
2. Density-matrix formalism: 

Correlation dynamics 
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Density-matrix formalism

 Schrödinger equation for a system of N fermions:

 Hamiltonian operator:

(2.1)

2-body interaction (potential)

kinetic energy operator  + (possible) external mean-field potential

(e.g. external electromagnetic field)

32

(1)

Consider (1) - hermitean conjugate:

(1)*Y*
N – YN (2) : 

or in Dirac notation:

I = coordinate, spin, 

isospin,...

Notation:

i – particle index of 

many body system 

(i=1,…,N) :

One-body Hamiltonian:

Hermitian Hamiltonian:

(2)



Density-matrix formalism

 Schrödinger eq. in density-operator representation  

(2.3)
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 Restrict to t’=t :

Substitute (2.2) in (2.1):

 Introduce two time density :

or in Dirac notation:

von Neumann (or Liouville) eq. (in matrix representation) describes an N-particle   

system  in- or out-off equilibrium :

(2.2)



 Introduce a reduced density matrices rn(1…n,1´…n´; t) by taking the trace 

(integrate) over particles n+1,…N of rN :

Density-matrix formalism

(3)

The traces of the density matrices rn (for n < N) :

34

Here the relative normalization between rn and rn+1 is fixed and it is useful to 

choose the normalization

which leads to the following normalization for the one-body density matrix:

i.e. the particle number for the N-body Fermi system.

Recurrence

The normalization of the two-body density matrix then reads as

Tr→  
𝑑3𝑝

(2𝜋ℏ)3
 𝑑3𝑟



Density matrix formalism: BBGKY-Hierarchy

Taking corresponding traces (i.e. Tr(n+1,…N)) of the von-Neumann equation we obtain the

BBGKY-Hierarchy  (Bogolyubov, Born, Green, Kirkwood and Yvon)

 The explicit equations for n=1, n=2 read:

 This  set of equations is equivalent to the von-Neumann equation

 The approximations or truncations of this set will reduce the information about the system

Eqs. (5,6) are not closed since eq. (6) for r2 requires information from r3. Its equation reads:

(4)

(5)

(6)

(7)
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 1-body density matrix:

 2-body density matrix (consider fermions):

2-body correlations1PI = 1-particle-irreducible approach    +

(TDHF approximation)

2PI= 2-particle-irreducible approach

1 – initial state of particle „1“

1‘ – final state of the same particle „1“

Introduce the cluster expansion     Correlation dynamics:

2-body antisymmetrization 

operator:

By neglecting c2 in (9) we get the limit of independent particles (Time-Dependent Hartree-Fock). 

This implies that all effects from collisions or correlations are incorporated in c2 and higher 

orders in c2 etc.

Permutation 

operator

(9)

 3-body density matrix:

(8)

(10)
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Correlation dynamics

3-body correlations



Correlation dynamics

The goal: from BBGKY-Hierarchy obtain the closed equation  for 1-body density matrix

within 2PI discarding explicit three-body correlations c3

 for that we reformulate eq. (5) for r1 using cluster expansion (correlation dynamics): 

(5)
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 we obtain  EoM for the one-body density matrix:

substitutute eq. (8) for r2

(8)

2-body correlations

* How to obtain the 2-body correlation matrix c2 ?



Correlation dynamics

 In order to obtain the 2-body correlation matrix c2 , we start with eq. (6) for r2 

substitute  eq. (10) for r3

and discarding explicit 3-body correlations c3

 we obtain EoM for the two-body correlation matrix c2 :

(6)

(12)
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(10)



Correlation dynamics

To reduce the complexity we introduce notations: 

 a one-body Hamiltonian by

(13)

(14) Pauli-blocking operator is uniquely defined by

 Effective 2-body interaction in the medium:

(15)

kinetic term   +  interaction with the self-generated time-dependent mean field

Resummed interaction  G-matrix approach
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Correlation dynamics

*: EoM is obtained after the ‚cluster‘ expansion and neglecting the explicit 3-body correlations c3

TDHF
2-body correlations

* EoM for the one-body density matrix:

* EoM for the 2-body correlation matrix:

(16)

EoM (16) describes the propagation of a particle in the self-generated mean field Us(i)

with additional 2-body correlations that are further specified in the EoM (17) for c2 :

Note: Time evolution of c2 depends on the distribution of a third particle, which is integrated 

out in the trace! The third particle is interacting as well!

