
NON-EQUILIBRIUM DESCRIPTIONOF BREMSSTRAHLUNG IN DENSE MATTER(Landau - Pomeranchuk - Migdal E�ect) 1J�orn Knoll and Dmitri N. Voskresensky 2Gesellschaft f�ur Schwerionenforschung (GSI)Postfach 110 552D-64220 Darmstadt, GermanyAbstract:The soft behavior of the bremsstrahlung from a source is discussed in terms of classi-cal transport models and within a non{equilibriumquantum �eld theory (Schwinger- Kadano� - Baym - Keldysh) formulation.IntroductionWe study the importance of coherence time e�ects (Landau - Pomeranchuk - Migdal - ef-fect (LPM)3[1]) on the production and absorption of �eld quanta from the motion of sourceparticles in non-equilibrium dense matter. In order to calculate such bremsstrahlung ef-fects appropriately one needs to go beyond the commonly used quasi{particle picture,and include e�ects of the �nite widths of the particles [2, 3, 4]. Our considerations areof particular interest for the application to photon, or di-lepton production in high en-ergy nuclear collisions, for gluon or parton radiation and absorption in QCD transportand its practical implementation in parton kinetic models (such problems are discussed,e.g. in [4, 5]), to neutrino and axion radiation from supernovas and neutron-star matter(see [6]), for the soft phenomena in quantum cosmological gravity (see [7]) and also formany condensed matter phenomena, as particle transport in metals and semiconductors,radiation in plasma etc (see [8]). The study also gives some hints how to generalize thestandard transport picture (see [9]) such that it can include genuine o�-shell e�ects dueto damping of the single particle propagation from collisions or decays.To be speci�c we take the example of electrodynamics, considering photon productionand assume that the source system couples only perturbatively (to lowest order) to theradiation �eld, while the source itself can interact in any non-perturbative way. Thus,we consider a "white" body as a source for the radiated �eld! Our considerations areformulated in real time non-equilibriumGreen's function technique, where the productionrate is given by the �+ component of the proper self-energy diagram of the producedphoton � i��+ = �� ���i� = 4� Z d4�eiq� Dj�y(x� �=2)j�(x+ �=2)E ; (1)1GSI-preprint 95-18; hep-ph/9503222; submitted to Phys. Lett. B2permanent adress: Moscow Institute for Physics and Engineering, Russia, 115409Moscow, Kashirskoeshosse 313The original LPM considerations were restricted to cases where ultra-relativistic particles traverse a�nite piece of target matter. 1



which is determined by the current auto correlation function of the source. The dashedlines relate to the photon, while the �i�-loop symbolically denotes the exact inclusion ofall strong interaction among the source particles. The bracket h: : :i denotes a quantumensemble average over the source with quantum states and operators in the interactionpicture. Above and throughout later we use the Keldysh f�;+g notation, see [10], wherethe ��+ and �+� self energies are responsible for gain and loss. Such a formalism hasbeen applied in calculation of neutrino emissivity of neutron stars in ref.[11], employingthe quasi{particle approximation for the equilibrium nucleon Green functions. Howeverthe general formalism allows to go beyond this limit and to account for the �nite dampingwidth of the source particles due to their �nite mean free path.Classical radiationFor some classical source systems perturbatively coupled to a boson �eld the boson selfenergy can be obtained in closed form. For these cases one has to evaluate the current-current correlator on the classical level. The properties of classical radiation will beillustrated for two examples, where a charged particle (the source) stochastically movesin dense matter. Thereby the motion of the charge is described either (a) by mesoscopictransport (di�usion process) or (b) by a microscopic Langevin process.Di�usion processThe motion of the source particle is assumed to be described by a time dependentphase-space distribution f(~x;~v; t) in space and velocity with convective current density~j(~x; t) = e R d3v ~v f(~x;~v; t). For standard dissipative media in equilibrium the velocityautocorrelation function (integrated over space) decays exponentially in time4Dvi(� )vk(0)E = 13 D~v2E �ike��xj� j; (2)where i and j denote the spatial components. �x is the relaxation rate which we approx-imate as constant, h: : :i now denotes the average over the classical distribution functions.Both f(~x;~v; t) and the autocorretion function can be obtained in closed form, if thetime evolution of f , and the propagation of 
