
RADIATION FROM DENSE MATTERJ�orn Knoll, GSI DarmstadtABSTRACTThe principle aspects and problems of Bremsstrahlung arising from collisions in densematter are discussed. Once the mean collision rate in the matter becomes comparable orlarger than the photon energy the incoherent quasi-free scattering approximation whichis used in all kinetic simulation models is no longer valid since coherence e�ects areimportant. The lectures deal with this general problem, explain the principle physics atsimple examples and gives a perspective on the theoretical tools to be used for a properquantum description.1. IntroductionWith increasing beam energy the production of new particles becomes a dom-inant component of the reaction dynamics in nuclear collisions. Thus particles, likepions, other mesons or baryons as well as real and virtual photons are produced be-sides the original nucleons. For the theoretical description it is therefore important tohave a reliable concept for the corresponding production and absorption rates in densematter. However most of the models today use prescriptions that date back to theearly days of the Intra Nuclear Cascade model. There one uses the incoherent quasi-free collision picture (IQF), where on the basis of the free production cross section andthe quasi-particle approximation the contributions from di�erent microscopic collisionsare incoherently added. That is, one adds probabilities rather than amplitudes. In highenergy physics one soon has realized that the IQF picture has its limitations once thecollision rate among the constituents � = 1=�c (�h = 1) becomes comparable or evenlarger than the energy ! of the produced particle. In physical terms: depending onits energy ! and momentum ~q the produced or absorbed particle looks at the inter-action zone only with a limited space-time resolution due to the uncertainty principle�x � 1=q;�t � 1=!. Once two or more collisions fall into this limited space-timevolume they are no longer resolved individually and the coherence between succes-sive collisions becomes important. The resulting interference is generally destructiveand yields a reduction of the production rates with decreasing ! relative to thoserates estimated with the IQF prescription. For the bremsstrahlung from fast electronstraversing matter this e�ect has been studied by Landau, Pomeranchuk, Migdal1 andsubsequently by many others. 1



2. Production RatesWhile for scattering problems one normally �rst calculates the transition ampli-tude, which then squared gives the production cross section according to Fermi's goldenrule, for dense matter problems it is more appropriate to take a di�erent route. Sup-pose the coupling between the produced particle and the source is given by a currentdensity of the source. For instance in the electromagnetic case the interaction energybetween the photon and a source of charged particles is given by R d3xA�(~x)j�(~x).In such cases the local production rate can be expressed through the current currentcorrelation function hj�(~x1; t1)j�(~x2; t2)i. Here the brackets h: : :i denote the ensembleaverage. The Wigner transformation of this correlation functionC(!; ~q;~x; t) = Z d3�d� ei!��i~q~� D~j(~x� ~�=2; t� �=2)~j(~x+ ~�=2; t+ �=2)E (1)de�nes the local gain and loss terms for a photon with energy momentum !; ~q! ddtn
(~x; ~q; t) = f!@t + ~q@~xg n
(~x; ~q; t) (2)= 2�3 f2C(!; ~q;~x; t)(1� n
(~x; ~q; t))� C(�!;�~q;~x; t)n
(~x; ~q; t)g :Here n
(~x; ~q; t) denote the phasespace occupation of the photon at space-time ~x; t andmomentum ~q. The extra factor 2 in the gain term comes from the summation overthe two transverse polarizations. For homogeneous systems in equilibrium C does nolonger depend on ~x; t. The advantage of this formulation is that for statistical systemssuch correlations die out for larger space-time distances such that the above Fouriertransformation over ~�; � is limited to correspondingly small regions.The correlation function obeys certain integral constraints in form of sum rules,e.g. Z 1�1 d!C(!; ~q = 0; t; ~x)d3x = 2� D ~J(t)2E ; where ~J(t) = Z d3x~j(t; ~x) (3)which directly follows from de�nition (1), c.f. also ref.2 for further sum rules. Theyimpose constraints on the analytical form of the production rate in dense matter whichfor a source system in equilibrium at temperature T can be formulated asZ 10 d!! d2d!dtN(!; t) �1 + e!=T� = 43 D ~J(t)2E ; (4)where d2d!dtN is the space and angle integrated yield per energy ! and time t.Therefore the question arises: what are the relevant scales which determine theform of the correlation function in dense matter and therefore the form of the photonspectrum, and how does this compare to the spectrum in the naive IQF approximation?Since the nature of the problem is entirely classical, that is, it is already present in the2



