Continuous Decoupling

Jörn Knol GSI, Mai 2024

in Memory

General Remarks

Model Features

Phase transition

High *T*-Case

Decoupling Strategies

Model Experiences ALICE Dat

Summary

The fate of weakly bound light nuclei in central collider experiments: a challenge in favor of a late continuous decoupling mechanism

Jörn Knoll, GSI, Mai 2024

Abstract:

Arguments are presented that the reaction products of central high energy nuclear collisions up to collider energies can be understood in terms of a continuous decoupling mechanism. This includes the "late" decoupling of loosely bound light nuclei such as deuterons or faintly bound hyper-tritons.¹

¹Footnotes and tiny green commends concern verbal clarifications during presentation or during the subsequent discussion $\square \rightarrow \langle \square \rangle \land \langle \square \rangle \land \langle \square \rangle \land \langle \square \rangle$

Continuous Decoupling

in Memory

Jörn Knol GSI, Mai 2024

in Memory

General Remarks

Model Features

Phase transition

High *T*-Case

Decoupling Strategies

Model Experience

ALICE Data

Summary

In Memory of Rudolf Bock †April 9, this year

As Founding Father and one of GSI's Research Directors Rudolf Bock initiated and continuously expanded our engagement in high energy nuclear collisions:

50th Anniversary of first Nuclear Beams @ BEVALAC 1974: GSI-LBL Contract (R. Bock - H. Grunder)

\sim 50 years of Fireball Model (1976)

G.D. Westfall, J. Gosset, P.J. Johansen, A.M. Poskanzer, W.G. Meyer, H.H. Gutbrod, A. Sandoval, R. Stock

S. Nagamiya, M.-C. Lemaire, E. Moeller, S. Schnetzer, G. Shapiro, H. Steiner, I. Tanihata (1981)

First Model descriptions

Hydrodynamics

W. Scheid, H. Müller, W. Greiner (1974)
C.Y. Wong, T.A. Welton (1974)
Y. Kitazoe, M. Sano (1975)
A.A. Amsden, F.H. Harlow, G.F. Bertsch,
J.R. Nix, *full rel. 3-d Hydro.* (1976/77)

Non-Equilibrium Transport

Cascade: H.W.Bertini, T.A. Gabriel, R.T. Santoro (1974) Hard Spheres: J.P. Bondorf, H.T. Feldmeier, S. Garpman, E.C. Halbert (1976) Rows on Rows: J.K., J. Hüfner (1977) Cascade: K.K. Gudima, H. Iwe, V.D. Toneev (1978)

Quark Matter at the Horizon

QM-Theory (1980)QM-Experiment (1980)Bielefeld (H. Satz)GSI (R. Bock, R. Stock)

Quark Matter 2 (1982) Bielefeld (M. Jakob, H. Satz)

General Remarks

Continuous Decoupling

Jörn Knol GSI, Mai 2024

in Memory

General Remarks

Model Features

Phase transition

High *T*-Case

Decoupling Strategies

Model Experience

ALICE Data

Summary

- The fundamental Laws of Physics are continuous in space-time², this concerns:
 - any Restructuring of Matter (e.g. Phase transitions)
 - Decoupling from an interacting medium
- **Question:** How can one understand thermal two parameter fits of central high-energy nuclear collisions?

The following Definitions are used:

- Freezing-in: the moment, when in-medium observables become *stationary* and finally agree with the measurements;
- **Decoupling:** the moment, when particles *decouple*, such that they can *undisturbed* reach ASYMPTOTIA.
- Presented Concept is based on the Boltzmann Eq.
 - generalizations towards QM, Finite Size, Formation-time, etc. I published in 2008 (Non-Eq-real-time Formalism) thanks ⇒ Dima Voskresensky & Yura Ivanov

²This classifies discontinuous prescriptions such as "Cooper-Frye" or Coalescence methods as *inappropriate theoretical* tools $\mathbb{R} \to \mathbb{R} \to \mathbb{R} \to \mathbb{R}$ $\mathbb{R} \to \mathbb{R} \to \mathbb{R}$

Learning from Model Features ...

³This page and the following ones concern properties of the models of

Decoupling Events (momentum dependence)

Continuous Decoupling

Jörn Knol GSI, Mai 2024

in Memory

General Remarks

Model Features

Phase transition

High *T*-Case

Decoupling Strategies

Model Experience ALICE Dat

Summary

Hybrid Model: Hydro + kinetic Transport (Y. Sinyukov et al.)

(日)

э

Decoupling Events & HBT radii

Continuous Decoupling

Jörn Knoll GSI, Mai 2024

in Memor

General Remarks

Model Features

Phase transition

High *T*-Case

Decoupling Strategies

Model Experience

Summary

Hybrid Model: Hydro + kinetic Transport (S. Pratt)

(日) (四) (日) (日) (日)

pion momentum = 300 MeV/c

HBT-radii compatible with RHIC events: $R_{\rm out}/R_{\rm side} \approx 1.2$

Phase transition scenario

Continuous Decoupling

Jörn Knol GSI, Mai 2024

in Memory

General Remarks

Model Features

Phase transition

High *T*-Case

Decoupling Strategies

Model Experience

ALICE Data

Summary

- \rightarrow latent heat stabilizes T during phase transition;
- \rightarrow hadrons are produced during the entire phase transition;
- \rightarrow phase transition duration \sim 5 fm/c;
 - ightarrow volume changes by factor \sim 10;
- \rightarrow resulting chem. abundance close to chem. equilibrium.