uctuations �f are governed by a standarddi�usion process. Solving then a Fokker-Planck equation for the space-time dependenceof velocity 
uctuations we obtain (in mixed �; ~q representation)� i��+cl (�; ~q) = 4� Z d3~xe�i~q~x Dji(~x; � )jk(~0; 0)E= 4�e2�0 �DDvivkEEeq e��xj� j �D2qiqk �e��xj� j � 1�2� (3)� exp(�D ~q2�x ��xj� j+ e��xj� j � 1�) :Here the ensemble average h: : :ieq over the equilibrium distribution feq keeps only evenmoments of ~v with h~v2i = 3D�x such that only even powers of i~q survive. This renders4We should note that this ansatz ignores �nite size corrections in terms of some anti-correlations onthe scale of a mean recurrence time [3]. 2



�i��+cl (�; ~q) real and symmetric in � . For transverse photons ~�~q = 0 some terms dropand we have�i��+cl (!; ~q ) = 4�e2�0 DvivjEeq exp hD ~q2=�xi� 1Xk=0 1k!  �D ~q2�x !k 2(k + 1)�x + 2D ~q2((k + 1)�x +D~q2)2 + !2 (4)�! 4�e2�0 DvivjEeq 2�x=(!2 + �2x) for hv2i~q2 � �2x: (5)Compared to the infra{red divergent quasi{free result / 1=!2 this form of the correlationrenders the photon self energy regular in the soft limit at four momentum q = 0. It isdetermined by mesoscopic transport properties, namely by the relaxation rate �x and thedi�usion coe�cient D = h~v2i =3�x; �0 is the spatial density of the charged particles. Forlarge q, i.e. Dq2 � �x, only the short time behavior of the autocorrelation matters andfrom (3) and (4) one �nds in (�; ~q) and (!; ~q) representationslimD~q2��x h�i��+cl (�; ~q )i = 4�e2�0 DvivkEeq exp h��xj� j �D~q2�x� 2=2i ; (6)limD~q2��x h�i��+cl (!; ~q )i = 4�e2�0 DvivkEeq  2�D ~q2�x!3=2 exp(� !22D ~q2�x) : (7)Microscopic Langevin processIn a microscopic Langevin process hard scatterings occur at random with a constantmean collision rate �. These scatterings consecutively change the velocity of a pointcharge from ~vm to ~vm+1,: : : (subscripts m, and n below refer to the collision sequence). Inbetween scatterings the point charge moves freely. For such a multiple collision processone can at least determine the ~q = 0 part of the self energy.The modulus of the autocorrelation function takes a Poissonian form for such a colli-sion sequence� i��+cl (�; ~q = 0) = 4�e2�0 Dvi(� )vk(0)E = 4�e2�0e�j�� j 1Xn=0 j�� jnn! Dvimvkm+nEm ; (8)where h: : :im denotes the average over the discrete collision sequence fmg. The timeWigner transform of (8) determines the spectrum at vanishing ~q for all !� i��+cl (!; ~q = 0) = 4�e2�0 1Xn=0 Dvimvjm+nEm 2�nRe f(� + i!)n+1g(!2 + �2)n+1 : (9)This is a genuine multiple collision description for the photon production rate in com-pletely regular terms due to the (!2 + �2)n form of all denominators. Each term is regular,since right from the beginning one accounts for the damping of the source particle be-cause of the �nite mean time 1=� between collisions. The result (9) still accounts for thecoherence of the photon �eld, now expressed through the correlations h~vm~vm+nim arizingfrom the sequence of collisions. The terms in (9) de�ne partial rates, which are associatedwith speci�c self energy diagrams. 3