coupling of a classical system of charged particles to theMaxwell �eld, it is instructive to�rst study such cases. For simplicity we consider now a single point charge which makesstochastic collisions with a neutral random medium, just like Brownian motion. Dueto these random collisions it radiates photons. We describe the motion of this charge intwo ways: i) macroscopically by means of a di�usion equation; and ii) microscopicallyby a stochastic Langevin process. These examples and the following quantum manybody considerations are discussed in detail in a recent publication3.3. Incoherent Quasi-free Scattering Approximation (IQF)The IQF approximation relies on the elementary 
 production cross sectionfor the in-matter collisions. For dense nuclear matter and 
 energies below 200 MeVthe most essential processes are proton-neutron (pn) collisions. As precise pn
 crosssections are not available one relies of theoretical investigations. In ref.4 such crosssections have been calculated with realistic nuclear forces, where in particular the lowenergy properties of the pn system have been incorporated very carefully. The crosssection shows two distinct features:(a) a 1=! singularity in the limit of vanishing 
-energy ! ! 0 (soft photon limit)(b) an enhancement of the cross section towards the end of phase space ! ! !maxbeyond the classical expected behavior.The infra-red divergence (a) is generic to all photon production cross sections andrelates to the in�nite time scale available in free scattering (Low-theorem5, c.f. lecturesby O. Scholten, these proceedings). For the in-matter production rates in the IQFapproximation the infra-red divergence remains, which is obviously in contradiction tothe sum-rule requirement (3). The reason is that in dense matter such long time scalesare not available and the corresponding in-matter rates will be quenched as we shallsee. This infra-red problem is the main subject of this lecture. Feature (b), whichis particular to the pn-system, is caused by a resonance close to zero kinetic energyin the pn channel (the anti-bound state), which becomes relevant at the kinematicallimit, i.e. at the maximum photon energy in each collision. In IQF approximationfor the dense matter rates also this structure causes problems with the sum-rule, sinceit augments the yield at large photon energies such that the resulting slope is more
at than that of e�!=T , c.f. ref.4. However such a resonance structure close to zerokinetic energies requires a very long length scale which again is not available in densematter. Therefore we see that in both cases the sum rules point towards a defectof the underlying approximation used for the dense matter rates, namely the IQFapproximation.4. Bremsstrahlung from Classical SourcesFor a clari�cation of the infra-red problem we �rst discuss two simple examplesof classical electrodynamics, which both can be solved analytically to a certain extent:3



a di�usion process and a random walk problem.The di�usion process is assumed to be described by a Fokker-Planck equationfor the probability distribution f of position and velocity ~x;~v@@tf(~x;~v; t) =  D�2x @2@~v2 + �x @@~v~v � ~v @@~x! f(~x;~v; t): (5)Likewise 
uctuations evolve in time by this equation and this way determine the cor-relations. The two macroscopic parameters are the spatial di�usion coe�cient D anda friction constant �x which determines the relaxation rates of velocities (friction dueto collisions with the medium). In the equilibrium limit (t ! 