Propagation of two particles 

1 and 2 in the mean field Us

Born term: bare 2-body scattering

resummed in-medium interaction with 

intermediate Pauli blocking (G-matrix theory)

2-Particle-2-hole interactions

(important for groundstate 

correlations) and damping of low 

energy modes

(17)
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BBGKY-Hierarchie  - 1PI   

eq.(11) with c2(1,2,1‘,2‘)=0

Vlasov equation

 perform Wigner transformation of one-body density distribution function r(r,r‘,t)



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f(r,p,t) is the single particle phase-space distribution function

After the 1st order gradient expansion  Vlasov equation of motion

- free propagation of particles in the self-generated HF mean-field potential U(r,t):
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Uehling-Uhlenbeck equation: collision term

Collision term: 

 perform Wigner transformation

 Formally solve the EoM for c2 (with some approximations in momentum space): 

 and insert obtained c2 in the expression (22) for I(11´,t) :  BUU EoM

TDHF – Vlasov equation
2-body correlations

(22)I(11´,t)=

(21)

(23)
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Boltzmann (Vlasov)-Uehling-Uhlenbeck (B(V)UU) equation : 

Collision term

P)4321(
d

d
)pppp(||dpdpd

)2(

4
I 4321

3

123

3

2

3
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
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)f1)(f1(ff)f1)(f1(ffP 43212143 

Probability including Pauli blocking of fermions:

Gain term

3+41+2

Loss term

1+23+4

For particle 1 and 2: 

Collision term = Gain term – Loss term
LGIcoll 

The BUU equations (24) describes the propagation in the self-generated mean-field 

U(r,t) as well as mutual two-body interactions respecting the Pauli-principle
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prr
t

f
)t,p,r(f)t,r(U)t,p,r(f

m

p
)t,p,r(f

t
)t,p,r(f

dt

d






















Collision term for 1+23+4 (let‘s consider fermions) :

(24)

(25)

(26)
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2. Quantum field theory 

 Kadanoff-Baym dynamics 

 generalized off-shell transport equations 

44
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From weakly to strongly interacting systems

Many-body theory:

Strong interaction  large width = short life-time

 broad spectral function  quantum object

 How to describe the dynamics of 

broad strongly interacting quantum 

states in transport theory?

Barcelona / 

Valencia 

group

L(1783)N-1

and 

S(1830)N-1

exitations

 semi-classical BUU

 generalized transport equations 

based on Kadanoff-Baym dynamics

first order gradient 

expansion of quantum 

Kadanoff-Baym equations

In-medium effects (on hadronic or partonic levels!) = changes of particle 

properties in the hot and dense medium 

Example: hadronic medium - vector mesons, strange mesons

QGP – dressing of partons 
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Dynamical description of strongly interacting systems

 Semi-classical on-shell BUU: applies for small collisional width, i.e.  for a weakly 

interacting systems of particles

 Quantum field theory 

Kadanoff-Baym dynamics for resummed single-particle Green functions S<   (= G<)

(1962)

Leo Kadanoff Gordon Baym

)M(Ŝ
2
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
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Green functions S< / self-energies S:

operatororderingtime)anti()T(T

)fermions/bosons(1

ca 



Integration over the intermediate spacetime

How to describe strongly interacting systems?!
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Heisenberg picture

Eq. (1) has the formal solution:

 Relativistic formulations of the many-body problem are described within 

covariant field theory.

The fields themselves are distributions in space-time 

from Schrödinger picture  Heisenberg picture: 

 In the Heisenberg picture the time evolutions of the system is described by 

time-dependent operators that are evolved with the help of the unitary time-evolution 

operator U (t, t′) which follows

(1)

Schrödinger operator of the system

(2)

If H doesn‘t depend on time:
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Elementary observables in Heisenberg picture

(3)

 The time evolution of any operator O in the Heisenberg picture from time t0 to t 

is given by

This implies that first the system is evolved from t0 to t and then backward from 

t to t0. This may be expressed as a time integral along the Keldysh-Contour

 If the initial state is given by some density matrix ρ, which may be a pure or 

mixed state, then the time evolution of expectation value O(t) of the operator O in 

the Heisenberg picture from time t0 to t is given by



(4)
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Two-point functions on the Keldysh contour

(5)

Consider: Interacting field theory for spinless massive scalar bosons 

scalar field f(x)

 Green functions: elementary degrees of freedom

Tc / Ta denote time ordering on the upper/lower branch of the real-time contour

G++

G- -

ty and tx on upper part; tx>ty 

ty on upper; tx on lower part

ty on lower; tx on upper part

ty and tx on lower part; ty>tx 

In matrix notation:

Real-time (Keldysh-)  Contour

Causal:

Anticausal:

Small:

Large:

in the Heisenberg picture
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 Relation to the one-body density matrix r :

Green functions on contour

Note: 

only two Green functions

are independent!

