Hard probes in pp collisions and the event generator EPOS

B. GUIOT K. WERNER

Subatech, guiot@subatech.in2p3.fr

NeD/TURIC, 2014
Outline

1. Our project
2. Pomerons and hard probes production
3. Charms
4. Prompt photons
Outline

1. Our project
2. Pomerons and hard probes production
3. Charms
4. Prompt photons
EPOS is an event generator for Heavy Ions Collisions with a unified formalism for pp pA and AA collisions:

- **Good results for collective behavior observables**
 ⇒ see Klaus’s talk

- **Missing ingredient : heavy flavors, prompt photons**
 ⇒ Couldn’t be done like in pythia which is based on factorization formula
Our project: implementation of hard probes in EPOS

- Useful for experimentalists
- Test for theories/models:

Study of the QGP:
- Heavy quark correlation
- Isolated photon/charged particles correlation → modification of fragmentation functions by the medium
- γ jet

Small x study (includes cold matter effects):
- Multiplicity of D mesons
- Gluon distribution
- R_{pA} for D mesons

Test of “basic QCD”:
- Partonic cascades
- QCD cross sections
Outline

1. Our project
2. Pomerons and hard probes production
3. Charms
4. Prompt photons
Multiple scattering in EPOS

Multiple scattering: pQCD and Gribov-Regge theory + Saturation

2. Needed for theoretical reasons: \(\sigma_{tot}(s)\) violates the Froissart bound with just one interaction

- Multiple pomerons exchange:

\[
\text{Cut pomeron } \rightarrow \text{particles production}
\]

 - Multiplicity \(\propto\) # of cut pomerons
 - Hard probes \(\propto\) # of cut pomerons

Linear rise of hard probes with the multiplicity of charged particles

B. GUIOT, K. WERNER
D mesons vs multiplicity

D+ vs charged multiplicity
Data: ALICE
2< pt <4

D0 vs charged multiplicity
Data: ALICE
1< pt <2

B. GUIOT, K. WERNER
Hard probes in pp collisions and the event generator EPOS
Hard probes production

dissection of a pomeron:

- **Soft evolution**
- **Hard evolution**
- ISR
- Born
- Nucleus

Hard probes produced during:
- Hard evolution
- Born process $= \sigma_{QCD}$ at L.O

Emission probability:

$$dP(z, Q^2) \propto \frac{\alpha}{2\pi} \frac{p(z)}{Q^2} \Delta(Q_0^2, Q^2)$$

- The same formalism (and parameters) for prompt photons and heavy quarks

B. GUIOT, K. WERNER

Hard probes in pp collisions and the event generator EPOS
ISR and out born particles have $Q^2 \neq 0 \Rightarrow$ timelike cascade

Relevant processes:
- $g \rightarrow c\bar{c}$
- $q \rightarrow q\gamma$
- $c \rightarrow cg$

Emissions at small angle $dP(z, Q^2) \propto \frac{\alpha}{2\pi} \frac{p(z)}{Q^2} \Delta(Q_0^2, Q^2) +$ angular ordering
EPOS: a “real” event generator

1 LHC event = 1 EPOS event

1. All kind of particles produced and registered in final tables
 - Not the case in Pythia (where one has to choose processes of interest) or Jetphox

2. We can (and have to) do the same experimental treatment for our final particles
 ⇒ anti-kt for jets, isolation, background subtraction ...
 ⇒ Ideal for comparison with experiments

- Remark: Even in that case, not easy to be sure that we are looking at exactly the same observable
Outline

1 Our project

2 Pomerons and hard probes production

3 Charms

4 Prompt photons
Goals

1. Test of charm implementation: Try to reproduce experimental results for D mesons

2. Later, charms could be used for the study of the QGP
 - R_{pA}, R_{AA}
 - Heavy quarks correlations \rightarrow Information on energy loss mechanisms.

\Rightarrow Project with J. Aichelin, P.B Gossiaux, K. Werner, M. Nahrgang and Vitalii Ozvenchuk.
Charm vs NLO and FONLL

- A precise treatment of timelike cascade is essential for heavy quarks

Satisfying result but not enough splittings during timelike cascade

⇒ Work in progress
No additional or modified parameter for D mesons and photons

Alice collaboration 2012, arXiv 1312.1233. Measurement of:

- D^{++}
- $D^+ =$ prompt D^+ and decays from D^{++}
- $D0 =$ prompt $D0$ and decays from D^{++} and $D0^*$

D^{*+} contributes to the $D0$ and D^+ p_t spectrum. The spectrum of the D^{*+} need to be well reproduced

- Rem : \sum of D meson fractions > 1
(unavoidable) D^{++}

- IN agreement with FONLL and data, except at low pt
- $M_{charm} = 1.5$ GeV for both EPOS and FONLL
Our project
Pomerons and hard probes production
Charms
Prompt photons
Backup slides