1) the distributionattains a Maxwell-Boltzmann velocity distribution where T = m h~v2i =3 = mD�x. Thecorrelation function can be obtained in closed form and one can discuss the resultingtime correlations of the current at di�erent �xed values of the photon momentum ~q,�g. 1 (details are given in ref.3). For the transverse part of the correlation tensor thiscorrelation decays exponentially as � e��x� at ~q = 0, and its width further decreaseswith increasing momentum q = j~qj. Besides trivial kinematical factors, the in-mediumproduction rate is given by the time Fourier transform � ! !. Fig. 2 displays thecorresponding total production rates d2N=(d!dt) of on-shell photons (number per timeand energy; which is dimensionless) in units of 4�e2 h~v2i =3. One sees that the hardpart of the spectrum behaves as expected, namely, like in the IQF approximation therate grows proportional to �x and this way proportional to the microscopic collisionrate � (c.f. below). However independent of �x the rate saturates at a value of � 1=2in these units around ! � �x, and the soft part shows the inverse behaviour. That is,
Fig. 1: Current-current correlation function inunits of e2 < v2 > as a function of time (in unitsof 1=�x) for di�erent values of the photon mo-mentum q2 = 3k2�2x=< v2 > with k = 0; 1; 2; 3. Fig. 2: Rate of real photons d2N=(d!dt)in units of 4�e2 
~v2�=3 for a non-relativisticsource for �x =50,100,150MeV; for comparisonthe IQF results (dashed lines) are also shown.with increasing collision rate the production rate is more and more suppressed! Thisis in line with the picture that such photons cannot resolve the individual collisionsany more. Since the soft part of the spectrum behaves like !=�x, it shows a genuine4



non-perturbative feature which cannot be obtained by any power series in �x. Forcomparison: the dashed lines show the corresponding IQF yields, which agree withthe correct rate for the hard part while they completely fail and diverge towards thesoft end of the spectrum. For non-relativistic sources h~v2i � 1 one can ignore theadditional q-dependence (dipole approximation; c.f. �g. 1) and the entire spectrumis determined by one macroscopic scale, the relaxation rate �x. This scale provides aquenching factor C0(!) = !2!2 + �2x : (6)by which the IQF results have to be corrected in order to account for the �nite collisiontime e�ects in dense matter.In the microscopic Langevin pictureone considers a classical process, where hardscatterings occur at random with a constantmean collision rate �. These scatteringsconsecutively change the velocity of a pointcharge from ~vm to ~vm+1 to ~vm+2, : : : (in thefollowing subscripts m, and n refer to thecollision sequence). In between scatteringsthe charge moves freely. For such a mul-tiple collision process some explicit resultscan be given, since the correlated probabil-ity to �nd the charge at time t1 and t2 attwo di�erent segments with n scatterings inbetween follows from the iterative folding ofthe exponential decay law with decay time1=�. Therefore the space integrated current-current correlation function takes a simplePoissonian form (�g. 3) Fig. 3: Current correlation function for the�rst terms n = 0; 1; 2; 3 of the Langevin result,eq. (7) and the total sum (�) for the case that�x=� = 
(~vm � ~vm+1)2� =(2 
~v2�) = 1=3.Z d3x1d3x2 Dji(~x1; t� �2)jk(~x2; t+ �2 )E = e2 Dvi(0)vk(� )E= e2e�j�� j 1Xn=0 j�� jnn! Dvimvkm+nEm ; (7)which represents a genuine multiple collision description of the correlation function.Here h: : :im denotes the average over the discrete collision sequence fmg. This form,which one writes down intuitively, directly includes what one calls damping in thecorresponding quantum case. Fourier transformed it determines the spectrum in com-pletely regular terms (void of any infra-red singularities) where each term describes theinterference of the photon being emitted at a certain time or n collisions later.In special cases where velocity 
uctuations are degraded by a constant fraction� in each collision, such that h~vm � ~vm+nim = �n h~vm � ~vmim, one can re-sum the whole5



series in (7) and thus recover the relaxation result with 2�x h~v2i = � h(~vm � ~vm+1)2i atleast for ~q = 0 and the corresponding quenching factor (6).This clari�es that the di�usion result represents a resummation of the Langevinmultiple collision picture and altogether only macroscopic scales are relevant for theform of the spectrum and not the details of the microscopic collisions.5. Radiation on the Quantum levelWe have seen that on the classical level the problem of radiation from densematter can be solved quite naturally and completely at least for simple examples,and �gs. 1 and 2 display the main physics. On the quantum level this problem isa