 Two-point functions F on the closed-time-path (CTP) generally can be 

expressed by retarded (R) and advanced (A) components as

Note that the advanced and retarded components of the Green functions contain 

only spectral and no statistical information (see below)

giving in particular the relation

(7)

(8)

t=(t+t’)/2

(6)
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 Dyson-Schwinger equation:

Dyson-Schwinger equation on the closed-time-path reads in matrix form:

The selfenergy Σ on the CTP is defined 

along (9) and incorporates interactions 

of higher order. In lowest order Σ/2M is 

given by the Hartree or Hartree-Fock

mean field but it follows a 

nonperturbative expansion

Dyson-Schwinger equation on the contour

means convolution integral over the closed time-pathp

(9)

Illustration of the Dyson equation
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Towards the Kadanoff-Baym equations

For Bose case the free propagator is defined via the negative inverse 

Klein-Gordon operator in space-time representation

which is a solution of the Klein-Gordon equation in the following sense:

with δp denoting the δ-function on the closed time path (CTP). 

In (11) m denotes the bare mass of the scalar field.

(12)

(11)

Free Green function G0(x,y)
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The Kadanoff-Baym equations

Note: propagation in both variables needed !

To derive the Kadanoff-Baym equations one multiplies Dyson-Schwinger eq. (10) 

with G0x
-1 . This gives four equations for G<, G> which can be written in the form:

2)  (10)*G0y
-1 
 propagation of Green functions in variable y

1) (10)*G0x
-1 
 propagation of Green functions in variable x

(13)

(14)

•retarded/advanced Green functions only depend on retarded/advanced quantities 

and contain only spectral information (no information on particle density)!
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Derivation of the selfenergy

Resummed propagators with self-generated mean-field

G0 – ‚free‘ part  of action (kinetic + mass terms), G0 - free propagator, 

means convolution integral over the closed time-pathp

Effective action G :

 Define selfenergy S by the variation of G [G]

Ф(G) is the ‚interaction part‘ = sum of all connected nPI diagrams built up by the full G(x,y)

 The selfenergy S are obtained by opening of a propagator line in the irreducible 

diagrams F

(15)

(16)

Approximation: Two-particle irreducible (2PI) diagrams 
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Example: scalar theory with self-interactions

 Ф(G) : the sum of all closed 2PI diagrams built up by the full G(x,y):

From (16)  self-energies are defined by the variation of Ф w.r.t G(y,x):

 Cut a line and stretch:

 Lagrangian density:

Ф4 – theory: the interacting field theory for spinless massive scalar bosons

provides a ‚theoretical laboratory‘ for testing approximation schemes  

f(x) – real scalar field

l – is a coupling constant

d+1: d=dimension of space

(d=3 or 2) + 1(=time)

Ф(G) up to 3-loop order; 

~ 2nd order in l (i.e. 2PI)

(17)

(18)
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2PI self-energies in Ф4 - theory

Local in space and time 

part: tadpole
Nonlocal part: sunset

local ‚potential‘ term   (~λ)

leads to the generation of an effective 

mass for the field quanta

interaction term  (~ λ2)
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Kadanoff-Baym equations of motion for G<

 Go ahead and solve KBE with some initial condition !