For the Langevin process the ~q-dependence of the self energy cannot be obtained inclosed form in general. Still the n = 0 term (c.f. with n = 0 term from eq.(9)) can begiven � i��+cl (!; ~q) � 4�e2�0 * 2� vimvkm(! � ~q~v)2 + �2+m : (10)It shows the typical Cherenkov enhancement at ! = ~q~v. Although for ~q ! 0 the analyticalform of (10) resembles the di�usion result (4), it is not the same unless h~vm ~vm+nim = 0 forn 6= 0, an approximation recently used in ref. [12]. In the general case velocity correlationsbetween successive scatterings exist, and there will be a sizeable di�erence between the mi-croscopic mean collision rate � and the mesoscopic relaxation rate �x. For systems, wherethe velocity is degraded by a constant fraction �, such that h~vm � ~vm+nim = �n h~vm � ~vmim,one can sum up the whole series in (9) and recover the di�usion result (4) at ~q = 0 with�x = (1��)�. This clari�es that the di�usion result (4) represents a resummation of therandom multiple collision result (9).Monte Carlo evaluation of amplitudesSome of the cascade schemes try to cure the infra-red problem by considering the phaseof the photon �eld along the classical orbits. Thus they evaluate R dt~v(t) exp[i!t� i~q~x(t)]along the random straight sections of the classical paths in the cascade model. We like tomention that this is a highly unreliable procedure due to the strong cancelations of termsthat are randomly generated. Our experience shows that a reliable result (better than< 5%) in the transition region ! � � requires an ensemble of 103 cascade runs where eachpath has about 103 collisions. Compared to that the analytical result (9) has signi�cantcomputational advantages, provided the random process is of this form.Quantum many-body descriptionIn the full quantum �eld theory formulation the production rate is given by all photonself energy diagrams of skeleton type according to the closed time-path rules [10, 13] withfull Green's function which result from the summation of Dyson's equation. The later inshort matrix notation becomesG = G0 +G0 �� �G (11)- = - + - �� ���i� -Here G0, G and � denote the two by two matrices of the unperturbed Green's function(thin lines), the full Green's function (full lines), and the proper self energy of the sourceparticles. The � denotes the space-time folding. The four components of �i� are de�nedas the sum of all standard proper self energy diagrams like in normal perturbation theory,now however with de�nite + or � assignments at the external vertices, and summed overthe � and + signs for all internal vertices. These signs specify the Green's functionslinking the vertices and the choice between the � vertex �iV and its adjoint value +iV yat + vertices (c.f. ref. [10]).The full Green's functions account for the �nite damping width of the particles, andtherefore destroy of the strict energy-momentum relation in dense matter. This width4



expressed through the imaginary part �� of the retarded self energy arises from collisionsor decays of the particles. In this picture the o�-diagonal Green's functions G�+ andG+� are four momentum and space Wigner densities for the occupied and available 'singleparticle states', which now have a �nite width. The corresponding o�-diagonal parts inthe self energy determine the corresponding gain and loss terms in a transport description.Therefore each diagram of (1) de�nes a speci�c partial rate.We suggest a decomposition of the diagrams that allow for a simple interpretation andclassi�cation in terms of physical in-medium scattering processes, and propose particularresummations of physically meaningful diagrams, which consider the �nite damping widthof all source particles in matter. All the graphs consisting G�+G+�{products are explicitlypresented. In this picture the set of diagrams reduces to�� ���i� = �� ��s s + �� ��s s�� �� + �� ��s s�� ���� �� + : : :���
���
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s s�������� + : : : (12)Here full dots and boxes denote e�ective in-medium vertices and 4-point interactions, e.g.- -- - = -- --����������������uu + -- --���������������� ����������������uu uu + -- --� � � �� � � ����� ����uu uu : : : (13)These in-medium vertices and four point interactions are de�ned for a speci�c choice ofsign (say �) through skeleton resummation schemes, where only bare � vertices linked byG�� Green's functions appear. Compared to conventional diagrams, vertex correctionsof di�erent signs appear on both sides of a loop once they are separated by f+�g lines.In (13) the wavy lines are either interactions or full boson-propagators in a theory offermions interacting with bosons, like in QCD. In some simpli�ed representations (beingoften used, c.f. [11]) the 4-point functions behave like intermediate bosons (e.g. phonons).We note that each diagram in (12) represents already a whole class of perturbativediagrams of any order in the interaction and in the number of loops. The most essentialterm is the one-loop diagram in (12), which is positive de�nite, and corresponds to the�rst term of the classical Langevin result for �cl in (9). The other diagrams representinterference terms due to rescattering. All diagrams calculated with full Green's functionsare void of infra-red divergences. Thus these diagrams represent the quantum general-ization of the infra-red regular Langevin result (9). Under appropriate conditions, thecorrect quasi{particle (QP) and quasi{classical (QC) limits are recovered from this subsetof graphs.Decomposition of closed diagrams into Feynman amplitudes in the quasi{particle approx-imation (QPA)The QPA is a quite commonly used concept originally derived for Fermi liquids at lowtemperature (Landau - Migdal, see [14]), where it constitutes a consistent scheme. Withthe application of transport models to high energy situations this concept has been takenover to a regime where its validity cannot be justi�ed under all circumstances. For the5



validity of the QPA one normally assumes that �� ��, where �� is an average particle kineticenergy (� T for equilibrium matter). This has considerable computational advantages asWigner densities ("{ +" and "+ {" lines) become energy �{functions, and the particleoccupations can be considered to depend on momentum only rather than on the energyvariable.5. Formally the energy integrals can be eliminated, in diagrammatic terms justcutting the corresponding "{ +" and "+ {" lines [11].Thus the QP picture allows a transparent interpretation of closed diagrams. Withconsecutive numbers 1 to 6 for the diagrams drawn in (12), diagrams 1, 2, 4 and 5 relateto the radiation from a single in-medium scattering between two fermionic quasi-particles[15]. Thereby diagram 2 is more important than diagram 4 for neutral interactions, whilethis behavior reverses for charge exchange interactions (the latter is also important forgluon radiation in QCD transport due to color exchange interactions). Diagrams like 3describe the interference terms due to further rescatterings of the source fermion withothers. For diagram 6 the photon is produced from intermediate states (its contributionis suppressed in the soft limit). Some of the diagrams, which are not presented explicitlyin eq.(12) give more than two pieces, if cut, so they do not reduce to the Feynmanamplitudes. Since one works with zero-width fermion Green's functions in QPA, the�nite width contributions have to appear in higher order diagrams through correspondingIm�-insertions! Therefore the whole set of diagrams de�ning the full �i��+ in QPA isby far larger, than ours (12).Moreover, our considerations show that the validity condition � � �� is not su�cientfor the QPA. Rather, since �nally energy di�erences of order ! appear, one has to demandthat also ! � � in the QPA. In particular, the remaining series of QP-diagrams is nolonger convergent unless ! > �, since arbitrary powers in �=! appear, and there is nohope to ever recover a reliable result by a �nite number of QP-diagrams for the produc-tion of soft quanta! With full Green's functions, however, one obtains a description thatuniformly covers both, the soft (! � �) and the hard (�� !) regime.Quasi-classical limit (QCL)The QCL requires that i) the particle occupations are small (hn~pi � 1) implying aBoltzmann gas and that ii) all inverse length or time-scales times ~ are small comparedto the typical momentum and energy scales of the source systems. In particular we shallassume ~! � ��, and a fermion collision rate � = ~=�coll � ��. The last inequality allows touse Kadano�{Baym