challenge, since it requires techniques, that go beyond the standard repertoire ofperturbation theory or the quasi-particle approximation. The classical examples aboveshow, that the damping of the particles due to scattering is an important feature, whichin particular has to be included right from the beginning of the description. This doesnot only assure results which no longer diverge, but also provides a systematic andconvergent scheme.As a consequence the mass spectrum of the particles in the dense matter is nolonger a sharp delta function but rather acquires a width due to collisions. The cor-responding quantum propagators (Green's functions) are no longer the ones as in thestandard text books for �xed mass, but rather have to be folded over a so called spectralfunction A(�; ~p) which takes a Lorentz shape A(�; ~p) � �=((���(~P ))2+(�=2)2) of width�=2 in simple approximations. One thus comes to a picture which uni�es resonanceswhich have already a width in vacuum due to decay modes with the "states" of par-ticles in dense matter, which obtain a width due to collisions (collisional broadening).The theoretical concepts for a proper many body description in terms of a real timenon equilibrium �eld theory have already been devised by Schwinger, Kadano�, Baymand Keldysh6 in the early 60ies. First investigations of the quantum e�ects on theBoltzmann collision term were given Danielewicz7, the principle conceptual problemson the level of quantum �eld theory were investigated by Landsmann8, while applica-tions which seriously include the �nite width of the particles in transport descriptionswere carried out only in recent times, e.g.7, 9, 10, 11, 12, 13, 14, 2, 3. For resonances, e.g.the delta resonance, it was natural to consider broad mass distributions and ad hocrecipes have been invented to include this in transport simulation models. However,many of these recipes are not correct as they violate some basic principle like detailedbalance9, and the description of resonances in dense matter has to be improved14.6. Metamorphosis of diagramsIn the following I like to illustrate the steps that lead to the proper diagrammaticformulation of non-equilibrium processes. We all are used to think in terms of Feynmandiagrams which describe amplitudes in terms of certain "in" and "out" states. This6



formulation, however, is linked to the concept of asymptotic states, hence states within�nite life time. Such concepts are no longer appropriate in dense matter.Nevertheless I like to introduce the non-equilibrium diagrams at an example withasymptotic in and out states. Consider a single particle system such a H-atom (thegeneralization to many-body systems is straight forward) which undergoes transitionsfrom some initial state jii with occupation ni to �nal states jfi due to the coupling tothe photon �eld. The transition rate is given by the absolute square of the followingdiagram W =Xif ni(1� nf ) ������� 6if 6- ������� 2 (1 + n!)�(Ei � Ef � !~q) (8)with occupation n
 for the photon. For the subsequent transformation of diagramsone applies the following rules: in any diagram each vertex has to be marked by a� sign; for the conjugate complex of a diagram all the vertices are to be marked bya + sign and all line senses are to be inverted. The absolute square in (8) then becomesW =Xif ni(1 � nf) 8><>: ?if?- + 9>=>;�8><>: 6if 6-� 9>=>; (1 + n!)�(Ei � Ef � !~q) ; (9)where we have placed the two diagrams in between braces. Since one sums over initialand �nal states i and f one can equally well close the corresponding fermion lines inthe two diagrams and comes to the following closed diagramW = �� ���- (1 + n!)�(! � !~q) : (10)We see that with the line sense and the � and + marks at the vertices a unique cor-respondence is provided between the oriented + ��! and � +�! propagator lines and theinitial and �nal states. Therefore such propagator lines de�ne the density of occupiedstates or that of available states, respectively. Extending therefore the diagrammaticrules to the two types of vertices with marks� and + and the corresponding 4 propaga-tors, the usual Feynman propagator � ��! between two � vertices, its conjugate complex+ +�! between two + vertices and the mixed + ��! or � +�! ones as Wigner densities of oc-cupied and available states all standard diagrammatic rules can be used again. Fordetails I refer to the textbook of Lifshitz and Pitaevski15.Closed diagrams with one photon "in" and one "out" vertex directly determinethe correlation function (1), and each such diagram describes the interference of twoFeynman amplitudes. The latter can be recovered through the inverse procedure justcutting the diagram across any �+ or +� line. The advantage of the formulationin terms of "correlation" diagrams, which no longer refer to amplitudes but directlyrelate to physical observables, is that now one is no longer restricted to the concept ofasymptotic states. Rather all internal lines, also the ones which originally correspond7



