0.0
O -5.74£0.01% [-3.71 : -2.63] [1213.05 : 2892.94] 0.0




More constraints: finite temperature gauge sector

. Example: po|ynom|a| potentla‘, data lrom M. Caselle, A. Nada,

and M. Panero, Phys. Rev. D 98 no. 5, (2018) 054513)

2.5

Parametrisation of different Polyakov potential but
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o
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with the same pure gauge lattice data and :
results with PQM and PNJL model = tentative to ="
be a more systematic in the definition of Polyakov "

°
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potential and explore the model space. | : S

residuals
S 4 o
L = o
residual
°
o
3

0.0 0.2 0.4 0.6 0.8 1.0 12 14 B 0.0 0.2 0.4 0.6 0.8 1.0 1.2 14

pl = 123883001831

» pl = 1.59827*38113¢
[\ 2501 A4,
< 2251 : 124 ]
= 200 1.0
N N ] p2 = —170687:0%5E 21751 = 0.8
o E 1.50 =
A° g o, 061
PR @ 1251 044 T T T - p2 = -8.6684417 0127
&N g 1.00 - o] 1
© v .
A F 075 0.2 » | /\
o _ +0.05079 © A
/\9 Pp3 = 3.11084%5 63115 0.50 1 0.0 4 &
: /\ B 0.00 | K| S
v / [} - [
oY 2 2 0.0001 ’
=y ‘@ —0.25 a 2
IS { R T T . T T . T T B —0.025 +; T T T . - T T - T -
o N A 00 02 04 06 08 10 12 14 00 02 04 06 08 10 12 14 S0 S P S P W) 4P P
RGN AN S ICOR t t NTNT AT AT NS T

L p2 p3 pl p2




To continue

G e e—
e We already have results for Wuppertal-Budapest

data Example : isentropics

e Other parametrisations (log with higher order 2500 [/
T'-dependent term

[Ae]
[w)
Q

e Mixing data from different group together
(resampling needed).

—_
(4]
o

e Study what are the feature in the phase diagram
(CEP, isentropics) that are stable (same results
up to the uncertainties propagated from the
vaccuum and pure gauge data) when using e | —
different models (namely PNJL and PQM). ’ " - o 0

quark chemical petential L, [MeV]
{ EfFeCtS Of h igher Order d pprOXi mations (beyond W. Alberico, A. Beraudo, R. C. Pereira, P. Costa, H. Hansen, M. Motta and RS, in preparation

mean field) on the stability of features.

Temperature T [MeV]
S
Q

(%]
o

This program is a kind of exploration of the model space of the effective chiral quark models (NJL/QM)

and background gauge field approximation (Poly / Log / Log,). Unstable features represent physical
observable that need more microscopic understanding and more constraint.




As a partial conclusion

L

We have to be careful in the choice of our prior to impose enough physical constraints. The analysis of
the posterior distribution is important to increase our confidence in the model (e.g. we found again the
unphysical SU (2) solution).

The more priors we have (if we can trust the model to reproduced them) the better.

We are trying to be more systematic in our approach to include as much as possible of the known and
well understood domain.




e e
PART Il

Perspectives: compact stars as a laboratory for dense matter

(and very very heavy “ion” collisions)




Compact stars

- | B .

quark—hybrid traditonal neutron star
slar

Lot of effort to constrain nuclear EoS from new
compact star observations. peon
Data driven effort possible with the advance )
of observations, in particular multimessenger
astronomy.

neutron star with
pion condensate

Fe
Particularly interesting event: kilonova AT2017gfo %ﬁﬁ;ﬁfﬂ 105 giom @
corresponding to the merging of two compact stars 25C  opp 10" grom 3
. c . 3
and observed as gravitational waves (GW170817) in SoF ek e
LIGO/Virgo interferomer. ceL-x’ A

slrange star

New satellite: NICER: Neutron Star Interior
Composition Explorer

nucleon star

A~ 10km =

(Physics department, San Diego state university)




Hydrostatic equilibrium and influence of a second body

P L e e
Equilibrium, TOV (1939)

The mass M and radius R are completly determine by equation of state P(p) (pressure as a function

of the density) and the hydrostatic equilibrium general relativistic Tolman-Oppenheimer-Volkoff equation
(TOV ; 1939) with conditions R = r(P = 0) and M = m(R):

= oo+ 5] [me + anr ] [1—%}

c2

dr r2

¥ With a second body, Thorne and Campolattaro (1967)

One can defines the tidal polarizability (related to the linear approximation of the quadrupole moment:
Q ~ \E ~ AO’®) that probe for the internal structure:

)\—2k (R) c*R i
g7 GM

where ks is [ = 2 tidal Love number




BNS merger simulation and gravitational wave

— : e o

First calculation at IPNL (EoS LS220) :

Code WhiskyTHC, David Radice, Princeton : (Templated hydrodynamics code for general relativity)

https://www.astro.princeton.edu/~dradice/whiskythc.html

Weyl tensor 22 at 600 M_sol (real part)
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https://www.astro.princeton.edu/~dradice/whiskythc.html
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Notice the temperature. May be quark degrees of freedom are relevant (if the feature persists with more
up to date EoS) 7
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Normalized amplitude
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Reassigned spectrogram (in log, thresholded at 1e-7 max. amplitude)
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Neutron star phenomenology and the CEP: proof of concept

G W
Can compact stars phenomenology constrain QCD critical properties (or the other way around,
depending on who will be measured first with enough accuracy) ?

Proof of concept in the most favorable setup:

e NJL SU(2): only the light quark condensate, that have a very important variation when varying
the density, contrarly to the strange condensate (even if it known that pure quark star contains

strangeness if they exists).

e Tidal deformability observable (probe the core of the matter)
e Pure quark star with no nucleonic EoS for the crust (maximising the chance to have large deformation).

If with this very favorable setup we do not have a positive result it does not look good for this research

direction ... But there are other constrains to look at (e.g. relevance of quark matter during the merging

due to the high temperature)

If we have a positive result, it does not mean it will survive once we adopt a more realistic description of

the dense matter (strangeness, nucleonic crust, etc).




Correlations CEP - Neutron star phenomenology

s W o

Very preliminary result

Correlations for a central density 41444

Terp | 07 | 09 | 01 | 0.1
Lcpp | 06 | 08 |01 |01

Correlations for a central density 3n44¢:

R | M | ky | A
Tcrp | 09 | 09 | 04 | 0.4
ucrpp | 07 | 09 [ 03 | 0.4

No strong correlation with the tidal deformability but with mass and radius.

If this result persists with a more realistic description of the quark matter then: if we are sure we have
measured this parameter for a compact star with a quark core then we may be able to give a more
accurate prediction of the CEP ; or if we have a measure of the CEP we may be able to decide if




Conclusions

> 200
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& 100+ The construction of the phase diagram
,% of QCD is in progress with the help of
= | effective models (and other approaches).

'E\o'W | 1 l l

(Massimo Di Toro)

Our aim: build quark EoS from effective model for the whole phase diagram (also linked with nuclear

EoS) based on the best knowledge we have with other approaches =- compact star and hot and dense
phases phenomenology.