Thus, the Kadanoff-Baym equations  include the influence of the mean-field on the 

particle propagation (generated by the tadpole diagram) as well as scattering 

processes as inherent in the sunset diagram.

d: dimension of space

potential term

interaction term

1)

2)



Wigner transformation of the Kadanoff-Baym equation

 do Wigner transformation of the Kadanoff-Baym equation

Convolution integrals convert under Wigner transformation as

Operator     is a 4-dimentional 

generalizaton of the Poisson-bracket:
an infinite series in the differential operator

For any function FXY with X=(x+y)/2 – space-time coordinate, P – 4-momentum

 consider only contribution up to first order in the gradients   

= a standard approximation of kinetic theory which is justified if the gradients in 

the mean spacial coordinate X are small
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From Kadanoff-Baym equations to transport equations 

 separate all retarded and advanced quantities – Geen functions and 

self- energies – into real and imaginary parts:

The imaginary part of the retarded 

propagator is given by the 

normalized spectral function AXP:

The spectral function AXP in first order gradient expansion (for bosons) :

The imaginary part of the selfenergy

corresponds to the width GXP ;

then from Dyson-Schwinger equation:

The real part of the retarded propagator in first order gradient expansion :

algebraic solution

AXP and ReSXP
ret in first order gradient expansion depend ONLY on SXP

ret !
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From Kadanoff-Baym equations to 

generalized transport equations

After the first order gradient expansion of the Wigner transformed Kadanoff-Baym 

equations and separation into the real and imaginary parts one gets:

Backflow term incorporates the off-shell behavior in the particle propagation

! vanishes in the quasiparticle limit AXP (p2-M2) 

 Spectral function:

– ‚width‘ of spectral function 

= reaction rate of particle (at space-time position X)

4-dimentional generalizaton of the Poisson-bracket:

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

 GTE: Propagation of the Green‘s function iS<
XP=AXPNXP , which carries 

information not only on the number of particles (NXP), but also on their properties,

interactions and correlations (via AXP)

GSG 0

ret

XPXP p2Im 

drift term Vlasov term collision term = ‚gain‘ - ‚loss‘ termbackflow term

Generalized transport equations (GTE):

G
t

c


 Life time
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General testparticle off-shell equations of motion

 Employ testparticle Ansatz for the real valued quantity i S<
XP  -

insert in generalized transport equations  and determine equations of motion !

 General testparticle ‚Cassing off-shell equations of motion‘ 

for the time-like particles:

with

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

Note: the common factor 1/(1-C(i)) can be absorbed in an ‚eigentime‘ of particle (i) !
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Limiting cases

 Γ(X,P) = Γ(X) - width depends only on space-time X:



follows:

i.e. the deviation of Mi
2 from the pole mass (squared) M0

2 scales with Γi !

P =

and fix P0 by

use M2 as an independent variable
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On-shell limit

 Γ(X,P) such that

E.g.: Γ = const

G=Γvacuum (M)



‚Vacuum‘ spectral function with constant 

or mass dependent width G:

spectral function AXP does NOT change 

the shape (and pole position) during 

propagation through the medium

(backflow term vanishes also!)

 Γ(X,P)  0 quasiparticle approximation :  

A(X,P) = 2 p d(P2-M2)

||

Hamiltons equation of motion -

independent on Γ !Backflow term - which 

incorporates the off-shell 

behavior in the particle 

propagation - vanishes in 

the quasiparticle limit !

 Hamiltons equation of motion - independent on Γ !

0Γa nd0Γ PX 
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Collision term in off-shell transport models

Collision term for reaction 1+2->3+4:

with

The trace over particles 2,3,4 reads explicitly

for fermions for bosons

The transport approach and the particle spectral functions are fully 

determined once the in-medium transition amplitudes G are known in 

their off-shell dependence!

additional integration

‚loss‘ term‚gain‘ term



In-medium transition rates: G-matrix approach

Need to know in-medium transition amplitudes G and their off-shell

dependence

Coupled channel G-matrix approach

Transition probability :

with G(p,r,T)  - G-matrix from the solution of coupled-channel equations:

G

•Baryons: Pauli blocking 

and potential dressing

• Meson selfenergy and 

spectral function



For strangeness: 

D. Cabrera, L. Tolos, J. Aichelin, E.B., PRC C90 (2014) 055207;  W. Cassing, L. Tolos, E.B., A. Ramos, NPA727 (2003) 59
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Coupled-channel G-matrix approach

provides in-medium transition 

probabilities for different channels, 

e.g.   Y K-p  (Y = L,S)

L. Tolos et al., NPA 690 (2001) 547

31



Remarks on mean-field potential in off-shell transport models

Interacting relativistic particles have a complex self-energy:

ret

XP

ret

XP

ret

XP ImiRe SSS 

 By dispersion relation (Kramers–Kronig relation) we get a contribution to 

the real part of self-energy:

)pq(

)q(Im
dq)p(Re

0

ret

XP

0

0

ret

XP


 


S
S

which gives a mean-field potential UXP via: XP00

ret

XP Up2)p(Re S

 Many-body theory:

 The collision width G coll is determined from the loss term of the collision integral Icoll

GSG 0

ret

XPXP p2Im The neg. imaginary part is related via G = Gcoll+Gdec

 The complex self-energy relates in a self-consistent way to the self-generated 

mean-field potential and collision width (inverse lifetime)

2MPX

2

collcoll )N,MP(X,Γ)loss(I 




to the inverse livetime of the particle t~1/G . 
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Off-shell vs. on-shell transport dynamics
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becomes on-shell in the vacuum 

dynamically by propagation 

through the medium!