to the in or out states are now treated on equal footing. Therefore one now can dealwith "states" which have a broad mass spectrum and therefore appropriately accountfor the damping of the particles. The corresponding Wigner densities + ��! or � +�! arethen no longer on-shell �-functions in energy (on-mass shell) but rather aquire a widthin terms of the spectral function, e.g for fermions+ ��! = in(�)AF (�; ~p)� +�! = i(1� n(�))AF (�; ~p) (11)AF (�; ~p) = �(�; ~p)��+ �F � �0~p �<�R(�; ~p)�2 + (�(�; ~p)=2)2 :Here n(�) is the phase-space occupation at energy �, AF is the fermion spectral functionwith the damping width � and in-medium on-shell energy �0~p � <�R(p) and � is thechemical potential. In general all quantities are dependent on both, energy � andmomentum ~p. One further realizes that the production and absorption rate diagramshave the same topology as photon self energy diagrams, except that now the newrules apply and the two external photon vertices are marked with opposite signs. Thiscorrespondence is equivalent to the standard relation between the imaginary part ofthe retarded self energy and the damping rate of a particle. There are many otheradvantages which open this technic to genuine non-equilibrium problems.Therefore the production or absorption rates are obviously relatedto the photon self energy which can be given by the diagram to the rightwith an in- and outgoing photon line (dashed), where the hatched loop �� �����CCC���CCC���CCC���CCC���CCCarea denotes all strong interactions of the source. The latter give rise to a whole seriesof diagrams. As mentioned, standard perturbation theory or the quasi-particle picturedo no longer apply to dense matter problems. Rather for the particles of the source,e.g. the nucleons, one has to re-sum Dyson's equation with the full complex self energyof the nucleons in order to determine the full Green's functions of the nucleons in densematter. Once one has these Green's functions and the interaction vertices one can inprinciple calculate the required diagrams. However both, the computational e�ort tocalculate a single diagram and the number of diagrams, are increasing dramaticallywith the loop order of the diagrams, such that in practice only lowest order loop di-agrams can be considered in the full quantum case. In certain limits some diagramsdrop out. We could show that in the classical limit of the quantum description onlythe following set of diagrams survive�� ��s s + �� ��s s�� �� +�� ��s s�� ���� ��: : : �� �� + : : : (12)Here the full lines denote the full nucleon Green's functions which also include thedamping width, the black blocks denote the e�ective nucleon-nucleon interaction inmatter, and the full dots the coupling vertex to the photon. Each of these diagrams8



with n interaction loop insertions just corresponds to the nth term in the classicalLangevin result (7). Thus the classical multiple collision example provides a quiteintuitive picture about such diagrams. Thereby the diagram of order n describes theinterference of the amplitude where the photon is "emitted" at some time and thatwhere it is "emitted" n collisions later. Further details are given in3.7. Qualitative changes going to a full quantum descriptionAs the infra-red limit corresponds to the limit of classical electrodynamics oneexpects even quantitatively the same behavior for the here discussed quenching e�ectfor the soft part of the spectrum. Beyond this one expects the following qualitativelychanges going from the classical description to the full quantum �eld theory� far more diagrams than in the classical case contribute; still for speci�c couplingscertain classes of diagrams drop or cancel out, like non-planar diagrams in SU(n)coupling; also if the relaxation rate �x is close to the collision rate � (e.g. forisotropic scattering with heavy particles) higher order correlations drop and theone loop diagram gives the complete result;� the radiated quantum has a �nite energy �h! and momentum �h~q (in the classicalcase �h! 0!); therefore one expects additional recoil corrections and phase spacelimitation factors, the latter leading to a suppression at large energies � e�!