ansatz, where the fermion occupations depend only on momentumn~p = n�~p��F but no longer on the energy � of the particles. Assuming again � ' const:on relevant time scales one immediately �ndsG�+(�; ~p) ' in~p exp[�j�� j=2 + i�~p� ]; (14)G+�(�; ~p) ' �i(1� n~p) exp[�j�� j=2� i�~p� ]: (15)With these Green functions we calculate the diagrams (12). For the one{loop diagram weobtain the expression identical to the n = 0 term of the classical Langevin result (10):� i��+0 (!; ~q) � 4�e2 Z d3p(2�)3 n~p(1 � n~p)2�vivk(! � ~q~v))2 + �2 � 4�e2�0 * 2�vivk(! � ~q~v))2 + �2+ : (16)5The later approximation is also often used beyond the scope of the QPA and is then known asKadano�{Baym ansatz [13], c.f.[8] 6



For neutral interactions (corresponding to the classical examples) we show that preciselythe diagrams in the �rst line of (12) denoted by �i��+n with n f�+g loop insertionscorrespond to the n-th term of the Langevin result (9)6. Thus�i��+n (�; ~q = 0) � 4�e2�0 Dvimvkm+nEm j�� jnn! e�j�� j ; (17)�i��+n (!; ~q = 0) � 4�e2�0 Dvimvkm+nEm 2�nRe 1(�� i!)n+1 : (18)For neutral interactions all other diagrams in (12) drop in the QC limit. Diagram4 is unimportant for neutral interactions. Other diagrams in the original series (12)acquire extra powers either in the mean occupation hn~pi � 1 or in �=�� � 1. Suchsuppression factors result from extra G�+ lines compared to the classical diagrams ofthe same topology or are due to a violation of time ordering (diagram 5), since classicalinteractions are of time-scale 1=��, which is short compared to the damping time 1=�x.We note that truncating the set of diagrams (12) with respect to a certain expansionparameter special care should be taken in order to satisfy charge{current conservationlaw. For veri�cation one may use the Ward{Takahashi identities within the desired order.For equilibrium T 6= 0 case even in general quantum consideration the one{loop dia-gram can be expressed by the QP prescription [11, 15] however multiplied by the factorC = !2=(!2 + �2), which displays the suppression at low !. There is hope that even inthe quantum case some higher order diagrams can also be resummed and that an over-all suppression factor of the form C = !2=(!2 + �2x) emerges for the true in-matter raterelative to the quasi-free or QP one in the limit q = 0, c.f. the di�usion result (3-7).Altogether our results provide an extension of the incoherent quasi{free and QP ap-proximation from the ultra violet limit towards the soft limit with appropriately modi�edproduction cross sections. It does not only regularize the infra{red divergence of the freerate, but it also produces the right q dependence in the soft limit. We also note thatour diagrammatic description may suggest a formulation of a transport theory which in-cludes the propagation of particles with �nite width and therefore may permit a consistenttreatment of resonances in non{equilibrium dense matter.6The proof is easily given in the � � ~p representation, assigning times 0 and � to the external � and+ vertices, while the internal � and + vertices are taken at t�1 to t�n and t+1 to t+n , respectively. In theclassical limit G�� is retarded, while G++ is advanced, such that both time sequences have the sameordering: 0 < t�1 < : : : < t�n < � and 0 < t+1 < : : : < t+n < � (the order reverses, if the line sense ofthe outer fermion lines are reversed). Thus the � -dependence of the modulus of these diagrams againresults in e�j��j. Assuming classical momentum transfers j~pn�~pn+1j which are large compared to ~� oneconcludes that the f+�g loop insertions merge �(t�n � t+n ) in their time structure. With tn = t�n = t+n agiven diagram then no longer depends on the intermediate times tn apart from the ordering condition,and therefore results in a factor j�� jn=n!. With ~q = 0 also the corresponding momenta are pair-wiseidentical, and the remaining momentum integrations just serve to de�ne the correlation between ~vm and~vm+n after n collisions of the charged particle. 7
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