Time evolution of the mass distribution of r and  mesons for central C+C 

collisions (b=1 fm) at 2 A GeV for dropping mass + collisional broadening scenario

E.L.B. &W. Cassing, NPA 807 (2008) 214

On-shell BUU:

low mass r and  mesons live  

forever (and shine ‚fake‘ dileptons)!

On-shell Off-shell
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In-medium
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Detailed balance on the level of 2n: 

treatment of multi-particle collisions in transport approaches

W. Cassing,  NPA 700 (2002) 618

Generalized collision integral for n  m reactions:

is Pauli-blocking or Bose-enhancement factors; 

=1 for bosons and =-1 for fermions

is a transition probability
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Antibaryon production in heavy-ion reactions
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W. Cassing,  NPA 700 (2002) 618

E. Seifert, W. Cassing, 1710.00665, 1801.07557Multi-meson fusion reactions

m1+m2+...+mn  B+Bbar

m=,r,,..  Bp,L,S,,  (>2000 channels)

 important for anti-proton, anti-lambda, 

anti-Xi, anti-Omega dynamics !
23

 approximate equilibrium of annihilation and recreation



Goal: microscopic transport description of 

the partonic and hadronic phase

Problems:
 How to model a QGP phase in line with lQCD data?

 How to solve the hadronization problem?

Ways to go:

‚Hybrid‘ models:

 QGP phase: hydro with QGP EoS

 hadronic freeze-out: after burner -

hadron-string transport model

 Hybrid-UrQMD

 microscopic transport description of the partonic 

and hadronic phase in terms of strongly interacting 

dynamical quasi-particles and off-shell hadrons

 PHSD

pQCD based  models:

 QGP phase: pQCD cascade

 hadronization: quark coalescence 

 AMPT, HIJING, BAMPS

63
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‚Bulk‘ properties

in Au+Au



Pierre Moreau 16

Au+Au at 200 A GeV, b=2.2 fm
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Au+Au at 200 A GeV, b=2.2 fm
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8225Exploring the partonic phase at finite chemical potential within HIC

Illustration for a HIC ( 𝒔𝑵𝑵 = 𝟏𝟗. 𝟔 GeV)

P. Moreau



Illustration for HIC ( 𝒔𝑵𝑵 = 𝟏𝟕 GeV)

B/T=2

B/T=1

B/T=3

P. Moreau et al.,  PRC100 (2019) 014911



Dynamical models for HIC

Macroscopic Microscopic

‚Hybrid‘
QGP phase: hydro with QGP EoS 

 hadronic freeze-out: after burner -

hadron-string transport model

(‚hybrid‘-UrQMD, EPOS, …)

fireball models:
 no explicit dynamics: 

parametrized time 

evolution (TAMU)

ideal
(Jyväskylä,SHASTA,

TAMU, …) 

Non-equilibrium microscopic transport models –

based on many-body theory

Hadron-string 

models
(UrQMD, IQMD, HSD, 

QGSM, SMASH …)

Partonic cascades

pQCD based
(Duke, BAMPS, …)

Parton-hadron models:

 QGP: pQCD based cascade

 massless q, g

 hadronization: coalescence

(AMPT, HIJING)

 QGP: lQCD EoS

 massive quasi-particles

(q and g with spectral functions) 

in self-generated mean-field

 dynamical hadronization

 HG: off-shell dynamics

(applicable for strongly interacting

systems) 

viscous
(Romachkke,(2+1)D VISH2+1, 

(3+1)D MUSIC,…)

hydro-models:
 description of QGP and hadronic phase

by hydrodanamical equations for fluid

 assumption of local equilibrium

 EoS with phase transition from QGP to HG

 initial conditions (e-b-e, fluctuating)

84
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