D0 and D+ mesons

- Good agreement with FONLL and ALICE data
- Not enough D mesons at low pt

www.lpthe.jussieu.fr/~cacciari/fonll/fonllform.html

B. GUIOT, K. WERNER
Hard probes in pp collisions and the event generator EPOS
Outline

1. Our project
2. Pomerons and hard probes production
3. Charms
4. Prompt photons
Goals

Some definitions (in pp collisions)

- Direct photon: produced during the born process
- Fragmentation photon: produced in spacelike/timelike cascade
- Prompt photon = Fragmentation + direct photons

- Test of γ implementation: Try to reproduce experimental
- Direct photons/charged particles correlations: provides an (approximate) measurement of quark fragmentation functions
 - Could be used for the study of the QGP

\Rightarrow Need to separate contributions from direct and fragmentation photon...
Isolated photons

- Direct photons: produced at $\sim \pi$ of the rest of the matter

- Fragmentation photons: produced at small angle during the final timelike cascade \rightarrow surrounded by several particles

Isolation criteria:

1. Define a cone $R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$ around the photon

2. Isolated if $\sum p_t < p_t^{\text{MAX}}$ GeV, p_t: transverse momentum of particles in the cone

\rightarrow **Strong suppression of fragmentation photons**
Implementation of isolated photons

- Isolation subroutine: like in experiments, we define a cone
 \[R = \sqrt{\Delta \phi^2 + \Delta \eta^2} \]
 around a triggered photon

Event generator with a complete particles production:

⇒ realistic isolation (In Jetphox done by calculation → non-physical effect)
⇒ Able to reproduce sophisticated observables
Isolated photon distribution

\[\frac{dn}{dEt}/(\text{GeV}) \]

-6
-7
-8
-9
10
20
30
40
Et

circle: CMS
square: Jetphox
star: EPOS

In good agreement with Jetphox and CMS

B. GUIOT, K. WERNER

Hard probes in pp collisions and the event generator EPOS
Isolated photon/charged particle correlation: ALICE

Aim:
- \[xe = - \frac{p_t^{asso}}{p_t^{trig}} \cos(\Delta \phi) \simeq \text{quark fragmentation function} \]
- Comparison of \(xe \) for pp and PbPb collisions

Measurement:

Isolation:
- \(R = 0.4 \)
- \(\sum p_t > 1 \text{ GeV} \)

Additional criteria:
- \(p_t^{trig} \in [10, 25] + \text{highest } p_t \text{ of the event} \)
- \(p_t^{asso} > 0.2 \text{ GeV} \)
Azimuthal correlations

- “Anti-correlation” reproduced: less particles around the isolated photon
- The two plots are comparable

(ref: thesis, N. Arbor, 2013)
Regions for underlying event evaluation: \([\pi/3, 2\pi/3]\) and \([4\pi/3, 5\pi/3]\)

\((ref: \text{thesis, N. Arbor, 2013})\)
Isolated photon/charged particle correlation: Phenix

Aim:
- Comparison of fragmentation functions in pp and AuAu collisions
- Evaluation of k_t effect (correction to the back to back picture)

Isolation:
- $R = 0.3$
- $\sum E < 0.1 \times E_{\text{photon}}$

Simulation with EPOS:
- Just try to reproduce data to test our model
- Could be interesting to look at fragmentation functions or k_t effect directly inside EPOS
Our project
Pomerons and hard probes production
Charms
Prompt photons
Backup slides

Photon/charged particles correlation

\[\frac{1}{N_{\text{trig}}} \frac{dN}{d\Delta \phi} \]

| \(\eta \) | < 0.35
DATA : Phenix

\[p_t^{\text{trig}} : 5-7 \]

\[p_t^{\text{asso}} : 2-5 \]

- Done for \(p_t^{\text{trig}} = [7,9] \), [9,12] and [12, 15] \(\Rightarrow \) good agreement

B. GUIOT, K. WERNER

Hard probes in pp collisions and the event generator EPOS
Xe Phenix

\[\frac{1}{N_{\text{trig}}} \frac{dN}{dx} \]

- \(p_t^{\text{asso}} \) too big?
- \(|\eta| < 0.35 \)
- DATA: Phenix
- \(p_t^{\text{trig}} : 5-7 \)
- \(p_t^{\text{asso}} > 1 \)
Summary

1. Good results for D mesons, except at low pt
 ⇒ The partonic cascade need to be improved
2. pt spectra and correlations of photons with charged particles in good agreement with data
 - a “real” event generator makes comparison with experiments easier/possible

Hard probes could now be used for all kind of studies

Outlook:
- Implementation of new particles: bottom, J/ψ
- Heavy quarks correlation (work in progress)

acknowledgment: projet together, Region des pays de la Loire
Study of isolation criteria