Version: SMASH-3.2
Bibliography
[1]

Yukinao Akamatsu, Masayuki Asakawa, Tetsufumi Hirano, Masakiyo Kitazawa, Kenji Morita, Koichi Murase, Yasushi Nara, Chiho Nonaka, and Akira Ohnishi. Dynamically integrated transport approach for heavy-ion collisions at high baryon density. Phys. Rev. C, 98(2):024909, 2018.

[2]

S. A. Bass and others. Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part. Nucl. Phys., 41:255–369, 1998.

[3]

D. Bazow, G. S. Denicol, U. Heinz, M. Martinez, and J. Noronha. Nonlinear dynamics from the relativistic Boltzmann equation in the Friedmann-Lemaître-Robertson-Walker spacetime. Phys. Rev. D, 94(12):125006, 2016.

[4]

Andy Buckley, Philip Ilten, Dmitri Konstantinov, Leif Lönnblad, James Monk, Witold Pokorski, Tomasz Przedzinski, and Andrii Verbytskyi. The HepMC3 event record library for Monte Carlo event generators. Comput. Phys. Commun., 260:107310, 2021.

[5]

O. Buss, T. Gaitanos, K. Gallmeister, H. van Hees, M. Kaskulov, O. Lalakulich, A. B. Larionov, T. Leitner, J. Weil, and U. Mosel. Transport-theoretical Description of Nuclear Reactions. Phys. Rept., 512:1–124, 2012.

[6]

Sen Cheng, Scott Pratt, Peter Csizmadia, Yasushi Nara, Denes Molnar, Miklos Gyulassy, Stephen E. Vance, and Bin Zhang. The Effect of finite range interactions in classical transport theory. Phys. Rev. C, 65:024901, 2002.

[7]

Tetsufumi Hirano and Yasushi Nara. Dynamical modeling of high energy heavy ion collisions. PTEP, 2012:01A203, 2012.

[8]

Iu. Karpenko, P. Huovinen, and M. Bleicher. A 3+1 dimensional viscous hydrodynamic code for relativistic heavy ion collisions. Comput. Phys. Commun., 185:3016–3027, 2014.

[9]

Yi-An Li, Song Zhang, and Yu-Gang Ma. Signatures of α-clustering in 16O by using a multiphase transport model. Phys. Rev. C, 102(5):054907, 2020.

[10]

P. Moller, J. R. Nix, W. D. Myers, and W. J. Swiatecki. Nuclear ground state masses and deformations. Atom. Data Nucl. Data Tabl., 59:185–381, 1995.

[11]

Dmytro Oliinychenko and Hannah Petersen. Forced canonical thermalization in a hadronic transport approach at high density. J. Phys. G, 44(3):034001, 2017.

[12]

Dmytro Oliinychenko, Long-Gang Pang, Hannah Elfner, and Volker Koch. Microscopic study of deuteron production in PbPb collisions at sqrt s = 2.76 TeV via hydrodynamics and a hadronic afterburner. Phys. Rev. C, 99(4):044907, 2019.

[13]

Björn Schenke, Chun Shen, and Prithwish Tribedy. Multi-particle and charge-dependent azimuthal correlations in heavy-ion collisions at the Relativistic Heavy-Ion Collider. Phys. Rev. C, 99(4):044908, 2019.

[14]

K. Schmidt, E. Santini, S. Vogel, C. Sturm, M. Bleicher, and H. Stocker. Production and evolution path of dileptons at energies accessible to the HADES detector. Phys. Rev. C, 79:064908, 2009.

[15]

Peter Skands, Stefano Carrazza, and Juan Rojo. Tuning PYTHIA 8.1: the Monash 2013 Tune. Eur. Phys. J. C, 74(8):3024, 2014.

[16]

Agnieszka Sorensen and Volker Koch. Phase transitions and critical behavior in hadronic transport with a relativistic density functional equation of state. Phys. Rev. C, 104(3):034904, 2021.

[17]

Jan Staudenmaier, Dmytro Oliinychenko, Juan M. Torres-Rincon, and Hannah Elfner. Deuteron production in relativistic heavy ion collisions via stochastic multiparticle reactions. Phys. Rev. C, 104(3):034908, 2021.

[18]

J. Tindall, J. M. Torres-Rincon, J. B. Rose, and H. Petersen. Equilibration and freeze-out of an expanding gas in a transport approach in a Friedmann textendash Robertson textendash Walker metric. Phys. Lett. B, 770:532–538, 2017.

[19]

Simon Turbide. Electromagnetic radiation from matter under extreme conditions. Other thesis, 2006.

[20]

G. M. Welke, M. Prakash, T. T. S. Kuo, S. Das Gupta, and Charles Gale. Azimuthal distributions in heavy ion collisions and the nuclear equation of state. Phys. Rev. C, 38:2101–2107, 1988.