=Tfor the production rates from the available phase space in the �nal state, due tothe energy ! taken by the quantum;� occupations are no longer of Boltzmann type so that Pauli suppression and Bose-Einstein enhancement e�ects appear.8. ConclusionWe have seen that the spectrum of photon resulting from collisions in densematter cannot appropriately be described by the incoherent quasi-free scattering ap-proximation, which leads to a divergent result in the soft limit. Rather the �nite timebetween successive collisions and the ensuing relaxation rates �x in dense matter leadto a considerable quenching of the rate at small photon energies. This can be compiledin the simple quenching factor (6). Fig. 2 summarizes the main behavior, which alsois relevant in a quantum treatment of the source.Our considerations are of particular importance for the theoretical descriptionof nucleus-nucleus collisions at intermediate to relativistic energies. Since the herediscussed features are entirely of kinematical origin, they apply to the in-medium pro-duction and absorption rates of any kind of particle. With temperatures T in therange of 30 to 100 MeV for dense nuclear matter, up to 200 MeV for hadronic matterand beyond 150 MeV for the quark gluon plasma or parton phase most of the kineticmodels that are used infer collision rates � for the constituents, which during the highdensity phase can reach the system's temperature, �<� T . Such estimates make the use9



of on-shell concepts already rather questionable. The particles uncertainty in energyis comparable with their mean kinetic energy! In particular the bulk production andabsorption rates of all particles with masses less than T , if calculated in standard IQFapproximation, are seriously subjected to the here discussed e�ect. Therefore the cor-responding quenching factors (6) should sensitively a�ect the production rates of quarkpairs and gluons during the plasma phase, of low energy pions during hadronizationand real and virtual photons with correspondingly low energies. Since our discussionwas restricted to the production in dense matter with no incoming or outgoing asymp-totic states, for the particular case of photon production in nuclear collisions one hasto consider in addition the radiation caused by the incoming charged ions and outgoingcharged fragments. Due to Low's theorem5 the latter give rise to an infra-red divergent� 1=! component which interferes with the in-matter component discussed here.In summary, the combined e�ort from many sides to include the �nite widthof the particles in dense matter, may give hope for a uni�ed transport theory whichappropriately describes both, the propagation of resonances and of o�-shell particlesin the dense matter environment.References1. L. D. Landau and I. Pomeranchuk, Dokl. Akad. Nauk SSSR 92 (1953) 553, 735;also in Collected Papers of Landau, ed. Ter Haar (Gordon & Breach, 1965) papers75 - 77; A. B. Migdal, Phys. Rev. 103, (1956)1811; Sov. Phys. JETP 5 (1957)527.2. J. Knoll and C. Guet, Nucl. Phys. A494 (1989) 334;M. Durand and J. Knoll, Nucl. Phys. A496 (1989) 539;J. Knoll and R. Lenk, Nucl. Phys. A 561 (1993) 501.3. J. Knoll and D. N. Voskresensky, GSI-95-63; hep-ph/9510417;ftp://tpri6b.gsi.de/pub/knoll/ap-95.ps; submitted to Ann. Phys;a condensed account of this work is published in Phys. Lett. B 351 (1995) 43.4. D. Neuhauser and S. E. Koonin, Nucl. Phys. A 462 (1987) 163.5. F. E. Low, Phys. Rev. 110 (1958) 974.6. J. Schwinger, J. Math. Phys, 2 (1961) 407; L. P. Kadano� and G. Baym, QuantumStatistical Mechanics (Benjamin, 1962); L. M. Keldysh, ZhETF 47 (1964) 1515;in Engl. translation Sov. Phys. JETP20 (1965) 1018.7. P. Danielewicz, Ann. Phys. (N. Y.) 152 (1984) 2398. N. P. Landsmann, Phys. Rev. Lett. 60 (1988) 1990; Ann. Phys. 186 (1988) 141.9. P. Danielewicz, G. Bertsch, Nucl. Phys. A533 (1991) 712.10. W. Botermans and R. Mal
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