High *T*-Case (Thermal Fit of ALICE Data)

These sketches displays the spatial situation in the respective local rest-frames with r.m.s. sizes of the particles (except for the Δ -resonances, which are supposed to be bigger).

High *T*-Case (Thermal Fit of ALICE Data)

These sketches displays the spatial situation in the respective local rest-frames with r.m.s. sizes of the particles (except for the Δ -resonances, which are supposed to be bigger).

High *T*-Case (Thermal Fit of ALICE Data)

These sketches displays the spatial situation in the respective local rest-frames with r.m.s. sizes of the particles (except for the Δ -resonances, which are supposed to be bigger).

Instantaneous decoupling

Jörn Knoll GSI, Mai 2024

in Memory

General Remarks

Model Features

Phase transition

High *T*-Case

Decoupling Strategies

Model Experiences ALICE Data

Summary

Instantaneous Decoupling:

• What is odd about it?

Instantaneous decoupling

Instantaneous Decoupling:

Continuous Decoupling

Jörn Knoll GSI, Mai 2024

in Memory

General Remarks

Model Features

Phase transition

High *T*-Case

Decoupling Strategies

Model Experiences ALICE Data

Summary

- What is odd about it?
- There is no Control, whether the particles can reach **ASYMPTOTIA!**
- Why can then data be fitted (Spectra, Abundances)?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

How to cure?

Model Experiences ALICE Data

- Individuality:
- The stronger the coupling:
 - \Rightarrow the later and broader the Decoupling-Window!
- What is the common "Denominator" that allows Fits with solely two parameters?
- the Solution rests on Wisdom from 200 Years ago!

Model Data

Model

Experiences

• Let's resolve the surprise and combine the Wisdom of both Models;

(日)

э

Model Data

• Local Environments allow Grand Canonical Concepts;

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ● のへの

ALICE Data

Data from the ALICE Collaboration Statistical hadronization Total (after decays) Primordial 10^{-7} 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Mass (GeV) Local Environments allow Grand Canonical Concepts;

- How can this Systematics comply with the
 - Individuality of the Decoupling process?

Data Systematic

Continuous Decoupling

Jörn Knoll GSI, Mai 2024

in Memory

General Remarks

Model Features

Phase transitior

High *T*-Case

Decoupling Strategies

Model Experiences

ALICE Data

Summary

What do the data tell us?

Fugacities of Nuclei with mass *m* obbey:

$$f_m = \exp\left[(\mu_m - m)/T\right] = const_m!$$

with systematcs: $\int f_m = (f_{
m N})^{m/m_{
m N}}$

How to comply with Individuality?:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Data Systematic

Continuous Decoupling

Jörn Knoll GSI, Mai 2024

in Memory

General Remarks

Model Features

Phase transitio

High *T*-Case

Decoupling Strategies

Model Experience

ALICE Data

Summary

What do the data tell us?

Fugacities of Nuclei with mass *m* obbey:

$$f_m = \exp\left[(\mu_m - m)/T
ight] = const_m!$$

with systematcs: $f_m = (f_N)^{m/m_N}$

Chem. Eq.

All Conditions are fulfilled along non-relativistic Adiabates

Summary and Discussion

Continuous Decoupling

Jörn Knoll GSI, Mai 2024

in Memory

General Remarks

Model Features

Phase transition

High *T*-Case

Decoupling Strategies

Model Experience

ALICE Data

Summary

Freezing-in versus Decoupling of central Collider Experiments:

- All *Model Fits* of abundances and Momentum spectra confirm their **early Freezing-in** soon after *Hadronization*;
- the **proper Continuous Decoupling** is individual and requires an *unperturbed way* out of the collision zone:
 - weakly interacting probes decouple earlier than strongly interacting ones;
 - the Decoupling of Nuclides depends on their spatial sizes.
- How can then the thermal Model Fits be understood? Well, it comes about an intricate Conspiracy, where:
 - a) below $T \approx 60 \text{MeV}$ (*i.e.* once the cycles of Δ -Formation have ceased) the Evolutions converge to NR-Adiabates (with adiabatic index $\kappa = 5/3$)
 - b) along these Adiabates Entropy, NR-fugacities and Particle Numbers are conserved (Wisdom from 1823/24) and
 - c) as approximate Nambu-Goldstone Particles the Number of Pions are approximately conserved!

Discussion

Jörn Knoll GSI, Mai 2024

in Memory

General Remarks

Model Features

Phase transitior

High *T*-Case

Decoupling Strategies

Model Experience

ALICE Data

Summary

Robustly determined Observable

Thank You

Jörn Knoll GSI, Mai 2024

in Memory

General Remarks

Model Features

Phase transitior

High *T*-Case

Decoupling Strategies

Model Experience

ALICE Data

Summary

Robustly determined Observable

